JPH08170706A - Automatic continuously variable transmission - Google Patents

Automatic continuously variable transmission

Info

Publication number
JPH08170706A
JPH08170706A JP33324094A JP33324094A JPH08170706A JP H08170706 A JPH08170706 A JP H08170706A JP 33324094 A JP33324094 A JP 33324094A JP 33324094 A JP33324094 A JP 33324094A JP H08170706 A JPH08170706 A JP H08170706A
Authority
JP
Japan
Prior art keywords
input
output
shaft
ball
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33324094A
Other languages
Japanese (ja)
Inventor
Yasukuni Nakawa
靖国 名川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP33324094A priority Critical patent/JPH08170706A/en
Publication of JPH08170706A publication Critical patent/JPH08170706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an automatic continuously variable transmission in which its size, weight, and manufacturing cost can be reduced, in which the range of speed change from a low speed (including zero) to a high speed is large enough, and in which the time required for speed change can be shortened. CONSTITUTION: An automatic continuously variable transmission is provided with an input rotating plate 12 on an input shaft (11) side, an output rotating plate 14 on an output shaft (13) side, a plurality of ball-idlers 15, which are pushed and held between outer peripheral parts 12a and 14a of the input/output rotating plates 12, 14, and a rotation-axis-tilting-means 16, which tilts a virtual rotation axis (a) of respective ball-idlers 15 toward the input/output sides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メカニカルな自動無段
変速機に係り、更に詳しくは、変速機のコンパクト化、
軽量化および低コスト化が図れ、また故障し難く、低速
度(0を含む)から高速度まで変速範囲をより大きく取
ることができ、しかも速度変更するのにかかる時間を短
縮できる自動無段変速機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanical automatic continuously variable transmission, and more specifically, to a compact transmission,
Automatic continuously variable transmission that can reduce the weight and cost, is hard to break down, has a wider range of shift from low speed (including 0) to high speed, and can shorten the time required to change the speed. Regarding the machine.

【0002】[0002]

【従来の技術】例えば内燃機関の動力は、通常、出力軸
の回転力として所定の動力伝達系を介して各種の装置の
入力部へ伝達されるが、しばしば内燃機関の出力軸の回
転速度をその装置の作動に適した回転数に変更しなけれ
ばならない場合がある。そこで、無段階に速度を所定の
回転数まで変更する各種の自動無段変速機が開発されて
いる。
2. Description of the Related Art For example, the power of an internal combustion engine is normally transmitted to an input portion of various devices as a rotational force of an output shaft through a predetermined power transmission system. It may be necessary to change to a rotation speed suitable for the operation of the device. Therefore, various automatic continuously variable transmissions have been developed that continuously change the speed to a predetermined number of revolutions.

【0003】従来、このような自動無段変速機として、
例えば図3に示すような遊星コーン型の自動無段変速機
100が知られている。この自動無段変速機100は、
入力軸101に固着された入力回転板102と、自動調
整カム103付きの出力軸104に固着された出力回転
板105との間に、中間回転板106が配置されてお
り、中間回転板106の傾斜する外縁部の所定角度毎
に、複数個の断面傘状をした遊星コーン107が回転軸
107aを介して軸着され、また回転する遊星コーン1
07の水平な傘面の出力回転板105側に押圧リング1
08を水平移動可能に当接させたものである。入力回転
板102の外縁部は、遊星コーン107の傘部107a
下に一体形成された小径なリング溝107bに当接され
ており、遊星コーン107の傘部107aの外縁部下面
が、出力回転板105の外縁部上面に当接されている。
押圧リング108を、図外のリング移動手段により、遊
星コーン107の傘面の中心部−外縁部間で移動させる
ことにより、遊星コーン107の自転と公転の速度が調
整され、これにより出力回転板105の回転速度を変更
するものである。
Conventionally, as such an automatic continuously variable transmission,
For example, a planetary cone type automatic continuously variable transmission 100 as shown in FIG. 3 is known. This automatic continuously variable transmission 100 is
An intermediate rotary plate 106 is arranged between the input rotary plate 102 fixed to the input shaft 101 and the output rotary plate 105 fixed to the output shaft 104 with the automatic adjustment cam 103. A plurality of planetary cones 107 each having an umbrella-shaped cross section are axially mounted via a rotation shaft 107a at a predetermined angle of the inclined outer edge portion, and the planetary cones 1 are also rotated.
Pressing ring 1 on the output rotary plate 105 side of the horizontal umbrella surface of 07
08 is abutted so as to be horizontally movable. The outer edge portion of the input rotary plate 102 has an umbrella portion 107a of the planet cone 107.
The lower surface of the outer edge portion of the umbrella portion 107a of the planetary cone 107 is in contact with the upper surface of the outer edge portion of the output rotary plate 105.
By moving the pressing ring 108 between the central portion and the outer edge portion of the umbrella surface of the planet cone 107 by a ring moving means (not shown), the rotation speed and the revolution speed of the planet cone 107 are adjusted, whereby the output rotary plate The rotation speed of 105 is changed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来技
術の自動無段変速機100では、このように遊星コーン
107の自転と公転の速度を調整して、出力回転板10
5の回転速度を変更するようにしているので、速度変更
の範囲が比較的狭く、例えば自動車などの各種装置に組
み込み難いという問題点があり、しかも動力の伝達効率
も悪い上に、構造が複雑で故障し易くて大型化する傾向
にあり、変速機が重くなってコスト高になるという問題
点があった。
However, in the automatic continuously variable transmission 100 of the prior art, the rotation speed and the revolution speed of the planet cone 107 are adjusted in this way, and the output rotary plate 10 is adjusted.
Since the rotation speed of No. 5 is changed, there is a problem that the range of speed change is relatively narrow and it is difficult to incorporate it into various devices such as automobiles. Moreover, the power transmission efficiency is poor and the structure is complicated. However, there is a problem in that the gear tends to be broken and tends to increase in size, and the transmission becomes heavy and the cost increases.

【0005】本発明はこのような事情に鑑みてなされた
もので、変速機のコンパクト化、軽量化および低コスト
化が図れ、また故障し難く、低速度(0を含む)から高
速度まで変速範囲をより大きく取ることができ、しかも
速度変更するのにかかる時間を短縮できる自動無段変速
機を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to reduce the size, weight, and cost of a transmission, to prevent a failure, and to shift from a low speed (including 0) to a high speed. An object of the present invention is to provide an automatic continuously variable transmission that can take a wider range and can reduce the time required to change the speed.

【0006】[0006]

【課題を解決するための手段】前記目的に沿う請求項1
記載の自動無段変速機は、入力軸側の入力回転板と、出
力軸側の出力回転板と、前記入、出力回転板の外縁部間
に押接される複数個の球アイドラと、該それぞれの球ア
イドラの仮想回転軸を入、出力側へ傾倒させる回転軸傾
倒手段とを備えるように構成されている。
A method according to the above-mentioned object.
The automatic continuously variable transmission described above, an input rotary plate on the input shaft side, an output rotary plate on the output shaft side, a plurality of spherical idlers pressed between the outer edge portions of the input and output rotary plates, It is configured to include a rotation shaft tilting unit that tilts the virtual rotation shaft of each spherical idler and tilts it toward the output side.

【0007】また、請求項2記載の自動無段変速機は、
請求項1記載の自動無段変速機において、前記回転軸傾
倒手段は、前記それぞれの球アイドラのボール収納部が
設けられたシフトリングを、駆動部を有するシフト手段
により前記入、出力軸方向へシフトさせるものであり、
前記ボール収納部の球アイドラ側の面が、所要角度の傾
斜面または前記球アイドラの曲率半径より大きい曲率半
径の湾曲面であるように構成されている。
Further, the automatic continuously variable transmission according to claim 2 is
2. The automatic continuously variable transmission according to claim 1, wherein the rotary shaft tilting means includes a shift ring provided with a ball storage portion of each of the ball idlers in the input / output axis direction by a shift means having a drive portion. To shift,
The surface of the ball storage portion on the ball idler side is configured to be an inclined surface having a required angle or a curved surface having a radius of curvature larger than the radius of curvature of the ball idler.

【0008】さらに、請求項3記載の自動無段変速機
は、請求項1または2記載の自動無段変速機において、
前記入、出力軸にかかる回転トルクに応じて、前記入、
出力回転板への前記球アイドラの押接力を増減させる押
接力調整手段を設けるように構成されている。
Further, the automatic continuously variable transmission according to claim 3 is the automatic continuously variable transmission according to claim 1 or 2,
Depending on the rotational torque applied to the input and output shafts, the input,
A pressing force adjusting means for increasing or decreasing the pressing force of the ball idler on the output rotary plate is provided.

【0009】[0009]

【作用】請求項1〜3記載の自動無段変速機において
は、球アイドラの仮想回転軸の方向が入、出力軸の軸芯
方向と直交している際、入、出力軸とも同一速度で回転
する。一方、変速させる際には、回転軸傾倒手段により
球アイドラの仮想回転軸を入力軸側または出力軸側へ傾
けることにより、減速から増速までの変速状態が得られ
る。
In the automatic continuously variable transmission according to any one of claims 1 to 3, when the direction of the virtual rotary shaft of the spherical idler is orthogonal to the axial direction of the input shaft and the output shaft, both the input and output shafts have the same speed. Rotate. On the other hand, at the time of shifting, by tilting the virtual rotation shaft of the spherical idler to the input shaft side or the output shaft side by the rotation shaft tilting means, a shift state from deceleration to acceleration can be obtained.

【0010】また、請求項2記載の自動無段変速機にお
いては、駆動部によりシフト手段を作動させて、シフト
リングを入、出力回転板の回転軸方向へシフトさせるこ
とにより、それぞれの球アイドラと、シフトリングのボ
ール収納部との接点が、所要角度の傾斜面または球アイ
ドラの曲率半径より大きい曲率半径の湾曲面であるボー
ル収納部の球アイドラ側の面に沿って同シフト方向へ移
動し、これによりそれぞれの球アイドラの仮想回転軸が
一括して傾倒される。
Further, in the automatic continuously variable transmission according to a second aspect of the present invention, each of the spherical idlers is operated by actuating the shift means by the drive unit so that the shift ring is inserted and shifted in the rotation axis direction of the output rotary plate. And the contact point of the shift ring with the ball storage part moves in the same shift direction along the surface of the ball storage part on the ball idler side, which is an inclined surface with a required angle or a curved surface with a radius of curvature larger than the radius of curvature of the ball idler. As a result, the virtual rotation axis of each ball idler is tilted together.

【0011】さらに、請求項3記載の自動無段変速機に
おいては、入、出力軸にかかる回転トルクが増減する
と、それに応じて押接力調整手段が作動して入、出力回
転板への球アイドラの押接力を円滑に動力伝達ができる
ように調整する。
Further, in the automatic continuously variable transmission according to the present invention, when the rotational torque applied to the input and output shafts increases and decreases, the pressing force adjusting means operates in response to the input and output, and a ball idler to the output rotary plate. Adjust the pressing force of to ensure smooth power transmission.

【0012】[0012]

【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例につき説明し、本発明の理解に供す
る。ここに、図1は本発明の一実施例に係る自動無段変
速機の断面図、図2(a)は同減速状態を示す要部拡大
断面図、図2(b)は同増速状態を示す要部拡大断面図
である。
Embodiments of the present invention will now be described with reference to the accompanying drawings to provide an understanding of the present invention. 1 is a sectional view of an automatic continuously variable transmission according to an embodiment of the present invention, FIG. 2 (a) is an enlarged sectional view of an essential part showing the same deceleration state, and FIG. 2 (b) is the same speed increasing state. FIG.

【0013】図1に示すように、本発明の一実施例に係
る自動無段変速機10は、入力軸11の一端部に一体形
成された入力回転板12と、出力軸13の一端部に挿着
された出力回転板14と、入、出力回転板12、14の
断面爪状の外縁部12a、14a間に押接される複数個
の完全球体の球アイドラ15と、それぞれの球アイドラ
15の仮想回転軸aを入、出力側へ傾倒させる回転軸傾
倒手段16とを備えている。なお、入、出力回転板1
2、14の大きさは等しくてもよく、また異なる直径で
もよい。入、出力軸11、13は、ケーシング17の円
板状をした両端板17a、17bの中央部に、ベアリン
グ18やオイルシール19を有する軸受部20を介して
回転可能に取り付けられている。また、出力軸13の先
端面には、ベアリング21を介して入力回転板12の中
央部に連結された小径軸22が一体形成されており、こ
れにより入、出力回転板12、14間の回転中の位置ず
れを防止している。ただし、この小径軸22は必ずしも
必要ではない。
As shown in FIG. 1, an automatic continuously variable transmission 10 according to one embodiment of the present invention has an input rotary plate 12 integrally formed at one end of an input shaft 11 and an output shaft 13 at one end thereof. The inserted output rotary plate 14, a plurality of perfectly spherical sphere idlers 15 pressed between the outer edge portions 12a, 14a of the input and output rotary plates 12, 14 having the claw-shaped cross section, and the respective ball idlers 15 And a rotary shaft tilting means 16 for tilting the virtual rotary shaft a and tilting it toward the output side. The input / output rotary plate 1
The sizes of 2, 14 may be equal or may have different diameters. The input / output shafts 11 and 13 are rotatably attached to the central portions of the disk-shaped end plates 17a and 17b of the casing 17 through a bearing 18 and a bearing portion 20 having an oil seal 19. A small-diameter shaft 22 connected to the center of the input rotary plate 12 via a bearing 21 is integrally formed on the tip end surface of the output shaft 13, so that rotation between the input and output rotary plates 12 and 14 is performed. Prevents misalignment inside. However, the small diameter shaft 22 is not always necessary.

【0014】出力軸13の先側には、ピッチが大きい断
面半円状の螺旋溝23が形成されており、螺旋溝23を
外方から被うように、この出力軸13に出力回転板14
の筒軸部24が軸芯方向へ移動可能に遊挿されている。
筒軸部24には螺旋溝23に沿って90度毎に4つの貫
通孔25が形成されており、それぞれの貫通孔25内に
は、動力伝達用の小ボール26が、蓋体27により飛び
出しが防止されて収納されている。なお、貫通孔25の
形成個数は、小ボール26の使用個数に合わせて増減さ
れる。また、出力軸13の中間部には、背部の鍔部28
により支持されたリング29が配置されており、このリ
ング29と出力回転板14の元部裏面との間に、出力回
転板14の断面爪状の外縁部14aを球アイドラ15に
大きな付勢力で押接させるスプリング30が配置されて
いる。これらの構成部24〜30により、入、出力回転
板12、14にかかる回転トルクに応じて、入、出力回
転板12、14への球アイドラ15の押接力を増減させ
る押接力調整手段31が構成される。次に、前記回転軸
傾倒手段16を詳細に説明する。
A spiral groove 23 having a semi-circular cross-section with a large pitch is formed on the front side of the output shaft 13, and the output rotary plate 14 is attached to the output shaft 13 so as to cover the spiral groove 23 from the outside.
The cylindrical shaft portion 24 is loosely inserted so as to be movable in the axial direction.
Four through holes 25 are formed in the cylindrical shaft portion 24 at every 90 degrees along the spiral groove 23, and small balls 26 for power transmission are projected into the through holes 25 by the lid 27. It is stored with being prevented. The number of through holes 25 formed is increased or decreased according to the number of small balls 26 used. Further, the collar portion 28 of the back portion is provided at the middle portion of the output shaft 13.
A ring 29 supported by the output rotary plate 14 is disposed between the ring 29 and the rear surface of the base of the output rotary plate 14, and the outer edge part 14a of the output rotary plate 14 having a claw-shaped cross section is applied to the spherical idler 15 with a large biasing force. A spring 30 for pressing is arranged. By these components 24 to 30, the pressing force adjusting means 31 for increasing or decreasing the pressing force of the ball idler 15 to the input / output rotary plates 12, 14 according to the rotational torque applied to the input / output rotary plates 12, 14 is provided. Composed. Next, the rotating shaft tilting means 16 will be described in detail.

【0015】図1、2に示すように、回転軸傾倒手段1
6は、ウォームギヤ32に噛合するウォームホイル部3
3がケーシング内側面に設けられた肉厚な駆動リング3
4を有している。駆動リング34は、ケーシング17の
円筒状をした周側板17cの球アイドラ15側の内周面
に形成された環状凹部17dに回転可能に挿入されてお
り、その内周面には内ネジ部34aが設けられている。
この内ネジ部34aに噛合する外ネジ部35aを外周面
に設けたシフトリング35が、駆動リング34に内嵌さ
れている。シフトリング35は、球アイドラ15を回転
可能に支持するリテーナ36の外周部に回転可能に配置
されており、その内周面に、ボール収納部の一例である
断面視して円弧の溝部37が形成されている。この溝部
37は、断面視して球アイドラ15の曲率半径より大き
い曲率半径の湾曲面となっている。
As shown in FIGS. 1 and 2, the rotating shaft tilting means 1
6 is a worm wheel portion 3 that meshes with the worm gear 32.
3 is a thick drive ring 3 provided on the inner surface of the casing.
Four. The drive ring 34 is rotatably inserted in an annular recess 17d formed in the inner peripheral surface of the cylindrical peripheral side plate 17c of the casing 17 on the side of the spherical idler 15 and has an inner threaded portion 34a on its inner peripheral surface. Is provided.
A shift ring 35 having an outer peripheral surface provided with an outer threaded portion 35a that meshes with the inner threaded portion 34a is fitted into the drive ring 34. The shift ring 35 is rotatably arranged on an outer peripheral portion of a retainer 36 that rotatably supports the ball idler 15, and an inner circumferential surface thereof is provided with a groove portion 37 that is an arc when viewed in cross section, which is an example of a ball storage portion. Has been formed. The groove portion 37 is a curved surface having a radius of curvature larger than the radius of curvature of the spherical idler 15 in a sectional view.

【0016】また、シフトリング35の端板17a側の
面には、環状のスライド溝38が形成されており、この
スライド溝38に端板17aの内周面から突出したガイ
ドロッド39が遊挿されている。駆動部の一例である駆
動モータMによりウォームギヤ32が回転すると、ウォ
ームホイル部33を介して駆動リング34が回転し、こ
れにより内外ネジ部34a、35aを介してシフトリン
グ35が、ガイドロッド39をガイドにして入、出力軸
11、13方向へシフトされる。これらの構成部品32
〜34、34a、35、35a、37、38、39によ
りシフトリング35を入、出力軸11、13方向へシフ
トさせるシフト手段40が構成されている。なお、図1
において、記号Wはケーシング17内に貯留された潤滑
オイルである。
An annular slide groove 38 is formed on the end plate 17a side surface of the shift ring 35, and a guide rod 39 protruding from the inner peripheral surface of the end plate 17a is loosely inserted in the slide groove 38. Has been done. When the worm gear 32 is rotated by the drive motor M, which is an example of a drive unit, the drive ring 34 is rotated via the worm wheel portion 33, whereby the shift ring 35 is guided via the inner and outer threaded portions 34a and 35a to the guide rod 39. It is used as a guide and is shifted in the directions of the output shafts 11 and 13. These components 32
˜34, 34a, 35, 35a, 37, 38, 39 constitute shift means 40 for inserting the shift ring 35 and shifting it in the directions of the output shafts 11, 13. FIG.
In the above, the symbol W is the lubricating oil stored in the casing 17.

【0017】続いて、本発明の一実施例に係る自動無段
変速機10の動作を説明する。図1に示すように、動力
の伝達は、入力軸11、入力回転板12、球アイドラ1
5、出力回転板14、小ボール26を介して出力軸13
に伝達される。この際、入、出力軸11、13の回転速
度を等しくする場合には、必要により駆動モータMによ
り駆動リング34を回転させて、シフトリング35を入
力軸11または出力軸13方向へ、球アイドラ15の仮
想回転軸aが、入、出力軸11、13の軸芯に対して直
交状態になるまでシフトさせる。これにより、球アイド
ラ15が仮想回転軸aを中心に回転した際、外縁部12
a側の接点半径b1と外縁部14a側の接点半径b2が
合致して、入力回転板12の回転速度がそのまま出力回
転板14へ伝達される。
Next, the operation of the automatic continuously variable transmission 10 according to the embodiment of the present invention will be described. As shown in FIG. 1, power is transmitted by an input shaft 11, an input rotary plate 12, and a ball idler 1.
5, output rotary plate 14, output shaft 13 via small ball 26
Is transmitted to At this time, when the rotational speeds of the input and output shafts 11 and 13 are equalized, the drive ring 34 is rotated by the drive motor M if necessary, and the shift ring 35 is moved toward the input shaft 11 or the output shaft 13 toward the spherical idler. The virtual rotation axis a of 15 is shifted until it becomes orthogonal to the axes of the input and output shafts 11 and 13. As a result, when the spherical idler 15 rotates about the virtual rotation axis a, the outer edge portion 12
The contact radius b1 on the a side and the contact radius b2 on the outer edge portion 14a side match, and the rotation speed of the input rotary plate 12 is transmitted to the output rotary plate 14 as it is.

【0018】また、入力軸11側より出力軸13側の回
転速度を増速させる際には、図2(a)に示すように、
駆動モータMにより駆動リング34を回転させて、シフ
トリング35を同図矢印に示す入力軸11方向へ移動さ
せる。これにより、球アイドラ15と、それより曲率半
径の大きなシフトリング35の溝部37の内周面との接
点は、徐々に出力軸13側へ移動して、仮想回転軸aは
矢印のように出力軸13側へ傾倒する。従って、球アイ
ドラ15が仮想回転軸aを中心に回転した際、外縁部1
2a側の接点半径b1が小さく、外縁部14a側の接点
半径b2が大きくなって、入力軸11側より出力軸13
側の回転速度が増速する。
When increasing the rotational speed of the output shaft 13 side from the input shaft 11 side, as shown in FIG.
The drive ring 34 is rotated by the drive motor M to move the shift ring 35 in the direction of the input shaft 11 shown by the arrow in the figure. As a result, the contact point between the spherical idler 15 and the inner peripheral surface of the groove portion 37 of the shift ring 35 having a larger radius of curvature gradually moves to the output shaft 13 side, and the virtual rotation axis a is output as shown by the arrow. Tilt to the shaft 13 side. Therefore, when the spherical idler 15 rotates about the virtual rotation axis a, the outer edge portion 1
The contact radius b1 on the 2a side is small, and the contact radius b2 on the outer edge portion 14a side is large, so that the output shaft 13 is larger than the input shaft 11 side.
The rotation speed on the side increases.

【0019】さらに、入力軸11側より出力軸13側の
回転速度を減速させる際には、図2(b)に示すよう
に、駆動モータMにより駆動リング34を回転させて、
シフトリング35を同図矢印に示す出力軸13方向へ移
動させる。これにより、球アイドラ15と、シフトリン
グ35の溝部37の内周面との接点は、徐々に入力軸1
1側へ移動して、仮想回転軸aは矢印のように同入力軸
11側へ傾倒する。従って、球アイドラ15が仮想回転
軸aを中心に回転した際、外縁部12a側の接点半径b
1が大きく、外縁部14a側の接点半径b2が小さくな
って、入力軸11側より出力軸13側の回転速度が減速
される。
Further, when decelerating the rotational speed of the output shaft 13 side from the input shaft 11 side, as shown in FIG. 2 (b), the drive ring 34 is rotated by the drive motor M,
The shift ring 35 is moved toward the output shaft 13 shown by the arrow in the figure. As a result, the contact point between the spherical idler 15 and the inner peripheral surface of the groove portion 37 of the shift ring 35 is gradually changed to the input shaft 1
After moving to the 1 side, the virtual rotation axis a tilts toward the input shaft 11 side as indicated by the arrow. Therefore, when the spherical idler 15 rotates about the virtual rotation axis a, the contact radius b on the outer edge portion 12a side
1 is large and the contact radius b2 on the outer edge portion 14a side is small, and the rotation speed on the output shaft 13 side is decelerated from the input shaft 11 side.

【0020】ところで、本実施例では、入、出力軸1
1、13にかかる回転トルクが増減すると、それに応じ
て押接力調整手段31が作動して入、出力回転板12、
14への球アイドラ15の押接力を円滑な動力伝達がで
きる強さに調整できるようになっている。すなわち、例
えば出力軸13に回転トルクがかかった場合、球アイド
ラ15を介して入力軸11側から伝達された回転力は、
出力回転板14を回転させようとするが、このように出
力軸13の回転力が増加しているので、出力軸13の回
転トルクにより、筒軸部24の貫通孔25に挿入された
小ボール26が、螺旋溝23に沿って入力軸11側へ移
動し、これにより出力回転板14の外縁部14aが球ア
イドラ15の表面に押圧されて、この外縁部14aの滑
りが防止され、出力軸13の負荷に関係なく、出力軸1
3から変速された回転を伝えることができる。
By the way, in this embodiment, the input / output shaft 1
When the rotational torque applied to the motors 1 and 13 is increased or decreased, the pressing force adjusting means 31 is activated in response to the increase or decrease and the output rotary plate 12,
The pressing force of the ball idler 15 against the ball 14 can be adjusted to a strength that enables smooth power transmission. That is, for example, when a rotational torque is applied to the output shaft 13, the rotational force transmitted from the input shaft 11 side via the spherical idler 15 is
Although the output rotary plate 14 is about to be rotated, the rotational force of the output shaft 13 is increasing in this way, so the rotational torque of the output shaft 13 causes a small ball inserted into the through hole 25 of the tubular shaft portion 24. 26 moves to the input shaft 11 side along the spiral groove 23, whereby the outer edge portion 14a of the output rotary plate 14 is pressed against the surface of the spherical idler 15 to prevent the outer edge portion 14a from slipping, and Output shaft 1 regardless of 13 loads
The speed-changed rotation can be transmitted from 3.

【0021】このように、回転軸傾倒手段16により球
アイドラ15の仮想回転軸aを入、出力軸11、13側
へ傾けることにより、減速から増速までの変速範囲をよ
り大きく取ることができ、しかも従来の遊星コーン側の
自動無段変速機に比べて、球アイドラ15の仮想回転軸
aを回動させるという僅かな動作により、その低速度
(0を含む)から高速度まで、一気に速度変更でき、こ
れによりその速度変更にかかる時間を短縮できる。ま
た、この自動無段変速機10の構造が、入、出力回転、
球アイドラおよび回転軸傾倒手段を用いた簡単なもので
あるので、変速機のコンパクト化、軽量化および低コス
ト化が図れて故障もし難い。
As described above, by inserting the virtual rotary shaft a of the spherical idler 15 by the rotary shaft tilting means 16 and tilting the virtual rotary shaft a toward the output shafts 11 and 13, it is possible to secure a wider gear shift range from deceleration to acceleration. Moreover, compared with the conventional automatic continuously variable transmission on the side of the planetary cone, the slight movement of rotating the virtual rotation axis a of the ball idler 15 makes it possible to increase the speed from low speed (including 0) to high speed at a stroke. It can be changed, which reduces the time required to change the speed. Further, the structure of the automatic continuously variable transmission 10 is
Since it is a simple one that uses a ball idler and a rotating shaft tilting means, the transmission can be made compact, lightweight, and cost-effective, and it is difficult to cause a failure.

【0022】さらに、シフト手段40によりシフトリン
グ35を入、出力軸11、13方向へシフトさせること
により、それぞれの球アイドラ15の仮想回転軸aを一
括して傾倒するようにしたので、回転軸傾倒手段16の
構造がさらにシンプルになり、一層、故障がし難くてよ
り以上の低コスト化が図れる。さらにまた、入、出力軸
11、13にかかる回転トルクに応じて、入、出力回転
板12、14への球アイドラ15の押接力を増減させる
押接力調整手段31を設けたので、大きな回転トルクを
出力軸13に円滑に伝達できる。
Further, by inputting the shift ring 35 by the shift means 40 and shifting it in the directions of the output shafts 11 and 13, the virtual rotary shafts a of the respective ball idlers 15 are tilted together, so that the rotary shafts are rotated. The structure of the tilting means 16 is further simplified, and it is more difficult for a failure to occur and further cost reduction can be achieved. Furthermore, since the pressing force adjusting means 31 for increasing or decreasing the pressing force of the ball idler 15 to the input / output rotary plates 12 and 14 according to the rotational torque applied to the input / output shafts 11 and 13, the large rotational torque is provided. Can be smoothly transmitted to the output shaft 13.

【0023】以上、本発明の実施例を説明したが、本発
明はこの実施例に限定されるものではなく、要旨を逸脱
しない範囲での設計変更などがあっても本発明に含まれ
る。例えば、本発明の自動無段変速機は、どのような種
類の装置や動力源の無段変速にも使用できる。また、図
1における入力軸や入力回転板などの入力側と、出力軸
や出力回転板などの出力側との向きを、反対に配置して
もよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and any modification of the design within the scope not departing from the gist is included in the present invention. For example, the automatic continuously variable transmission of the present invention can be used for continuously variable transmission of any type of device or power source. Further, the input side such as the input shaft and the input rotary plate in FIG. 1 and the output side such as the output shaft and the output rotary plate may be arranged in opposite directions.

【0024】さらに、回転軸傾倒手段は、実施例のよう
にシフトリングをシフト手段によりシフトさせるものに
限定しなくても、その他どんな構造のものでもよい。例
えば、それぞれの球アイドラの球面に、同一半径の押接
面を有するパッドなどの回転軸傾倒部材を押し付け、こ
れを一括または個々に傾倒させることにより、球アイド
ラの仮想回転軸を傾倒させるようにしてもよい。そし
て、押接力調整手段は、実施例のものに限定しなくて
も、その他どのような構造のものでもよい。実施例で
は、出力軸に押接力調整手段を設けたが、これに限定し
なくても、入力軸または入出力軸の両方に、押接力調整
手段を配設してもよい。ただし、この押接力調整手段
は、必ずしも必要ではない。
Further, the rotating shaft tilting means is not limited to the one for shifting the shift ring by the shifting means as in the embodiment, but may have any other structure. For example, the rotation axis tilting member such as a pad having a pressing surface with the same radius is pressed against the spherical surface of each ball idler, and tilted collectively or individually to tilt the virtual rotation axis of the ball idler. May be. The pressing force adjusting means is not limited to that of the embodiment but may have any other structure. Although the pressing force adjusting means is provided on the output shaft in the embodiment, the pressing force adjusting means may be provided on both the input shaft and the input / output shaft without being limited to this. However, this pressing force adjusting means is not always necessary.

【0025】また、実施例では、ボール収納部を溝部と
したが、これに限定しなくても、例えば部分的なポケッ
ト状のものとしてもよい。さらに、実施例では、ボール
収納部の球アイドラ側の面を、球アイドラの曲率半径よ
り大きい曲率半径の湾曲面としたが、これに限定しなく
ても、例えば所要角度の傾斜面としてもよい。さらにま
た、実施例では、シフト手段の駆動部として駆動モータ
を採用したが、これに限定しなくても、例えば手動ハン
ドルや油圧アクチュエータを用いてもよい。
Further, in the embodiment, the ball storage portion is the groove portion, but the present invention is not limited to this, and may be, for example, a partial pocket shape. Further, in the embodiment, the surface on the ball idler side of the ball storage portion is a curved surface having a radius of curvature larger than the radius of curvature of the ball idler, but the invention is not limited to this, and may be an inclined surface having a required angle, for example. . Furthermore, in the embodiment, the drive motor is adopted as the drive unit of the shift unit, but the drive unit is not limited to this, and for example, a manual handle or a hydraulic actuator may be used.

【0026】[0026]

【発明の効果】請求項1〜3記載の自動無段変速機にお
いては、このように回転軸傾倒手段により球アイドラの
仮想回転軸を入、出力側へ傾けるだけで変速状態が得ら
れて、減速(0を含む)から増速までの変速範囲をより
大きく取ることができ、しかもその速度変更にかかる時
間を短縮できる。また、この変速機の構造が、入、出力
回転、球アイドラおよび回転軸傾倒手段を用いた簡単な
ものであるので、変速機のコンパクト化、軽量化および
低コスト化が図れて故障もし難い。
In the automatic continuously variable transmission according to the first to third aspects of the present invention, the speed change state can be obtained only by inserting the virtual rotary shaft of the spherical idler by the rotary shaft tilting means and tilting it to the output side. The shift range from deceleration (including 0) to acceleration can be made larger, and the time required for speed change can be shortened. Further, since the structure of this transmission is simple using the input / output rotation, the ball idler and the rotary shaft tilting means, the transmission can be made compact, lightweight and low in cost, and it is difficult to cause a failure.

【0027】特に、請求項2記載の自動無段変速機にお
いては、シフト手段によりシフトリングを入、出力軸方
向へシフトさせることにより、それぞれの球アイドラの
仮想回転軸を一括して傾倒するようにしたので、回転軸
傾倒手段の構造がさらにシンプルになり、一層、故障が
し難くてより以上の低コスト化が図れる。
Particularly, in the automatic continuously variable transmission according to the second aspect of the present invention, the virtual rotating shafts of the respective ball idlers are tilted together by shifting the shift ring into the output shaft direction by the shift means. Therefore, the structure of the rotating shaft tilting means is further simplified, and it is more difficult for a failure to occur, and further cost reduction can be achieved.

【0028】さらに、請求項3記載の自動無段変速機に
おいては、入、出力軸にかかる回転トルクに応じて、
入、出力回転板への球アイドラの押接力を増減させる押
接力調整手段を設けたので、大きな回転トルクを出力軸
に円滑に伝達できる。
Further, in the automatic continuously variable transmission according to the third aspect of the invention, depending on the rotational torque applied to the input and output shafts,
Since the pressing force adjusting means for increasing or decreasing the pressing force of the spherical idler to the input / output rotary plate is provided, a large rotational torque can be smoothly transmitted to the output shaft.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る自動無段変速機の断面
図である。
FIG. 1 is a sectional view of an automatic continuously variable transmission according to an embodiment of the present invention.

【図2】(a)同減速状態を示す要部拡大断面図であ
る。 (b)同増速状態を示す要部拡大断面図である。
FIG. 2A is an enlarged cross-sectional view of a main part showing the same deceleration state. FIG. 3B is an enlarged cross-sectional view of an essential part showing the same speed-up state.

【図3】従来手段に係る自動無段変速機の概略一部断面
図である。
FIG. 3 is a schematic partial cross-sectional view of an automatic continuously variable transmission according to conventional means.

【符号の説明】[Explanation of symbols]

10 自動無段変速機 11 入力軸 12 入力回転板 12a 外縁部 13 出力軸 14 出力回転板 14a 外縁部 15 球アイドラ 16 回転軸傾倒手段 17 ケーシング 17a 端板 17b 端板 17c 周側板 17d 環状凹部 18 ベアリング 19 オイルシール 20 軸受部 21 ベアリング 22 小径軸 23 螺旋溝 24 筒軸部 25 貫通孔 26 小ボール 27 蓋体 28 鍔部 29 リング 30 スプリング 31 押接力調整手段 32 ウォームギヤ 33 ウォームホイル部 34 駆動リング 34a 内ネジ部 35 シフトリング 35a 外ネジ部 36 リテーナ 37 溝部 38 スライド溝 39 ガイドロッド 40 シフト手段 M 駆動モータ W 潤滑オイル a 仮想回転軸 b1 接点半径 b2 接点半径 10 automatic continuously variable transmission 11 input shaft 12 input rotary plate 12a outer edge part 13 output shaft 14 output rotary plate 14a outer edge part 15 ball idler 16 rotary shaft tilting means 17 casing 17a end plate 17b end plate 17c circumferential side plate 17d annular recess 18 bearing 19 Oil seal 20 Bearing part 21 Bearing 22 Small diameter shaft 23 Spiral groove 24 Cylindrical shaft part 25 Through hole 26 Small ball 27 Lid body 28 Collar part 29 Ring 30 Spring 31 Pushing force adjusting means 32 Worm gear 33 Worm wheel part 34 Drive ring 34a Screw part 35 Shift ring 35a External screw part 36 Retainer 37 Groove part 38 Slide groove 39 Guide rod 40 Shift means M Drive motor W Lubricating oil a Virtual rotating shaft b1 Contact radius b2 Contact radius

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入力軸側の入力回転板と、出力軸側の出
力回転板と、前記入、出力回転板の外縁部間に押接され
る複数個の球アイドラと、該それぞれの球アイドラの仮
想回転軸を入、出力側へ傾倒させる回転軸傾倒手段とを
備えたことを特徴とする自動無段変速機。
1. An input rotary plate on the input shaft side, an output rotary plate on the output shaft side, a plurality of ball idlers pressed between the outer edge portions of the input and output rotary plates, and the respective ball idlers. An automatic continuously variable transmission, comprising: a rotation shaft tilting unit that tilts the virtual rotation shaft of and into the output side.
【請求項2】 前記回転軸傾倒手段は、前記それぞれの
球アイドラのボール収納部が設けられたシフトリング
を、駆動部を有するシフト手段により前記入、出力軸方
向へシフトさせるものであり、前記ボール収納部の球ア
イドラ側の面が、所要角度の傾斜面または前記球アイド
ラの曲率半径より大きい曲率半径の湾曲面であることを
特徴とする請求項1記載の自動無段変速機。
2. The rotating shaft tilting means shifts a shift ring provided with a ball storage portion of each of the spherical idlers in the input / output axis direction by a shift means having a drive portion. The automatic continuously variable transmission according to claim 1, wherein the surface of the ball storage portion on the side of the ball idler is an inclined surface having a required angle or a curved surface having a radius of curvature larger than the radius of curvature of the ball idler.
【請求項3】 前記入、出力軸にかかる回転トルクに応
じて、前記入、出力回転板への前記球アイドラの押接力
を増減させる押接力調整手段を設けたことを特徴とする
請求項1または2記載の自動無段変速機。
3. The pressing force adjusting means for increasing or decreasing the pressing force of the ball idler to the input / output rotary plate according to the rotational torque applied to the input / output shaft. Alternatively, the automatic continuously variable transmission described in 2.
JP33324094A 1994-12-14 1994-12-14 Automatic continuously variable transmission Pending JPH08170706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33324094A JPH08170706A (en) 1994-12-14 1994-12-14 Automatic continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33324094A JPH08170706A (en) 1994-12-14 1994-12-14 Automatic continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH08170706A true JPH08170706A (en) 1996-07-02

Family

ID=18263898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33324094A Pending JPH08170706A (en) 1994-12-14 1994-12-14 Automatic continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH08170706A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2354293A (en) * 1999-07-02 2001-03-21 Milner Peter J A continuously variable drive transmission device
US7395731B2 (en) * 2003-08-11 2008-07-08 Fallbrook Technologies Inc. Continuously variable planetary gear set
USRE41892E1 (en) 1997-09-02 2010-10-26 Fallbrook Technologies Inc. Continuously variable transmission
US8845485B2 (en) 2011-04-04 2014-09-30 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
US8852050B2 (en) 2008-08-26 2014-10-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8870711B2 (en) 2008-10-14 2014-10-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8900085B2 (en) 2007-07-05 2014-12-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8920285B2 (en) 2004-10-05 2014-12-30 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9017207B2 (en) 2006-06-26 2015-04-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9121464B2 (en) 2005-12-09 2015-09-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9239099B2 (en) 2007-02-16 2016-01-19 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9683638B2 (en) 2005-12-30 2017-06-20 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41892E1 (en) 1997-09-02 2010-10-26 Fallbrook Technologies Inc. Continuously variable transmission
GB2354293B (en) * 1999-07-02 2004-01-14 Milner Peter J A continuously variable drive transmission device
GB2354293A (en) * 1999-07-02 2001-03-21 Milner Peter J A continuously variable drive transmission device
US9732848B2 (en) 2003-02-28 2017-08-15 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10428939B2 (en) 2003-02-28 2019-10-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US7395731B2 (en) * 2003-08-11 2008-07-08 Fallbrook Technologies Inc. Continuously variable planetary gear set
US10036453B2 (en) 2004-10-05 2018-07-31 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8920285B2 (en) 2004-10-05 2014-12-30 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9506562B2 (en) 2005-10-28 2016-11-29 Fallbrook Intellectual Property Company Llc Electromotive drives
US9950608B2 (en) 2005-10-28 2018-04-24 Fallbrook Intellectual Property Company Llc Electromotive drives
US9341246B2 (en) 2005-11-22 2016-05-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9709138B2 (en) 2005-11-22 2017-07-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10711869B2 (en) 2005-11-22 2020-07-14 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9121464B2 (en) 2005-12-09 2015-09-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10208840B2 (en) 2005-12-09 2019-02-19 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9683638B2 (en) 2005-12-30 2017-06-20 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9017207B2 (en) 2006-06-26 2015-04-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9726282B2 (en) 2006-06-26 2017-08-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9328807B2 (en) 2007-02-01 2016-05-03 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9676391B2 (en) 2007-02-01 2017-06-13 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10703372B2 (en) 2007-02-01 2020-07-07 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9878719B2 (en) 2007-02-01 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9371894B2 (en) 2007-02-12 2016-06-21 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US10260607B2 (en) 2007-02-12 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US10094453B2 (en) 2007-02-16 2018-10-09 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9239099B2 (en) 2007-02-16 2016-01-19 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10056811B2 (en) 2007-04-24 2018-08-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US9273760B2 (en) 2007-04-24 2016-03-01 Fallbrook Intellectual Property Company Llc Electric traction drives
US9574643B2 (en) 2007-04-24 2017-02-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10260629B2 (en) 2007-07-05 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9869388B2 (en) 2007-07-05 2018-01-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8900085B2 (en) 2007-07-05 2014-12-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US10100927B2 (en) 2007-11-16 2018-10-16 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9249880B2 (en) 2007-12-21 2016-02-02 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9739375B2 (en) 2007-12-21 2017-08-22 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US10704687B2 (en) 2007-12-21 2020-07-07 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9850993B2 (en) 2008-02-29 2017-12-26 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9182018B2 (en) 2008-02-29 2015-11-10 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US10634224B2 (en) 2008-06-06 2020-04-28 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9528561B2 (en) 2008-06-23 2016-12-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10066713B2 (en) 2008-06-23 2018-09-04 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9878717B2 (en) 2008-08-05 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9365203B2 (en) 2008-08-05 2016-06-14 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10704657B2 (en) 2008-08-26 2020-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8852050B2 (en) 2008-08-26 2014-10-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9903450B2 (en) 2008-08-26 2018-02-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10253880B2 (en) 2008-10-14 2019-04-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8870711B2 (en) 2008-10-14 2014-10-28 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9574642B2 (en) 2008-10-14 2017-02-21 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9920823B2 (en) 2009-04-16 2018-03-20 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9279482B2 (en) 2009-04-16 2016-03-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10746270B2 (en) 2009-04-16 2020-08-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9360089B2 (en) 2010-03-03 2016-06-07 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10066712B2 (en) 2010-03-03 2018-09-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9291251B2 (en) 2010-11-10 2016-03-22 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10197147B2 (en) 2010-11-10 2019-02-05 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8845485B2 (en) 2011-04-04 2014-09-30 Fallbrook Intellectual Property Company Llc Auxiliary power unit having a continuously variable transmission
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10428915B2 (en) 2012-01-23 2019-10-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10323732B2 (en) 2013-04-19 2019-06-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10920882B2 (en) 2016-01-15 2021-02-16 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11624432B2 (en) 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Similar Documents

Publication Publication Date Title
JPH08170706A (en) Automatic continuously variable transmission
JP5500118B2 (en) Continuously variable transmission
JP5131353B2 (en) Continuously variable transmission
CN103502692B (en) The wheeled stepless speed variator of planetary friction
KR101688502B1 (en) Stepless transmission
JP2011153645A (en) Continuously variable transmission and control device of continuously variable transmission
JP5590265B2 (en) Continuously variable transmission
JP3473187B2 (en) Toroidal type continuously variable transmission
JP6773297B2 (en) Continuously variable transmission and bicycle
JP2014214838A (en) Continuously variable transmission
KR20020089678A (en) Continuously variable transmission
JP2007113749A (en) Continuously variable transmission
JP5385725B2 (en) Friction transmission
JP2013190019A (en) Continuously variable transmission
JP5761445B2 (en) Continuously variable transmission
JP2007071350A (en) Continuously variable transmission
JPH01105057A (en) Friction type continuously variable transmission
JP2012127457A (en) Continuously variable transmission
JP2003065407A (en) Traction drive device
JP2013167333A (en) Continuously variable transmission
JPH0735212A (en) Deceleration device
JP6322877B2 (en) Planetary roller type differential friction transmission
JP2001124166A (en) Frictional transmission
JP2002531785A (en) Device with rolling members
JP2014077467A (en) Continuously variable transmission