JPH03148185A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH03148185A
JPH03148185A JP1286404A JP28640489A JPH03148185A JP H03148185 A JPH03148185 A JP H03148185A JP 1286404 A JP1286404 A JP 1286404A JP 28640489 A JP28640489 A JP 28640489A JP H03148185 A JPH03148185 A JP H03148185A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor layer
infrared detector
value
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1286404A
Other languages
Japanese (ja)
Inventor
Yutaka Takada
裕 高田
Kenji Yasumura
賢二 安村
Muneyoshi Fukita
宗義 吹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1286404A priority Critical patent/JPH03148185A/en
Publication of JPH03148185A publication Critical patent/JPH03148185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To prevent development of a lead current due to misfit transfer by forming a second semiconductor layer consisting of Cd, Hg, Te whose mixed crystal ratio (an x value) increases successively in a vertical direction of a first semiconductor surface consisting of CdxHg1-xTe. CONSTITUTION:A device is composed of a first semiconductor 1 of a small forbidden band width (a small x value), a second semiconductor layer 2 whose forbidden band width is larger than that of the first semiconductor 1 (x2>x1), an n<+>-layer 3, and a CdTe substrate 4. The second semiconductor layer 2 composed of Cd, Hg, Te whose mixed crystal ratio (an x value) increases successively is made to form in a vertical direction of a surface of the first semiconductor 1 which composed of CdxHg1-xTe. Since misfit transfer is not thereby generated at an interface between the first semiconductor 1 and the second semiconductor layer 2, a leak current in the area can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体を用いた光起電力型赤外線検知器に
関し、特にリーク電流の抑制に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photovoltaic infrared detector using a semiconductor, and particularly relates to suppressing leakage current.

[従来の技術] 第4図は特開昭62−119975号公報に示された従
来の赤外線検知器の断面図で、(1)は第1半導体、(
2)は第2半導体で、禁制布中ば第1半導体よりも第2
半導体の方が大きい構造となっている。光起電力型赤外
線検知器では、表面部分におけるリーク電流が検知器の
性能を著しく低下させる原由となる。また、2層構造の
赤外線検知器では、表面リーク電流を抑制するため、表
面部分に形成された禁制布中の大きな第2半導体層を形
成している。しかし、相互拡散による2層構造の作製で
は工程が複雑であり、また、組成の制御が難しい。
[Prior Art] FIG. 4 is a cross-sectional view of a conventional infrared detector disclosed in Japanese Patent Application Laid-Open No. 62-119975, in which (1) is a first semiconductor, (
2) is the second semiconductor, and in the forbidden cloth, the second semiconductor is higher than the first semiconductor.
Semiconductors have a larger structure. In photovoltaic infrared detectors, leakage current at the surface portion significantly reduces the performance of the detector. Furthermore, in the two-layer structure infrared detector, a large second semiconductor layer is formed in the forbidden cloth formed on the surface portion in order to suppress surface leakage current. However, manufacturing a two-layer structure by interdiffusion requires a complicated process, and it is difficult to control the composition.

第1半導体上に、そのままx4jliの大きな第2半導
体層を成長させることが工程も簡便ではあるが、X値の
異なる半導体では、両者の格子定数が異なるため、第1
半導体と第2半導体層の界面にミスフィツトによって発
生する転移が生じてしまい、転移を通じてのリーク電流
が流れることになってしまう。
Although it is a simple process to grow a second semiconductor layer with a large x4jli on the first semiconductor as it is, since semiconductors with different X values have different lattice constants,
Dislocations occur due to misfit at the interface between the semiconductor and the second semiconductor layer, and leakage current flows through the dislocations.

[発明が解決しようとする課題] 上記赤外線検知器では、2層構造を作製する工程が複雑
となり、また高温で実行するために、第1半導体の組成
の均一性に問題があった。一方、X値の異なる半導体同
士を成長させる方法では。
[Problems to be Solved by the Invention] In the above-mentioned infrared detector, the process for producing the two-layer structure is complicated, and since the process is performed at high temperatures, there is a problem with the uniformity of the composition of the first semiconductor. On the other hand, in the method of growing semiconductors with different X values.

表面リーク電流を制御するための第2半導体層と、第1
半導体との界面に発生するミスフィツト転移によって、
その部分にリーク電流が発生するなどの課題があった。
a second semiconductor layer for controlling surface leakage current;
Due to the misfit transition that occurs at the interface with the semiconductor,
There were problems such as leakage current occurring in that part.

この発明は、上記のようなミスフィツト転移によるリー
ク電流の発生を抑制し、効率の良い赤外線検知器を得る
ことを目的とする。
The object of the present invention is to suppress the generation of leakage current due to misfit transitions as described above, and to obtain an efficient infrared detector.

[課題を解決するための手段] この発明に係る赤外線検知器は、Cd xHg 、−X
Teよりなる第1半導体表面の垂直方向に、混晶比(x
(直)が連続的に大きくなる Cd、Hg。
[Means for solving the problem] The infrared detector according to the present invention has Cd x Hg, -X
The mixed crystal ratio (x
(direct) increases continuously Cd, Hg.

Teよりなる第2半導体層を成長させたものである。A second semiconductor layer made of Te is grown.

[作用] この発明における赤外線検知器は、 CdxHg1−x
Te  よりなる第1半導体表面の垂直方向に、混晶比
(x値)が連続的に大きくなるCd、Hg。
[Function] The infrared detector in this invention has CdxHg1-x
Cd and Hg, the mixed crystal ratio (x value) of which increases continuously in the vertical direction of the first semiconductor surface made of Te.

Teよりなる第2半導体層を成長させたので、第1半導
体と第2半導体層の界面にミスフィツト転移が発生しな
いために、この部分におけるリーク電流を防止すること
ができる。
Since the second semiconductor layer made of Te is grown, no misfit transition occurs at the interface between the first semiconductor and the second semiconductor layer, so that leakage current can be prevented at this portion.

[実施例] 以下に、この発明の一実施例を図について説明する。第
1図(a)は、この発明の一実施例の赤外線検知器の断
面図で、(1)は禁制茶巾の小さい(x値の小さい)第
1半導体、(2)は禁制茶巾が第1半導体よりも大きい
第2半導体層(x 2 > x 、)、(3)はn+層
、(4)はCd T e基板である。
[Example] An example of the present invention will be described below with reference to the drawings. FIG. 1(a) is a cross-sectional view of an infrared detector according to an embodiment of the present invention, in which (1) shows a first semiconductor with a small forbidden tea towel (small x value), and (2) shows a first semiconductor with a small forbidden tea towel. The second semiconductor layer (x2>x,) larger than the semiconductor, (3) is an n+ layer, and (4) is a CdTe substrate.

第1図(b)は第1図(a)の説明図で、図に示すよう
に第2半導体層は垂直方向に対して組成が連続的に変化
しており、表面における混晶比(xs値)は、第1半導
体(7)X(tio、2  より大きく、0.5前後と
した。
FIG. 1(b) is an explanatory diagram of FIG. 1(a). As shown in the figure, the composition of the second semiconductor layer changes continuously in the vertical direction, and the mixed crystal ratio (xs The value) was larger than the first semiconductor (7)X(tio,2) and was around 0.5.

このような構造をもつCd xHg 1−xT e結晶
を作る製造方法として、LPE法(液相成長法)のスラ
イドボート法による成長方法について述べる。
As a manufacturing method for producing a Cd x Hg 1-xT e crystal having such a structure, a growth method using a slide boat method of the LPE method (liquid phase epitaxy) will be described.

第2図にその工程を示す。第2図(a)はスライドボー
トの断面図で、ボートは3段構造となっており、上段及
び中段ボートをスライドさせることにより、半導体結晶
の成長を実行する。第2図(b)は、第1半導体成長時
の各ボートの位置を示し、3− 上部及び中部ボートとをスライドさせ、Cd T e基
板上に原料メルトを移動させ、第1半導体を基板上に成
長させる。500℃前後の温度より降温し、約20μm
の第1半導体を成長させた後に、第2図(c)に示すよ
うに、上部ボートをスライドさせ、メルト部分の上部を
開放させる。これによリメルト中のI−I g’の蒸発
が促進され、メルトの組成比が時間とともに連続的に変
化する。原料メルトの組成がHgの減少する方向へ動く
ことから、表面に成長する第2半導体N (Cdx2H
gI X2Te)の組成はス、が連続的に大きくなって
いく。
Figure 2 shows the process. FIG. 2(a) is a cross-sectional view of the slide boat. The boat has a three-tiered structure, and semiconductor crystal growth is performed by sliding the upper and middle boats. FIG. 2(b) shows the position of each boat during the growth of the first semiconductor. to grow. The temperature is lowered from around 500℃, and the thickness is about 20μm.
After growing the first semiconductor, the upper boat is slid to open the upper part of the melt part, as shown in FIG. 2(c). This promotes the evaporation of I-I g' in the remelt, and the composition ratio of the melt changes continuously over time. Since the composition of the raw material melt moves in the direction of decreasing Hg, the second semiconductor N (Cdx2H
In the composition of gI

また、以上のような構造を有するC d xHg j−
XTeの結晶成長方法はスライドボート法に限らず同じ
LPE法でのティピング法によっても実現できる。
Moreover, C d xHg j- having the above structure
The method for growing XTe crystals is not limited to the slide boat method, but can also be realized by a tipping method using the same LPE method.

第3図にその一例を示す。アンプル内に封入したメルト
と基板とを接触させ、第1半導体を成長させた後、開放
用端(11)を取ることでアンプルを開放させ、Hgの
蒸発を促進させX値の大きな第2半導体層を成長させる
An example is shown in FIG. After the melt sealed in the ampoule is brought into contact with the substrate and the first semiconductor is grown, the ampoule is opened by removing the open end (11), thereby promoting the evaporation of Hg and forming the second semiconductor with a large X value. Grow layers.

 − このような成長方法によっても同様な構造を有するCd
xHg、xTe結晶を得ることができる。
- Cd with a similar structure can also be grown by such a growth method.
xHg, xTe crystals can be obtained.

[発明の効果] 以上のようにこの発明によれば、Cd XHg j−X
Teよりなる第1半導体表面の垂直方向に、混晶比(x
値)が連続的に大きくなるC d 、Hg 、’l’ 
eよりなる第2半導体層を成長さるように構成したので
、第1半導体と第2半導体層の界面に稟スフイツト転移
を発生させることもなく、第1半導体表面に禁制茶巾の
大きなχ値の大きいCdにHg 。
[Effect of the invention] As described above, according to this invention, Cd XHg j−X
The mixed crystal ratio (x
C d , Hg , 'l' where the value) increases continuously
Since the structure is such that the second semiconductor layer made of E is grown, no crystal shift transition occurs at the interface between the first semiconductor and the second semiconductor layer, and a large Hg to Cd.

xTe半導体を成長させることができ、赤外線検知器と
して、リーク電流を抑制することができる。
xTe semiconductor can be grown, and leakage current can be suppressed as an infrared detector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による赤外線検知器の一実施例の断面
図、 第2図はこの発明によるCdxHg1−*Te結
晶の作製工程図、 第3図はこの発明による他の実施例
である工程図、第4図は従来の赤外線検知器の断面図で
ある。 図において(1)はP型Cd xHg 、−xT e、
(2)はP型Cd x2Hg 1−x2T e、(3)
はn+層、(4)はCdTe基板、(5)は上段スライ
ドボード、(6)は中段スライドボード、(7)は下段
スライドボード、(8)は原料メルト、(9)は解放孔
、(10)は石英アンプル、(11)は開放用端である
。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view of one embodiment of an infrared detector according to the present invention, FIG. 2 is a process diagram for manufacturing a CdxHg1-*Te crystal according to the present invention, and FIG. 3 is a process diagram of another embodiment of the present invention. , FIG. 4 is a sectional view of a conventional infrared detector. In the figure (1) is P-type Cd xHg, -xT e,
(2) is P-type Cd x2Hg 1-x2T e, (3)
is n+ layer, (4) is CdTe substrate, (5) is upper slide board, (6) is middle slide board, (7) is lower slide board, (8) is raw material melt, (9) is open hole, ( 10) is a quartz ampoule, and (11) is an open end. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  Cd、Hg、Teよりなる化合物半導体を用いた赤外
線検知器において、上記Cd_xHg_1_−_xTe
よりなる第1半導体表面の垂直方向に、混晶比(x値)
が連続的に大きくなるCd、Hg、Teよりなる第2半
導体層を成長させたことを特徴とする赤外線検知器。
In an infrared detector using a compound semiconductor made of Cd, Hg, and Te, the above Cd_xHg_1_-_xTe
In the vertical direction of the first semiconductor surface, the mixed crystal ratio (x value)
1. An infrared detector characterized in that a second semiconductor layer made of Cd, Hg, and Te is grown in which the diameter of the infrared rays increases continuously.
JP1286404A 1989-11-02 1989-11-02 Infrared detector Pending JPH03148185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286404A JPH03148185A (en) 1989-11-02 1989-11-02 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286404A JPH03148185A (en) 1989-11-02 1989-11-02 Infrared detector

Publications (1)

Publication Number Publication Date
JPH03148185A true JPH03148185A (en) 1991-06-24

Family

ID=17703964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286404A Pending JPH03148185A (en) 1989-11-02 1989-11-02 Infrared detector

Country Status (1)

Country Link
JP (1) JPH03148185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504607A (en) * 2011-11-28 2015-02-12 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives PN diode for infrared imager with controlled heterostructure self-located on HGCDTE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504607A (en) * 2011-11-28 2015-02-12 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフCommissariata L’Energie Atomique Et Aux Energies Alternatives PN diode for infrared imager with controlled heterostructure self-located on HGCDTE

Similar Documents

Publication Publication Date Title
Fu et al. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism
RU97110653A (en) METHOD FOR REDUCING THE FORMATION OF MICROTUBULES AT EPITAXIAL GROWTH OF SILICON CARBIDE AND THE SILICON OBTAINED BY THE SILICON CARBIDE STRUCTURES
JPH033364A (en) Semiconductor device
JPS6333294B2 (en)
US3718511A (en) Process for epitaxially growing semiconductor crystals
JPH04303920A (en) Insulating film/iii-v compound semiconductor stacked structure on group iv substrate
JPS60210831A (en) Manufacture of compound semiconductor crystal substrate
JPH03148185A (en) Infrared detector
JPS62273782A (en) Josephson junction device and manufacture thereof
US5397903A (en) Semiconductor substrate for gettering
JPH04206932A (en) Semiconductor device and manufacture thereof
Kressel et al. Epitaxial silicon p‐n junctions on polycrystalline``ribbon''substrates
JPH07193007A (en) Epitaxial growth method
JPH09232603A (en) Manufacture of infrared detector
JPH0472740A (en) Ohmic electrode
JPS60211912A (en) Low-transition semi-insulation substrate
CA1271393A (en) Method of manufacturing a semi-insulating single crystal of gallium indium arsenide
JPS59195881A (en) Manufacture of semiconductor device
JPS61116823A (en) Crystal growth method
JPH042559B2 (en)
JPH03214635A (en) Manufacture of compound semiconductor crystal and manufacture of optical detection element
JPH0230148A (en) Manufacture of semiconductor device
JPH11330505A (en) Semiconductor photoelectric converter and its manufacture
JPH01291420A (en) Manufacture of semiconductor substrate
JPH01143220A (en) Protective film for germanium and manufacture thereof