JPH03148814A - Manufacture of material for capacitor - Google Patents

Manufacture of material for capacitor

Info

Publication number
JPH03148814A
JPH03148814A JP1287427A JP28742789A JPH03148814A JP H03148814 A JPH03148814 A JP H03148814A JP 1287427 A JP1287427 A JP 1287427A JP 28742789 A JP28742789 A JP 28742789A JP H03148814 A JPH03148814 A JP H03148814A
Authority
JP
Japan
Prior art keywords
ceramic
capacitor
powder
furnace
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1287427A
Other languages
Japanese (ja)
Other versions
JPH088199B2 (en
Inventor
Nobuyuki Nishimura
信幸 西村
Kiyoshi Murase
村瀬 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP1287427A priority Critical patent/JPH088199B2/en
Publication of JPH03148814A publication Critical patent/JPH03148814A/en
Publication of JPH088199B2 publication Critical patent/JPH088199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the dispersion in capacitance of a capacitor for augmenting the yield by a method wherein the whole quantity of minute additive and ceramic material in specific ratio are pre-mixed and then the premixed material and residual quantity of ceramic base material are regular-mixed. CONSTITUTION:1-20wt.% of the whole quantity of Nb2O5 and SrTiO3 as well as the water in double quantity of the whole powder are agitated in a ball mill for 15 hours, premixed, dehydrated and dried up to produce the powder. Next, residual SrTiO3 and double wt. quantity of water are added to this powder and after agitation for 15 hours, dehydration-drying up processes, 5wt.% of polyvinyl alcohol as a binder is added to granulate and then pressure-molded in a molder. Next, this molded product is fed to a furnace and after burning the binder in the furnace, the product is baked in the furnace changed into a reducing atmosphere to produce a semiconductor ceramic as well as a grain boundry insulated dielectric ceramic by performing a coating process with paste and a heating process. Finally, both surfaces are coated with silver paste and then baked to form electrode so that semiconductor capacitor may be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コンデンサ用材料の製造方法に関するちので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method of manufacturing a material for a capacitor.

(従来の技術) 従来、コンデンサ用材料の製造は、例えば、半導体コン
デンサの場合を例にとると、13aTi。
(Prior Art) Conventionally, materials for capacitors have been manufactured using 13aTi, for example, in the case of semiconductor capacitors.

s 、SrTiO3、CaTiOs等のセラミックベー
ス材に、Nbz Os 、Y203 、B 1 z O
s等の微量添加剤をボールミルで配合し、分散して行わ
れていたが、微量添加剤の粉砕、分散が十分に行われな
いため、出来上がったコンデンサの静電容量ばらつきの
原因となっていた。
s, SrTiO3, CaTiOs, etc., NbzOs, Y203, B1zO
This was done by blending and dispersing trace additives such as s in a ball mill, but the milling and dispersion of the trace additives was not done sufficiently, which caused variations in the capacitance of the finished capacitors. .

そこで、微量添加剤のみをボールミルにて粉砕した後、
ベース材に添加混合する方法が提案された。また、直径
1〜2mmのビーズを用いたビーズミルにより混合する
方法も提案された。
Therefore, after pulverizing only trace additives in a ball mill,
A method of adding and mixing it to the base material was proposed. A method of mixing using a bead mill using beads with a diameter of 1 to 2 mm has also been proposed.

(発明が解決しようとする課題) しかしながら、上記の微量添加剤のみをボールミルにて
粉砕した後、ベース材に添加混合する方法にあっては、
粉砕された添加物の再凝集が起こり、分散性の改善には
いたらず、また静電容量のばらつきも改善されなかった
(Problems to be Solved by the Invention) However, in the method of pulverizing only the above-mentioned trace additives in a ball mill and then adding and mixing them to the base material,
Re-agglomeration of the pulverized additives occurred, and dispersibility was not improved, nor was variation in capacitance improved.

また、上記の直径1〜2mmのビーズを用いたビーズミ
ルにより混合する方法にあっては、添加剤の分散と同時
に、ベース材の粉砕が起こり、粒度が不均一になり、こ
れにより静電容量にばらつきが起きたり、押し出し成形
時に成形不良となる場合があり、改善効果は得られなか
った。
In addition, in the method of mixing using a bead mill using beads with a diameter of 1 to 2 mm, the base material is pulverized at the same time as the additive is dispersed, resulting in uneven particle size, which reduces the capacitance. There were cases where variations occurred and molding defects occurred during extrusion molding, and no improvement effect was obtained.

そこで、本発明は、微量添加剤を粉砕し、ペース材への
高分散を行い得、またその時に、ベース材が粉砕され、
粒度が不均一になることを防止できるコンデンサ用材料
の製造方法を提供することを目的とするものである。
Therefore, the present invention is capable of pulverizing trace additives and highly dispersing them into the paste material, and at the same time, the base material is pulverized.
It is an object of the present invention to provide a method for producing a capacitor material that can prevent particle size from becoming non-uniform.

(課題を解決するための手段》  上記課題を解決するため、本発明は、セラミックペース
材に、微量添加剤を混合してコンデンサ用材料を製造す
る方法において、上記微量添加剤全量と、セラミックベ
ース材の全量の内l乃至20wt%きを予混合し、この
後、この予混合物と−セラミックベース材の残量とを混
合することを特徴とするものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a method for manufacturing a capacitor material by mixing a small amount of additives into a ceramic paste material. The method is characterized in that 1 to 20 wt% of the total amount of the materials is premixed, and then this premix is mixed with the remaining amount of the ceramic base material.

(−作用) 本発明によるコンデンサ用材料の製造方法においては、
まず、微量添加剤の全量とベース材の一部とを混合する
ことにより、微量添加剤の粉砕を促進する。これにより
、その後、再凝集が起きても、微量添加剤はベース材と
ともに凝集するので、分散状態は維持される。
(-Effect) In the method for manufacturing a capacitor material according to the present invention,
First, by mixing the entire amount of the trace additive and a portion of the base material, pulverization of the trace additive is promoted. As a result, even if reaggregation occurs thereafter, the trace additive will coagulate together with the base material, so that the dispersed state will be maintained.

また、残りのベース材は、その後に、上記の予混合物に
混合されるので、不必要な粉砕がおこなわれることなく
、該ベース材の粒度が不均一となることがない。
Further, since the remaining base material is then mixed with the above-mentioned premix, unnecessary pulverization is not performed and the particle size of the base material does not become non-uniform.

(実施例) 以下、添付図面を参照しつつ、本発明の実施例を、比較
例および従来例とともに説明する。
(Example) Hereinafter, examples of the present invention will be described together with comparative examples and conventional examples with reference to the accompanying drawings.

まず、以下の実施例1〜4、比較例1.2、従来例1の
説明においては、全て、ベース材としてのSrTiOs
 995重量部に、微量添加剤としてのN b x O
sを5重量部添加するものとして説明する。
First, in the following descriptions of Examples 1 to 4, Comparative Examples 1.2, and Conventional Example 1, SrTiO as the base material is used.
995 parts by weight, N b x O as a trace additive
The following explanation assumes that s is added in an amount of 5 parts by weight.

実」1磨」ー まず、NbzOs全量と、SrTiO3の全量の内の1
wt%と、これら粉体全量に対して重量で2倍量の水と
をボールミルで15時間撹拌し、予混合を行った。次い
で、この予混合物を脱水乾燥して、粉体を得た。このよ
うにして得た粉体に、残りのSrTiO,と、これら粉
体全量に対して重量で2倍量の水とを加えて、ボールミ
ルで15時間攪拌混合した。
First, the total amount of NbzOs and 1 of the total amount of SrTiO3
wt% and water in an amount twice as much by weight as the total amount of these powders were stirred in a ball mill for 15 hours to perform premixing. Next, this premix was dehydrated and dried to obtain a powder. To the thus obtained powder, the remaining SrTiO and water in an amount twice as much as the total amount of these powders were added, and the mixture was stirred and mixed in a ball mill for 15 hours.

この混合物を脱水乾燥した後、バインダとして5wt%
のポリビニールアルコールを加えて造粒し、この造粒物
を成形機に入れて、1000kg/ c m ”の圧力
で円板状に加圧成形した。
After dehydrating and drying this mixture, 5 wt% of binder was added.
of polyvinyl alcohol was added thereto and granulated, and the granulated product was put into a molding machine and pressure-molded into a disk shape at a pressure of 1000 kg/cm''.

次に、この成形物を炉に入れ、空気中において、800
℃まで毎時100℃の割合で昇温し、バインダであるポ
リビニールアルコールを燃焼させた。
Next, this molded product was placed in a furnace and heated to 800 m
The temperature was raised at a rate of 100°C per hour to burn the polyvinyl alcohol as a binder.

しかる後、炉の中を、N2が97、Qvo1%、H−が
:(,Qvo1%の還元雰囲気に変えて、1400℃の
温度を3時間維持して焼成し、半導体セラミックスを得
た。
Thereafter, the inside of the furnace was changed to a reducing atmosphere of 97 N2, 1% Qvo, and 1% H-, and the temperature was maintained at 1400° C. for 3 hours to obtain semiconductor ceramics.

更に、この円板状半導体セラミックスに、CuOを成分
としたペーストを塗布し、毎時100℃の割合で昇温し
、1200℃の温度を3時間維持し、CuOを半導体セ
ラミックスの粒界に拡散させ、厚さ0.50mm、直径
16mmの粒界絶縁型誘電体セラミックスを得た。
Furthermore, a paste containing CuO as a component was applied to this disk-shaped semiconductor ceramic, and the temperature was raised at a rate of 100 °C per hour and the temperature was maintained at 1200 °C for 3 hours to diffuse CuO into the grain boundaries of the semiconductor ceramic. A grain boundary insulated dielectric ceramic having a thickness of 0.50 mm and a diameter of 16 mm was obtained.

次に、この誘電体セラミックスの両面に浪ペーストを塗
布し、800℃にて焼付を行い、直径1(1mmの電極
を形成し、半導体コンデンサを得た。
Next, Nami paste was applied to both sides of this dielectric ceramic and baked at 800° C. to form electrodes with a diameter of 1 mm to obtain a semiconductor capacitor.

実1111二」。Fruit 11112”.

上記予混合におけるSrTiOsの混合量を、5wt%
、10wt%、20wt%とし、上記実施例1と同様に
して半導体コンデンサを得、これらをそれぞれ実施例2
h至4とした。
The mixing amount of SrTiOs in the above premixing was 5wt%.
, 10 wt%, and 20 wt%, semiconductor capacitors were obtained in the same manner as in Example 1, and these were used as Example 2.
It was set to h to 4.

比U 上記予混合に方けるSrTiOsの混合量を、Q、5w
t%、30wt%とし、上記実施例1と同様にして半導
体コンデンサを得、これらをそれぞれ比較例1および2
とした。
Ratio U The mixing amount of SrTiOs in the above premixing is Q, 5w
t% and 30wt%, semiconductor capacitors were obtained in the same manner as in Example 1, and these were used as Comparative Examples 1 and 2, respectively.
And so.

1東医ユ NbxOs全量と、SrTiOs全量とを1回で混合し
、造粒工程以降を実施例1と同様にして、半導体コンデ
ンサを得、これを従来例1とした。
1 The entire amount of NbxOs and the entire amount of SrTiOs were mixed at one time, and the granulation process and subsequent steps were carried out in the same manner as in Example 1 to obtain a semiconductor capacitor, which was designated as Conventional Example 1.

次に、以下の実施例5〜8、比較例3.4、従来例2の
説明においては、全て、ベース材としてのSrTiO*
970重量部に、微量添加剤としてN b z Osを
5重量部、Biassを25重量部添加するものとして
説明する。
Next, in the following descriptions of Examples 5 to 8, Comparative Examples 3.4, and Conventional Example 2, SrTiO* as the base material is used.
The explanation will be given assuming that 5 parts by weight of N b z Os and 25 parts by weight of Biass are added as trace additives to 970 parts by weight.

実]I烈」ー まず、N b x Osおよび131205の全量と、
3 r T i Osの全量の内の1wt%と、これら
粉体全量に対して重量で2倍量の水とをボールミルで1
5時間攪拌し、予混合を行った。次いで、この予混合物
を脱水乾燥して、粉体を得た。このようにして得た粉体
に、残りのSrTiOsと、これら粉体全量に対して重
量で2倍量の水とを加えて、ボールミルで15時間攪拌
混合した。
[Act] Iretsu” - First, the total amount of N b x Os and 131205,
3. 1 wt% of the total amount of TiOs and 2 times the amount of water based on the total amount of these powders were mixed in a ball mill.
The mixture was stirred for 5 hours and premixed. Next, this premix was dehydrated and dried to obtain a powder. To the thus obtained powder, the remaining SrTiOs and water in an amount twice as much as the total amount of the powder were added, and the mixture was stirred and mixed in a ball mill for 15 hours.

以下上記実施例と同様にして半導体コンデンサを得た。Thereafter, a semiconductor capacitor was obtained in the same manner as in the above example.

支胤五且二1 上記予混合におけるS r T i Osの混合量を、
5wt%、lQwt%、20wt%とし、上記実施例5
と同様にして半導体コンデンサを得、これらをそれぞれ
実施例6乃至8とした。
5.21 The mixing amount of S r Ti Os in the above premixing is
5wt%, lQwt%, and 20wt%, and the above Example 5
Semiconductor capacitors were obtained in the same manner as in Example 6 to Example 8, respectively.

比m 上記予混合におけるS r T i Osの混合量を、
Q、5wt%、30wt%とし、上記実施例5と同様に
して半導体コンデンサを得、これらをそれぞれ比較例3
.4とした。
Ratio m The mixing amount of S r T i Os in the above premixing is
Q, 5 wt% and 30 wt%, semiconductor capacitors were obtained in the same manner as in Example 5, and these were respectively used in Comparative Example 3.
.. It was set as 4.

1釆■l NbzOsおよびBi、03の全量と、SrTi03全
量とを1回で混合し、造粒工程以降を実施例5と同様に
して、半導体コンデンサを得、これを従来例2とした。
1 pot ■l The entire amount of NbzOs and Bi,03 and the entire amount of SrTi03 were mixed at one time, and the granulation process and subsequent steps were carried out in the same manner as in Example 5 to obtain a semiconductor capacitor, which was designated as Conventional Example 2.

以上の実施例1〜8、比較例1〜4、および従来例1,
2について、それぞれ100個づつの試料となる半導体
コンデンサを用意し、それらについて静電容量を測定し
、この測定により得られた静電容量に基づき、静電容量
のばらつき、すなわち標準偏差を測定した。その結果を
、添付の第1図および第2図のグラフに示した。
The above Examples 1 to 8, Comparative Examples 1 to 4, and Conventional Example 1,
For 2, 100 sample semiconductor capacitors were prepared for each sample, the capacitance was measured, and the variation in capacitance, that is, the standard deviation, was measured based on the capacitance obtained by this measurement. . The results are shown in the attached graphs of FIGS. 1 and 2.

なお、上記実施例はいずれも半導体コンデンサ用材料の
場合を例にあげて説明したが、本発明はこれに限定され
るものではなく、他の磁器コンデンサ用材料についても
用いることができる。
Although the above embodiments have all been described using materials for semiconductor capacitors as examples, the present invention is not limited thereto, and can be used for other materials for ceramic capacitors.

(発明の効果) 以上説明した本発明のコンデンサ用材料の製造方法によ
れば、添付の第1図および第2図のグラフからも分かる
ように、コンデンサの静電容量のばらつきを大きく低減
することができ、従って、コンデンサ製造の歩留りが向
上するとともに、容量許容幅の狭小化に対応することが
できる。
(Effects of the Invention) According to the method for producing capacitor materials of the present invention as described above, as can be seen from the attached graphs of FIGS. 1 and 2, variations in capacitance of capacitors can be greatly reduced. Therefore, the yield of capacitor manufacturing can be improved, and it is possible to cope with the narrowing of the allowable capacitance range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ本発明の実施例、比較
例、および従来例によるコンデンサの静電容量の標準偏
差を示すグラフ図である。
FIG. 1 and FIG. 2 are graphs showing the standard deviation of capacitance of capacitors according to an example of the present invention, a comparative example, and a conventional example, respectively.

Claims (1)

【特許請求の範囲】[Claims]  セラミックベース材に、微量添加剤を混合してコンデ
ンサ用材料を製造する方法において、前記微量添加剤全
量と、セラミックベース材の全量の内1乃至20wt%
とを予混合し、この後、この予混合物とセラミックベー
ス材の残量とを混合することを特徴とするコンデンサ用
材料の製造方法。
In a method of manufacturing a capacitor material by mixing a trace additive with a ceramic base material, the total amount of the trace additive and the total amount of the ceramic base material are 1 to 20 wt%.
1. A method for manufacturing a capacitor material, comprising: premixing the premix with the remaining amount of the ceramic base material.
JP1287427A 1989-11-06 1989-11-06 Method for manufacturing capacitor material Expired - Lifetime JPH088199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287427A JPH088199B2 (en) 1989-11-06 1989-11-06 Method for manufacturing capacitor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287427A JPH088199B2 (en) 1989-11-06 1989-11-06 Method for manufacturing capacitor material

Publications (2)

Publication Number Publication Date
JPH03148814A true JPH03148814A (en) 1991-06-25
JPH088199B2 JPH088199B2 (en) 1996-01-29

Family

ID=17717185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287427A Expired - Lifetime JPH088199B2 (en) 1989-11-06 1989-11-06 Method for manufacturing capacitor material

Country Status (1)

Country Link
JP (1) JPH088199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811343A (en) * 1996-07-15 1998-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Oxidation method for removing fluorine gas inside polysilicon during semiconductor manufacturing to prevent delamination of subsequent layer induced by fluorine outgassing dielectric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811343A (en) * 1996-07-15 1998-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Oxidation method for removing fluorine gas inside polysilicon during semiconductor manufacturing to prevent delamination of subsequent layer induced by fluorine outgassing dielectric

Also Published As

Publication number Publication date
JPH088199B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
JPH0380749B2 (en)
JPH03148814A (en) Manufacture of material for capacitor
JP2520747B2 (en) Method for manufacturing capacitor material
CN111620680A (en) Ceramic material for millimeter wave device and preparation method and application thereof
JPH0345551A (en) Production of dry type molded roof tile
JPH04300235A (en) Production of ceramic body
JP3036094B2 (en) Method for preparing clay for extrusion molding
JPH1055930A (en) Manufacture of functional ceramic and ceramic electronic part
KR970003944B1 (en) Process for the preparation of ceramic greensheet
JPS63277544A (en) Production of ceramic green sheet
JPH02114603A (en) Manufacture of glaze varistor
JPH04160077A (en) Production of porous ceramic molded body
JPH01115856A (en) Production of ceramic resistive element
JPS63292507A (en) Manufacture of dielectric resonator material
JPH0513099B2 (en)
JPH07112953B2 (en) Slurry composition for ceramic green sheet
JP3012996B2 (en) Compound preparation method
JPH05237820A (en) Manufacture of ceramic base
JPS6331176B2 (en)
JPH06283379A (en) Manufacture of ceramic capacitor
JPH0632647A (en) Production of dielectric ceramic composition
JPH04196591A (en) Manufacture of barium titanate semiconductor porcelain
JPH01153515A (en) Method for granulating magnesium oxide raw material for forming
JPH04170354A (en) Production of powdery starting material for ceramic capacitor
JPH03115156A (en) Production of ceramic injection-molding material