JP2520747B2 - Method for manufacturing capacitor material - Google Patents

Method for manufacturing capacitor material

Info

Publication number
JP2520747B2
JP2520747B2 JP1304646A JP30464689A JP2520747B2 JP 2520747 B2 JP2520747 B2 JP 2520747B2 JP 1304646 A JP1304646 A JP 1304646A JP 30464689 A JP30464689 A JP 30464689A JP 2520747 B2 JP2520747 B2 JP 2520747B2
Authority
JP
Japan
Prior art keywords
base material
capacitor
additive
amount
srtio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1304646A
Other languages
Japanese (ja)
Other versions
JPH03170369A (en
Inventor
信幸 西村
潔 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP1304646A priority Critical patent/JP2520747B2/en
Publication of JPH03170369A publication Critical patent/JPH03170369A/en
Application granted granted Critical
Publication of JP2520747B2 publication Critical patent/JP2520747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コンデンサ用材料の製造方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a method for manufacturing a capacitor material.

(従来の技術) 従来、コンデンサ用材料の製造は、例えば、半導体コ
ンデンサの場合を例にとるとBaTiO3、SrTiO3、CaTiO3
のセラミックベース材に、原子価制御等を目的としたNb
2O5、Y2O3、Bi2O3等の微量添加剤をボールミルで配合
し、分散して行なわれていたが、微量添加剤の粉砕、分
散が充分に行なわれていないため、出来上がったコンデ
ンサの静電容量ばらつきの原因となっていた。
(Prior Art) Conventionally, for example, in the case of a semiconductor capacitor, manufacturing of a capacitor material uses a ceramic base material such as BaTiO 3 , SrTiO 3 or CaTiO 3 and Nb for the purpose of controlling valence.
2 O 5 , Y 2 O 3 , Bi 2 O 3 and other trace additives were blended in a ball mill and dispersed, but this was done because the trace additives have not been sufficiently crushed and dispersed. It was also a cause of variations in the capacitance of the capacitors.

そこで、微量添加剤のみをボールミルにて粉砕した
後、ベース材に添加混合する方法が提案された。また、
直径1〜2mmのビーズを用いたビーズミルにより混合す
る方法も提案された。
Therefore, a method has been proposed in which only a small amount of additive is crushed by a ball mill and then added and mixed with a base material. Also,
A method of mixing by a bead mill using beads having a diameter of 1 to 2 mm has also been proposed.

(発明が解決しようとする課題) しかしながら、上記の微量添加剤のみをボールミルに
て粉砕した後、ベース材を添加混合する方法にあって
は、粉砕された添加物の再凝集が起こり、分散性の改善
にはいたらず、また静電容量のばらつきも改善されなか
った。
(Problems to be Solved by the Invention) However, in the method of crushing only the above-mentioned trace amount additive in a ball mill and then adding and mixing the base material, re-aggregation of the crushed additive occurs, resulting in dispersibility. Was not improved, and the variation in capacitance was not improved.

また、上記の直径1〜2mmのビーズを用いたビーズミ
ルにより混合する方法にあっては、添加剤の分散と同時
に、ベース材の粉砕が起こり、粒度が不均一になり、こ
れにより静電容量にばらつきが起きたり、押し出し成形
時に成形不良となる場合があり、改善効果は得られなか
った。
In addition, in the method of mixing with a bead mill using beads having a diameter of 1 to 2 mm, at the same time as the dispersion of the additive, the base material is crushed and the particle size becomes non-uniform, which causes the capacitance to change. There was a case where there were variations and a molding failure during extrusion molding, and the improvement effect was not obtained.

そこで、本発明は、微量添加剤を粉砕し、ベース材へ
の高分散を行ない得、またその時に、ベース材に粉砕さ
れ、粒度が不均一になることを防止できるコンデンサ用
材料の製造方法を提供することを目的とするものであ
る。
Therefore, the present invention provides a method for producing a material for a capacitor, which is capable of pulverizing a trace amount of additive and highly dispersing it in a base material, and at that time, preventing pulverization into a base material and non-uniform particle size. It is intended to be provided.

(課題を解決するための手段) 上記課題を解決するため、本発明は、セラミックベー
ス材に、微量添加剤を混合してコンデンサ用材料を製造
する方法において、前記微量添加剤全量と、セラミック
ベース材の全量の内1乃至20wt%とを予混合し、さらに
仮焼を行なった後、この予混合物とセラミックベース材
の残量とを混合することを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention relates to a method for producing a capacitor material by mixing a trace amount additive with a ceramic base material, wherein the trace additive total amount and the ceramic base material are used. It is characterized in that 1 to 20 wt% of the total amount of the material is premixed, and after calcination, the premixed material and the remaining amount of the ceramic base material are mixed.

(作 用) 本発明によるコンデンサ用材料の製造方法において
は、まず、微量添加剤の全量とベース材の一部とを混合
することにより、微量添加剤の粉砕を促進する。その
後、仮焼により、微量添加剤とベース材を反応させるこ
とにより、分散状態を維持する。
(Operation) In the method for producing the capacitor material according to the present invention, first, the pulverization of the trace additive is promoted by mixing the total amount of the trace additive and a part of the base material. Then, by calcination, the trace amount additive and the base material are reacted to maintain the dispersed state.

また、残りのベース材は、その後に、上記の予混合物
に混合されるので、不必要な粉砕がおこなわれることな
く、該ベース材の粒度が不均一となることがない。
Moreover, since the remaining base material is then mixed with the above-mentioned premix, unnecessary pulverization is not performed and the particle size of the base material does not become nonuniform.

(実施例) 以下、添加図面を参照しつつ、本発明の実施例を、比
較例および従来例とともに説明する。
(Example) Hereinafter, the Example of this invention is demonstrated with a comparative example and a prior art example, referring an addition drawing.

まず実施例、比較例、従来例の説明において、ベース
材としてのSrTiO3 995重量部に、微量添加剤としてのNb
2O5を5重量部添加するものについて説明する。
First, in the description of examples, comparative examples and conventional examples, 995 parts by weight of SrTiO 3 as a base material and Nb as a trace additive were added.
The addition of 5 parts by weight of 2 O 5 will be described.

実施例1 まず、Nb2O5全量と、SrTiO3の全量の内1wt%と、これ
ら粉体全量に対して重量で2倍量の水とをボールミルで
15時間撹拌し、予混合を行なった。次いで、この予混合
物を脱水乾燥して、粉体を得た。このようにして得た粉
体を1200℃で仮焼した後に残りのSrTiO3と、これら粉体
全量に対して重量で2倍量の水とを加えて、ボールミル
で15時間撹拌混合した。
Example 1 First, a Nb 2 O 5 total amount, 1 wt% of the total amount of SrTiO 3 and water in an amount twice as much as the total amount of these powders were ball milled.
The mixture was stirred for 15 hours and premixed. Then, the premix was dehydrated and dried to obtain a powder. After the powder thus obtained was calcined at 1200 ° C., the remaining SrTiO 3 and water in an amount twice as much as the total amount of these powders were added and stirred and mixed in a ball mill for 15 hours.

この混合物を脱水乾燥した後、バインダとして5wt%
のポリビニールアルコールを加えて造粒し、この造粒物
を成形機に入れて、1000kg/cm2の圧力で円板状に加圧成
形した。
After dehydrating and drying this mixture, 5 wt% as a binder
Polyvinyl alcohol was added to granulate, and the granulated product was put into a molding machine and pressure-molded into a disk shape at a pressure of 1000 kg / cm 2 .

次に、この成形物を炉に入れ、空気中において、800
℃まで毎時100℃の割合で昇温し、バインダであるポリ
ビニールアルコールを燃焼させた。しかる後、炉の中
を、N2が97.0vol%、H2が3.0vol%の還元雰囲気に変え
て、1400℃の温度が3時間維持して焼成し、半導体セラ
ミックスを得た。
Next, this molded product is placed in a furnace and placed in air for 800
The temperature was raised to 100 ° C. per hour at a rate of 100 ° C., and the binder polyvinyl alcohol was burned. After that, the inside of the furnace was changed to a reducing atmosphere of N 2 of 97.0 vol% and H 2 of 3.0 vol%, and the temperature was maintained at 1400 ° C. for 3 hours for firing to obtain semiconductor ceramics.

更に、この円板状半導体セラミックスに、CuOを成分
としたペーストを塗布し、毎時100℃の割合で昇温し、1
200℃の温度を3時間維持し、CuOを半導体セラミックス
の粒界に拡散させ、厚さ0.50mm、直径16mmの粒界絶縁型
誘電体セラミックスを得た。
Further, a paste containing CuO as a component was applied to the disc-shaped semiconductor ceramics, and the temperature was raised at a rate of 100 ° C./hour,
While maintaining the temperature of 200 ° C. for 3 hours, CuO was diffused into the grain boundaries of the semiconductor ceramics to obtain grain boundary insulating dielectric ceramics having a thickness of 0.50 mm and a diameter of 16 mm.

次に、この誘電体セラミックスの両面に銀ペーストを
塗布し、800℃にて焼付を行ない、直径10mmの電極を形
成し、半導体コンデンサを得た。
Next, a silver paste was applied to both surfaces of this dielectric ceramic and baked at 800 ° C. to form an electrode having a diameter of 10 mm to obtain a semiconductor capacitor.

実施例2−4 上記予混合におけるSrTiO3の混合量を、5wt%、10wt
%、20wt%とし、上記実施例1と同様にして半導体コン
デンサを得、これらをそれぞれ実施例2乃至4とした。
Example 2-4 The mixing amounts of SrTiO 3 in the above premixing were 5 wt% and 10 wt%.
% And 20 wt%, semiconductor capacitors were obtained in the same manner as in Example 1 above, and these were Examples 2 to 4, respectively.

比較例1、2 上記予混合におけるSrTiO3の混合量を、0.5wt%、30w
t%とし、上記実施例1と同様にして半導体コンデンサ
を得、これらをそれぞれ比較例1および2とした。
Comparative Examples 1 and 2 The mixing amounts of SrTiO 3 in the above premixing were 0.5 wt% and 30 w.
t%, and semiconductor capacitors were obtained in the same manner as in Example 1 above, and these were designated as Comparative Examples 1 and 2, respectively.

従来例1 Nb2O5全量と、SrTiO3全量とを1回で混合し、造粒工
程以降を実施例1と同様にして、半導体コンデンサを
得、これを従来例1とした。
Conventional Example 1 The whole amount of Nb 2 O 5 and the total amount of SrTiO 3 were mixed once, and a semiconductor capacitor was obtained in the same manner as in Example 1 after the granulation step.

次に上記実施例、比較例、従来例においてベース材と
して、SrTiO3 970重量部に微量添加剤としてNb2O5を5
重量部、Bi2O3を25重量部添加するものについて説明す
る。
Next, in the above Examples, Comparative Examples, and Conventional Example, 970 parts by weight of SrTiO 3 was used as a base material and 5 parts of Nb 2 O 5 was added as a trace additive.
The addition of 25 parts by weight of Bi 2 O 3 will be described.

実施例5〜8 予混合においてNb2O5及びBi2O3全量とSrTiO3の全量の
うち、1wt%、5wt%、10wt%、20wt%を混合し実施例1
と同様にして半導体コンデンサを得、これらをそれぞれ
実施例5〜8とした。
Examples 5 to 8 In premixing, 1 wt%, 5 wt%, 10 wt% and 20 wt% of the total amount of Nb 2 O 5 and Bi 2 O 3 and SrTiO 3 were mixed and Example 1
Semiconductor capacitors were obtained in the same manner as in, and these were designated as Examples 5 to 8, respectively.

比較例3、4 上記予混合において、SrTiO3の混合量を0.5wt%、30w
t%とし、実施例1と同様にして半導体コンデンサを
得、これらをそれぞれ比較例3、4とした。
Comparative Examples 3 and 4 In the above premixing, the mixing amount of SrTiO 3 was 0.5 wt% and 30 w
A semiconductor capacitor was obtained in the same manner as in Example 1 with t% being set as Comparative Examples 3 and 4, respectively.

従来例2 Nb2O5及びBi2O3全量とSrTiO3全量とを1回で混合し造
粒工程以降を実施例1と同様にして半導体コンデンサを
得、これを従来例2とした。
Conventional Example 2 A total amount of Nb 2 O 5 and Bi 2 O 3 and an entire amount of SrTiO 3 were mixed at once, and a semiconductor capacitor was obtained in the same manner as in Example 1 after the granulation step.

以上の実施例1〜8、比較例1〜4、および従来例
1、2について、それぞれ100個づつの試料となる半導
体コンデンサを用意し、それらについて静電容量を測定
し、この測定により得られた静電容量に基づき、静電容
量のばらつき、すなわち標準偏差を測定した。その結果
を、添付の第1図および第2図のグラフに示した。
For each of the above Examples 1 to 8, Comparative Examples 1 to 4 and Conventional Examples 1 and 2, 100 semiconductor capacitors were prepared as samples, and the capacitances were measured. Based on the capacitance, the variation in capacitance, that is, the standard deviation was measured. The results are shown in the attached graphs of FIGS. 1 and 2.

なお、上記実施例はいずれも半導体コンデンサ用材料
の場合を例にあげて説明したが、本発明はこれに限定さ
れるものではなく、他の磁器コンデンサ用材料について
も用いることができる。
Although the above embodiments have been described by taking the case of the material for the semiconductor capacitor as an example, the present invention is not limited to this, and other materials for the ceramic capacitor can be used.

(発明の効果) 以上説明した本発明のコンデンサ用材料の製造方法に
よれば、添付図のグラフからも分かるように、コンデン
サの静電容量のばらつきを大きく低減することができ、
従って、コンデンサ製造の歩留りが向上するとともに、
容量許容幅の狭小化に対応することができる。
(Effects of the Invention) According to the method for manufacturing a capacitor material of the present invention described above, as can be seen from the graph of the accompanying drawings, it is possible to greatly reduce variations in the capacitance of the capacitor,
Therefore, the yield of capacitor manufacturing is improved and
It is possible to cope with the narrowing of the capacity allowable width.

【図面の簡単な説明】 第1図および第2図は、本発明の実施例、比較例、およ
び従来例によるコンデンサの静電容量の標準偏差を示す
グラフ図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 2 are graphs showing the standard deviation of the capacitances of capacitors according to examples of the present invention, comparative examples, and conventional examples.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミックベース材に、微量添加剤を混合
してコンデンサ用材料を製造する方法において、前記微
量添加剤全量と、セラミックベース材の全量の内1乃至
20wt%とを予混合し、さらに仮焼を行なった後、この予
混合物とセラミックベース材の残量とを混合することを
特徴とするコンデンサ用材料の製造方法。
1. A method of manufacturing a capacitor material by mixing a trace amount additive with a ceramic base material, wherein 1 to 1 of the total amount of the trace amount additive and the total amount of the ceramic base material is used.
A method for producing a capacitor material, which comprises premixing 20 wt% with calcination and then mixing the premix with the remaining amount of the ceramic base material.
JP1304646A 1989-11-27 1989-11-27 Method for manufacturing capacitor material Expired - Lifetime JP2520747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1304646A JP2520747B2 (en) 1989-11-27 1989-11-27 Method for manufacturing capacitor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1304646A JP2520747B2 (en) 1989-11-27 1989-11-27 Method for manufacturing capacitor material

Publications (2)

Publication Number Publication Date
JPH03170369A JPH03170369A (en) 1991-07-23
JP2520747B2 true JP2520747B2 (en) 1996-07-31

Family

ID=17935539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1304646A Expired - Lifetime JP2520747B2 (en) 1989-11-27 1989-11-27 Method for manufacturing capacitor material

Country Status (1)

Country Link
JP (1) JP2520747B2 (en)

Also Published As

Publication number Publication date
JPH03170369A (en) 1991-07-23

Similar Documents

Publication Publication Date Title
JP2520747B2 (en) Method for manufacturing capacitor material
JPH088199B2 (en) Method for manufacturing capacitor material
DE3730821A1 (en) CERAMIC COMPOSITION WITH A HIGH DIELECTRICITY CONSTANT
JP3243874B2 (en) Dielectric porcelain composition
JP2682824B2 (en) Method for manufacturing grain boundary layer insulated semiconductor ceramic capacitor
JPH06309926A (en) Dielectric ceramic composition
JPH07114824A (en) Dielectric ceramic composition
JP3914635B2 (en) Manufacturing method of ceramic electronic component
JPH06325620A (en) Dielectric ceramic composition
JP3243873B2 (en) Dielectric porcelain composition
JPH02114603A (en) Manufacture of glaze varistor
JPH1055930A (en) Manufacture of functional ceramic and ceramic electronic part
JPH04154661A (en) Semiconductor porcelain and its production
JPH04300235A (en) Production of ceramic body
JPH09157021A (en) Production of dielectric material for low temperature sintering
JP3038906B2 (en) Method for producing barium titanate-based semiconductor porcelain
JPH0546642B2 (en)
JPH05291004A (en) Manufacture of ptc thermistor
JPS62237707A (en) Manufacture of voltage nonlinear resistance element
JPH063683B2 (en) Dielectric porcelain composition
JPH06333422A (en) Dielectric ceramic composition
JPH04275967A (en) Preparation of argil for extrusion molding
JPH06325621A (en) Dielectric ceramic composition
JPH01294559A (en) Production of dielectric ceramic material for high-frequency use
JPH06333421A (en) Dielectric ceramic composition