JPH03149445A - Continuously variable transmission - Google Patents

Continuously variable transmission

Info

Publication number
JPH03149445A
JPH03149445A JP28571089A JP28571089A JPH03149445A JP H03149445 A JPH03149445 A JP H03149445A JP 28571089 A JP28571089 A JP 28571089A JP 28571089 A JP28571089 A JP 28571089A JP H03149445 A JPH03149445 A JP H03149445A
Authority
JP
Japan
Prior art keywords
friction plate
bevel gear
input shaft
plate
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28571089A
Other languages
Japanese (ja)
Inventor
Toshiaki Sato
佐藤 俊昭
Koichi Haruta
春田 耕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28571089A priority Critical patent/JPH03149445A/en
Publication of JPH03149445A publication Critical patent/JPH03149445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)
  • Friction Gearing (AREA)

Abstract

PURPOSE:To realize the change of rotary directions and improve transmission efficiency, by changing the rotation number of a planetary friction plate by providing at an input shaft a motive power slide transmission portion and a movement friction plate, and meshing the 1st bevel gear fitted to the planetary friction plate with the 2nd bevel gear. CONSTITUTION:When a handle 42 is turned, an input shaft 19 is moved, and a movement friction plate 21 fitted to the input shaft 19 is moved as it is butting against a planetary friction plate 28. The 1st bevel gear 26 connected with an internal gear 25 meshes with the 2nd bevel gear 27, and the planetary friction plate 28 is fitted to its rotary shaft 27. In the case in which the movement plate 21 is positioned at the outer periphery portion of the planetary plate 28, the revolution cycle of the plate 28 is slower than the cycle of being reversely rotated by means of the 1st bevel gear 26, so an output shaft 30 is reversely rotated. As the plate 21 is being moved to the inside, the revolution speed of the plate 28 is gradually reduced, and positiveness and negativeness are balanced at a certain point, and as the movement is further advanced to the inside, the output shaft 30 rotates positively. Also, as the motive power friction plate is only one step, its motive power transmission efficiency is good.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野] 本発明は騒音が少なく、しかも伝達効率の良い無段変速
機に関する。 〔従来の技術〕 無段変速機は自動車、工作機械等において広く使用され
ている。そこで、従来の無段変速機の代表例、例えば特
開昭59−151656号公報に記載の無段変速機の主
要部を第5図に示すが、図に示すように変速リングlO
に、リテナ要素11に取付けられたコーン12を当接さ
せ、該コーン12の軸部の摩擦面13に入力軸14を、
該コーン12の裏面の摩擦面16に出力軸16を接続し
、変速リングlOの位置を変えて、コーン12の回転数
を変化させて、無段変速を行うようにしていた。 〔発明が解決しようとする問題点〕 ところが、上記無段変速機においては、入力軸14と出
力輪16との間に2段に渡って摩擦面10.13.15
が設けられているので、動力の伝達効率が減少するとい
う問題点があった。 また、従来の無段変速機は出力軸の回転速度を一定方向
にしか変速できず、逆回転する場合にはギアチェンジを
行う必要があり、装置が複雑化し操作が手間であるとい
う問題点があった。 本発明は、このような事情に鑑みてなされたもので、伝
達効率が良く、場合によっては正回転から逆回転または
この逆の方向転換が円滑に行なえる無段変速機を提供す
ことを目的とする。 〔問題点を解決するための手段〕 上記目的に沿う請求の範囲第1項記載の無段変速機は、
スプライン軸等の動力摺動伝達部が形成されて軸方向移
動が可能な入力軸と、該入力軸に取付けられている移動
摩擦板と、上記動力摺動伝達部に嵌入する係合ボスと、
該係合ボスに連結される第1のベベルギアと、上記移動
摩擦板の円周部が当接し上記入力軸とは直交する軸に取
付けられた遊星摩擦板と、該遊星FR擦仮に固着され上
記第1のベベルギアに噛合する第2のベベルギアと、上
記入力軸を軸方向に移動させる移動手段とを有して構成
されている。 また、請求の範囲第2項記載の無段変速機は、請求の範
囲第1項記載の無段変速機において、第1のベベルギア
は変速手段を介して入力軸の動力摺動伝達部に嵌入する
係合ボスに連結されて構成されている。  ここで、スプライン軸等の動力摺動伝達部とは断面が
非円形(角形、楕円を含む)に形成されている軸、滑り
キー等の設けられている軸を含むものである。 〔作用〕 本発明に係る無段変速機においては、入力軸にはスプラ
イン軸等の動力摺動伝達部が形成され、しかも移動摩擦
板が取付けられているので、該入力軸を回転させながら
軸方向に移動させると、移動J!!擦板と直交する遊星
摩擦板の当接位置が変わるので、入力軸を軸方向に回転
させることによって遊星摩擦板の自転の回転数が変化す
ることになる。 一方、上記遊星摩擦板には第1のベベルギアが取付けら
れており、該第1のベベルギアは入力軸と同心上に取付
けられている第2のベベルギアに噛合しているので、遊
星摩擦板は該第2のベベル ギアを中心として公転し、
この回転が出力軸に伝わるようになっている。また、上
記第2のベベルギアは入力軸に連結されているので、ベ
ベルギアを逆回転すると、上記出力軸の出力は差動出力
となる。 ここで、第2のベベルギアを回転を適当に選ぶことによ
って、上記遊星摩擦板の公転を静止させる位置が存在し
、入力軸の移動手段を制御することによって、こ中部分
を中心にして出力軸を正転から逆転に連続的しかも円滑
に回転方向及び回転数を切り換えることができる。
[Industrial Field of Application] The present invention relates to a continuously variable transmission with low noise and high transmission efficiency. [Prior Art] Continuously variable transmissions are widely used in automobiles, machine tools, etc. Therefore, the main parts of a typical example of a conventional continuously variable transmission, for example, the continuously variable transmission described in Japanese Patent Application Laid-Open No. 59-151656, are shown in FIG.
The cone 12 attached to the retainer element 11 is brought into contact with the input shaft 14 on the friction surface 13 of the shaft of the cone 12.
An output shaft 16 is connected to the friction surface 16 on the back side of the cone 12, and the rotation speed of the cone 12 is changed by changing the position of the speed change ring 10 to perform continuously variable speed. [Problems to be Solved by the Invention] However, in the above continuously variable transmission, there is a friction surface 10, 13, 15 between the input shaft 14 and the output wheel 16 over two stages.
, there was a problem in that the power transmission efficiency was reduced. In addition, conventional continuously variable transmissions can only change the rotational speed of the output shaft in a fixed direction, and when rotating in the opposite direction, it is necessary to change gears, which makes the device complicated and laborious to operate. there were. The present invention was made in view of the above circumstances, and an object of the present invention is to provide a continuously variable transmission that has good transmission efficiency and can smoothly change direction from forward rotation to reverse rotation or vice versa in some cases. shall be. [Means for solving the problem] The continuously variable transmission according to claim 1 which meets the above object,
an input shaft on which a power sliding transmission section such as a spline shaft is formed and is movable in the axial direction; a movable friction plate attached to the input shaft; an engagement boss fitted into the power sliding transmission section;
A first bevel gear connected to the engagement boss, a planetary friction plate attached to a shaft with which the circumferential portion of the movable friction plate is in contact and orthogonal to the input shaft, and a planetary friction plate fixed to the planetary FR friction plate. The input shaft is configured to include a second bevel gear that meshes with the first bevel gear, and a moving means that moves the input shaft in the axial direction. Further, the continuously variable transmission according to claim 2 is the continuously variable transmission according to claim 1, in which the first bevel gear is fitted into the power sliding transmission portion of the input shaft via the transmission means. It is configured to be connected to an engagement boss. Here, the power sliding transmission portion such as a spline shaft includes a shaft having a non-circular cross section (including a square shape and an ellipse), and a shaft provided with a sliding key or the like. [Function] In the continuously variable transmission according to the present invention, the input shaft is formed with a power sliding transmission part such as a spline shaft, and a movable friction plate is attached to the input shaft. If you move it in the direction, it will move J! ! Since the contact position of the planetary friction plate perpendicular to the friction plate changes, the rotational speed of the planetary friction plate changes by rotating the input shaft in the axial direction. On the other hand, a first bevel gear is attached to the planetary friction plate, and the first bevel gear meshes with a second bevel gear attached concentrically to the input shaft, so that the planetary friction plate is attached to the planetary friction plate. It revolves around the second bevel gear,
This rotation is transmitted to the output shaft. Further, since the second bevel gear is connected to the input shaft, when the bevel gear is rotated in the reverse direction, the output of the output shaft becomes a differential output. Here, by appropriately selecting the rotation of the second bevel gear, there exists a position where the revolution of the planetary friction plate is stopped, and by controlling the input shaft moving means, the output shaft is centered around this central part. It is possible to continuously and smoothly switch the rotation direction and rotation speed from normal rotation to reverse rotation.

【実施例】【Example】

続いて、添付した図面を参照しつつ、本発明を具体化し
た実施例につき説明し、本発明の理解に供する。 ここに、第1図は本発明の一実施例に係る無段変速機の
断面図、第2図は第1図における矢視A−A断面図、第
3図は第1図における矢視8−8断面図、第4図は本発
明の他の実施例に係る無段変速機の概略構成を示す側面
図である。 第1図〜第3図に示すように、本発明の一実施例に係る
無段変速811Bは、中間部に動力摺動伝達部の一例で
あるスプライン軸部19が形成された入力軸20と、該
入力軸20の先端に取付けられる移動摩擦板21と、上
記スプライン軸19に噛合する係合ボスの一例であるス
プラインボス22を内側に有する第1の歯車23と、該
第1の歯車23に噛合する中間歯車24(3個ある)と
、該中間歯車24に噛合する内歯車25と、該内歯車2
5に一体となって回転する第1のベベルギア26と、該
第1のベベルギア26に噛合する第2のベベルギア27
と、該第2のベベルギアに一体として回転し、上記移動
摩擦板21の円周に当接する遊星摩擦板2B(3個ある
)と、該遊星摩擦板28を回転自由に支持する支持部材
29と、該支持部材29に連結された出力軸30と、上
記入力軸20に連結される補助入力軸31と、該入力軸
を軸方向に移動させる移動手段32と、これらを支持す
る外側ケース33とを有して構成されている。以下、こ
れらについて詳しく説明する。 上記入力軸20の端部は、ピン34が軸方向に移動可能
な長孔35が形成された補助入力軸31の中火36に摺
動移動可能に嵌大している。そして、該入力軸20の貫
通孔37には上記と734が嵌入し、しかも該ピン34
の両端はベアリング3Bによって回転自由に支持される
筒体39に固定され、該ベアリング38の外側支持ケー
ス4゜にはレバー41が取付けられ、該レバー41の端
部にはハンドル42の設けられた雄ねじ43に螺合し、
該ハンドル42を回転させることによって上記ピン34
が移動し、入力軸20を軸方向に移動させることができ
るようになっている。 上記ピン34、筒体39、ベアリング38、外側支持ケ
ース40、レバー41.雄ねじ43及びハンドル42を
有して移動手段32が構成されているが、この移動手段
32は上記入力軸2oを軸方向に移動できる構造のもの
であれば、他の手段でも適用可能であり、電動、あるい
はシリンダ一等によって行うものであっても良い。 上記入力軸20の一部にはスプライン軸部19が形成さ
れ、該スプライン軸部19にはスプラインボス22が嵌
入し、該スプラインポス22の外側には歯車(外歯車)
23となって、中間歯車24を介して一定に減速されな
がら、回転方向を変えて内歯車25に噛合している。 なお、44は補助入力軸31を、45は中間歯車24を
夫々回動自在に支持するベアリングを示す、上記内歯車
25は支持部材46を介して第1のベベルギア26に連
結されている。そして、上記歯車23、中間歯車24、
内歯車24及び支持部材46から変速手段46aが構成
されている。 上記第1ベベルギア26は、軸が上記入力軸20と直交
する回転軸47に取付けられた第2のベベルギア27に
噛合し、該回転軸47には遊星摩擦板28が取付けられ
、該遊星摩擦板28は支持部材29を介して出力軸30
に取付けられているここで、48.49.50は、夫々
支持部材46、回転軸47、出力軸30を支持するベア
リングを示す。 また、上記遊星摩擦板28にはこの実施例においては3
個設けられ、内部にスプリングStを有して中央の移動
摩擦板21の円周に一定の圧力で押圧されるようになっ
ている。 従って、この無段変速機18においては、補助入力軸3
1にカップリング等を介してエンジン等の回転動力源に
連結し、ハンドル42を回すと移動手段32が操作され
て、入力軸19が移動し、これに伴い移動摩擦板21が
、遊星摩擦板28に当接しながら移動する。 ここで、歯車23、中間歯車24及び内歯車25によっ
て構成される減速手段を適当を適当な減速比(例えば、
1/3程度)に設定しておくと、 移動摩擦板21を遊
星摩擦板28の外周部に移動させた場合には、遊星摩擦
板28の公転の周期が第1のベベルギア26によって逆
回転させられる周期より遅くなるので、出力軸30が逆
回転するが、適当な位置に移動摩擦板21がある場合に
は丁度正逆がバランスして出力軸が停止し、更に移動摩
擦板21が内側に移動すると、遊星J!!擦板28の公
転周期が第1のベベルギア26によって駆動される周期
より早くなって、正転することになる。 この様子を実施例について更に具体的に説明すると、歯
車23の歯数をn1、中間歯車23の歯数をn!、内歯
車25の歯数n、とすると、第1のベベルギアの回転数
N1は入力回転数NユとするとNi −n1/n3とな
って、回転方向は逆回転となる。 一方、移動lI!擦車21の半径をrI、遊星摩擦板2
8に該移動摩擦板21が当接する部分の半径を!とし、
第1のベベルギア26の歯数ns、第2のベベルギア2
7の歯数n、とし、第1のベベルギア26が静止してい
るとした場合の遊星摩擦板の公転回転数N3は、lを変
えることによって任意に変えられ、移動手段32を操作
してtを変えていくことによって、出力軸の回転は正逆
を自由に行うことができる。 なお、無段変速機18全体は外側ケース33によって密
封され、内部には適当な潤滑油が充填されている。 上記実施例においては、補助入力軸を使用して入力軸に
回転を伝えながら、移動させるようにしたが、入力軸を
軸方向に移動させることができて、更には回転を伝える
ものであれば、如何なる手段であっても良い。 次に、第4図に示す本発明の他に実施例について概略説
明を行うが、上記実施例と同一の構成要素については同
一の番号を付してその説明を省略する。 第4図に示す無段変速機52においては、入力軸53に
直接スプライン軸部等の動力摺動伝達部54を備え、係
合ボスの一例であるスプラインボスが形成された第1の
ベベルギア26に直接動力を伝えている。従って、第1
のベベルギア26と第2のベベルギア28とのギア比を
適当に選ぶことによって、無段変速機52の変速状況(
N、とN、の比)を変えることができる。 なお、上記実施例においては、移動手段32は手動のも
のを示したが、制御手段等あるいは人力によって自動的
(例えば、モーター、シリンダ一等によって)に駆動さ
れるものであっても、本発明は適用される。 〔発明の効果〕 請求の範囲第1項、第2項記載の無段変速機においては
、一段の摩擦板を介して動力の伝達が行われているので
、機械効率が良く円滑に動力の伝達を行うことができる
。 そして、出力回転数を正転方向から逆転方向に連続的に
制御できるので、自動車、船あるいはその他の産業機械
の無段変速機と使用できる。
Next, embodiments embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention. Here, FIG. 1 is a sectional view of a continuously variable transmission according to an embodiment of the present invention, FIG. 2 is a sectional view taken along arrow A-A in FIG. 1, and FIG. 3 is a sectional view taken along arrow 8 in FIG. -8 sectional view and FIG. 4 are side views showing a schematic configuration of a continuously variable transmission according to another embodiment of the present invention. As shown in FIGS. 1 to 3, a continuously variable transmission 811B according to an embodiment of the present invention includes an input shaft 20 in which a spline shaft portion 19, which is an example of a power sliding transmission portion, is formed in an intermediate portion. , a movable friction plate 21 attached to the tip of the input shaft 20, a first gear 23 having a spline boss 22, which is an example of an engagement boss meshing with the spline shaft 19, inside; an intermediate gear 24 (there are three) that meshes with the intermediate gear 24; an internal gear 25 that meshes with the intermediate gear 24;
5, and a second bevel gear 27 that meshes with the first bevel gear 26.
, a planetary friction plate 2B (there are three) that rotates integrally with the second bevel gear and comes into contact with the circumference of the movable friction plate 21, and a support member 29 that supports the planetary friction plate 28 in a freely rotatable manner. , an output shaft 30 connected to the support member 29, an auxiliary input shaft 31 connected to the input shaft 20, a moving means 32 for moving the input shaft in the axial direction, and an outer case 33 supporting these. It is configured with These will be explained in detail below. The end of the input shaft 20 is slidably fitted into a medium heat 36 of the auxiliary input shaft 31 in which a long hole 35 through which a pin 34 can move in the axial direction is formed. The above pin 734 is fitted into the through hole 37 of the input shaft 20, and the pin 34 is fitted into the through hole 37 of the input shaft 20.
Both ends of the cylinder body 39 are fixed to a cylindrical body 39 that is rotatably supported by a bearing 3B, and a lever 41 is attached to the outer support case 4° of the bearing 38, and a handle 42 is provided at the end of the lever 41. Screwed into the male thread 43,
By rotating the handle 42, the pin 34
moves, and the input shaft 20 can be moved in the axial direction. The pin 34, the cylinder 39, the bearing 38, the outer support case 40, the lever 41. Although the moving means 32 is configured with a male screw 43 and a handle 42, other means can be used as long as the moving means 32 has a structure that allows the input shaft 2o to be moved in the axial direction. It may be carried out electrically or by a cylinder or the like. A spline shaft portion 19 is formed in a part of the input shaft 20, a spline boss 22 is fitted into the spline shaft portion 19, and a gear (external gear) is provided on the outside of the spline post 22.
23, and is meshed with the internal gear 25 while being constantly decelerated via the intermediate gear 24 and changing the direction of rotation. Note that 44 indicates a bearing that rotatably supports the auxiliary input shaft 31, and 45 indicates a bearing that rotatably supports the intermediate gear 24. The internal gear 25 is connected to the first bevel gear 26 via a support member 46. The gear 23, intermediate gear 24,
The internal gear 24 and the support member 46 constitute a transmission means 46a. The first bevel gear 26 meshes with a second bevel gear 27 attached to a rotating shaft 47 whose axis is orthogonal to the input shaft 20, and a planetary friction plate 28 is attached to the rotating shaft 47. 28 is an output shaft 30 via a support member 29
Here, 48, 49, and 50 indicate bearings that support the support member 46, rotating shaft 47, and output shaft 30, respectively. Further, in this embodiment, the planetary friction plate 28 has three
They are provided with a spring St inside and are pressed against the circumference of the central movable friction plate 21 with a constant pressure. Therefore, in this continuously variable transmission 18, the auxiliary input shaft 3
1 is connected to a rotary power source such as an engine via a coupling or the like, and when the handle 42 is turned, the moving means 32 is operated and the input shaft 19 is moved, and accordingly the movable friction plate 21 is connected to the planetary friction plate. 28 while moving. Here, the speed reduction means constituted by the gear 23, the intermediate gear 24, and the internal gear 25 are adjusted to a suitable speed reduction ratio (for example,
When the movable friction plate 21 is moved to the outer periphery of the planetary friction plate 28, the period of revolution of the planetary friction plate 28 is reversely rotated by the first bevel gear 26. However, if the movable friction plate 21 is in an appropriate position, the forward and reverse rotations will be balanced and the output shaft will stop, and the movable friction plate 21 will rotate inward. When you move, Yusei J! ! The revolution period of the friction plate 28 becomes faster than the period driven by the first bevel gear 26, and the friction plate 28 rotates in the normal direction. To explain this situation more specifically with respect to the embodiment, the number of teeth of the gear 23 is n1, and the number of teeth of the intermediate gear 23 is n! , the number of teeth of the internal gear 25 is n, and the rotational speed N1 of the first bevel gear is Ni −n1/n3, where the input rotational speed N is given, and the rotational direction is reverse rotation. On the other hand, move lI! The radius of the friction wheel 21 is rI, and the planetary friction plate 2
8 is the radius of the part where the movable friction plate 21 comes into contact! year,
Number of teeth ns of first bevel gear 26, second bevel gear 2
The number of teeth n is 7, and the number of revolutions N3 of the planetary friction plate when the first bevel gear 26 is stationary can be arbitrarily changed by changing l, and by operating the moving means 32, t By changing the output shaft, the output shaft can be rotated freely in forward and reverse directions. The entire continuously variable transmission 18 is sealed by an outer case 33, and the inside thereof is filled with suitable lubricating oil. In the above embodiment, the auxiliary input shaft was used to transmit rotation to the input shaft while moving it, but if the input shaft can be moved in the axial direction and further transmit rotation, , any means may be used. Next, an embodiment other than the present invention shown in FIG. 4 will be briefly described, but the same components as those in the above embodiment will be given the same numbers and the explanation thereof will be omitted. In the continuously variable transmission 52 shown in FIG. 4, the input shaft 53 is directly equipped with a power sliding transmission section 54 such as a spline shaft section, and the first bevel gear 26 is provided with a spline boss, which is an example of an engagement boss. power is directly transmitted to the Therefore, the first
By appropriately selecting the gear ratio between the bevel gear 26 and the second bevel gear 28, the speed change status of the continuously variable transmission 52 (
The ratio of N, to N, can be changed. In the above embodiments, the moving means 32 is manually operated, but the present invention also applies to moving means 32 that is automatically driven by control means or human power (e.g., by a motor, cylinder, etc.). is applicable. [Effects of the Invention] In the continuously variable transmission according to claims 1 and 2, power is transmitted through one stage of friction plates, so power is transmitted smoothly with good mechanical efficiency. It can be performed. Since the output rotation speed can be controlled continuously from the normal rotation direction to the reverse rotation direction, it can be used with continuously variable transmissions for automobiles, ships, and other industrial machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第り図は本発明の一実施例に係る無段変速機の断面図、
第2図は第1図における矢視A−A断面図、第3図は第
1図における矢視8−8断面図、第4図は本発明の他の
実施例に係る無段変速機の概略構成を示す側面図、第5
図は従来例に係る無段変速機の概略側面図である 〔符号の説明〕 18・−一−−−−−−−−無段変速機、l 9−・−
スプライン軸部、20−−−−−−−−−−一人力輪、
21−−−−−−−−−−一移動摩擦板、22−−−−
−−−−−−スプラインボス、23−−−−−−−−−
−一重、24−−−−−−−−一中間歯車、25−−−
−−−−−−一内歯車、26−−−−−−一一−−−一
第1のベベルギア、27・−−−−−一−−−一第2の
ベベルギア、2 B−−−−−−−−−−・遊星摩擦板
、29−・−−−−−〜支持部材、30−・−・−・出
力軸、31−−−−−−−−−−一補助入力軸、32−
−−−−−−−−−一移動手段、33−−−−−−−−
−−一外側ケース、34−・−−−−−−・ビン、35
−−−−−−−−−−一長孔、36−−−−−−−−−
一中孔、37−−−−−−−−−−一貫通孔、38−−
−−−−−−−ベアリング、39−−−−−−−−一筒
体、4 G−−−−−−一〜−−一外側支持ケース、4
1−−−−一−−−−・レバー、42−−−−−−−−
一ハンドル、43−−−−−−−−−−−雄ねじ、44
.45−−−−−−−−−−ベアリング、46−−−−
−−−−−・支持部材、46a・−−−−−−一−−・
変速手段、47−−−−〜−−−−−一回転軸、48、
ダ9.50−−−−−・−一−−−スプリング、52・
−−−−−−−−−一無段変達機、53−−−−−−−
−−−一人力輪、54−−−−−−−−−一−動力摺動
伝達部
Figure 3 is a sectional view of a continuously variable transmission according to an embodiment of the present invention;
2 is a cross-sectional view taken along arrow AA in FIG. 1, FIG. 3 is a cross-sectional view taken along arrow 8-8 in FIG. 1, and FIG. 4 is a sectional view of a continuously variable transmission according to another embodiment of the present invention. Side view showing the schematic configuration, No. 5
The figure is a schematic side view of a conventional continuously variable transmission [Explanation of symbols] 18・-1---Continuously variable transmission, l 9-・-
Spline shaft, 20---------One-person power ring,
21--------One moving friction plate, 22-----
-------- Spline boss, 23---------
-Single, 24------- One intermediate gear, 25----
-------1 internal gear, 26------11---1 first bevel gear, 27・------1---1 second bevel gear, 2 B---- −−−−−−・Planetary friction plate, 29−・−−−−−−support member, 30−・−・−・Output shaft, 31−−−−−−−−−−1 auxiliary input shaft, 32-
−−−−−−−−−1 means of transportation, 33−−−−−−−−
--One outer case, 34-・------・Bin, 35
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
One hole, 37---------Through hole, 38---
-----------Bearing, 39---------One cylindrical body, 4 G------One to --One outer support case, 4
1-----1----- Lever, 42----------
- Handle, 43 ---------- Male thread, 44
.. 45---------Bearing, 46------
------・Support member, 46a・-----1--・
Transmission means, 47-------One rotation shaft, 48,
Da 9.50------・-1---Spring, 52・
------------ One step change machine, 53------
---One-man power wheel, 54-------1-Power sliding transmission part

Claims (2)

【特許請求の範囲】[Claims] (1)スプライン軸等の動力摺動伝達部が形成されて軸
方向移動が可能な入力軸と、該入力軸に取付けられてい
る移動摩擦板と、上記動力摺動伝達部に嵌入する係合ボ
スと、該係合ボスに連結される第1のベベルギアと、上
記移動摩擦板の円周部が当接し上記入力軸とは直交する
軸に取付けられた遊星摩擦板と、該遊星摩擦板に固着さ
れ上記第1のベベルギアに噛合する第2のベベルギアと
、上記入力軸を軸方向に移動させる移動手段とを有して
なることを特徴とする無段変速機。
(1) An input shaft that is formed with a power sliding transmission section such as a spline shaft and is movable in the axial direction, a movable friction plate attached to the input shaft, and an engagement that fits into the power sliding transmission section. a boss, a first bevel gear connected to the engagement boss, a planetary friction plate attached to a shaft with which the circumferential portion of the movable friction plate comes into contact and is orthogonal to the input shaft; A continuously variable transmission comprising: a second bevel gear that is fixed and meshes with the first bevel gear; and a moving means that moves the input shaft in the axial direction.
(2)第1のベベルギアは変速手段を介して入力軸の動
力摺動伝達部に嵌入する係合ボスに連結されている請求
の範囲第1項記載の無段変速機。
(2) The continuously variable transmission according to claim 1, wherein the first bevel gear is connected to an engagement boss that fits into the power sliding transmission portion of the input shaft via a transmission means.
JP28571089A 1989-10-31 1989-10-31 Continuously variable transmission Pending JPH03149445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28571089A JPH03149445A (en) 1989-10-31 1989-10-31 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28571089A JPH03149445A (en) 1989-10-31 1989-10-31 Continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH03149445A true JPH03149445A (en) 1991-06-26

Family

ID=17695027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28571089A Pending JPH03149445A (en) 1989-10-31 1989-10-31 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH03149445A (en)

Similar Documents

Publication Publication Date Title
US4791833A (en) Reduction gear mechanism for motor-driven drill incorporating speed changing mechanism
CN106979280B (en) Parallel multistage planetary gear speed reduction transmission mechanism
JPH08170706A (en) Automatic continuously variable transmission
KR20080033976A (en) Reduction gear
JP6880189B2 (en) Automotive traction transmission and drive unit
US20070281822A1 (en) Electric hand tool device
JPS5830552A (en) Planetary gear train
JPH01312249A (en) Multifunctional gear mechanism
WO2006090796A1 (en) Torque transmission structure, traction drive transmission device, and steering device for vehicle
KR101499936B1 (en) Continuously Variable Transmission
WO2014119138A1 (en) Transmission
JPH03149445A (en) Continuously variable transmission
JPH06257646A (en) Mechanical reduction gear
US20090023543A1 (en) Gear Mechanism, In Particular Linkage Mechanism
JP2002317871A (en) Electric driving device for transmission
JPH0721947Y2 (en) Belt type continuously variable transmission
JP2002257204A (en) Revolution control gear type automatic continuously variable transmission
JPH03149444A (en) Continuously variable transmission
JP2001349425A (en) Transmission device
JPH03181647A (en) Continuously variable transmission
WO2020188994A1 (en) Electric tool
KR101274472B1 (en) A planetary gear reduction assembly having a plurality of rotaion speed
JP4947770B2 (en) Decelerator
WO2024006418A1 (en) Electric drive unit
US4186624A (en) Sequential drive mechanism