JPH03147366A - Manufacture of solid-state image pickup device - Google Patents

Manufacture of solid-state image pickup device

Info

Publication number
JPH03147366A
JPH03147366A JP1286842A JP28684289A JPH03147366A JP H03147366 A JPH03147366 A JP H03147366A JP 1286842 A JP1286842 A JP 1286842A JP 28684289 A JP28684289 A JP 28684289A JP H03147366 A JPH03147366 A JP H03147366A
Authority
JP
Japan
Prior art keywords
film
light
semiconductor substrate
forming
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1286842A
Other languages
Japanese (ja)
Inventor
Yoshikimi Morita
盛田 由公
Toshihiro Kuriyama
俊寛 栗山
Hiroshi Oishi
浩 大石
Koji Tanaka
浩司 田中
Shigenori Matsumoto
松本 茂則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1286842A priority Critical patent/JPH03147366A/en
Publication of JPH03147366A publication Critical patent/JPH03147366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent the generation of smear by the light entering aslant or the light which has transmitted a light screening film by using the two-layer structure of a titanium nitride film and a light screening film or the three-layer structure of a titanium film, a titanium nitride film, and a light screening film for a light absorbing layer. CONSTITUTION:With the etching of a light absorbing film and a light screening film, if a titanium nitride film 60 and a light screening film 61 of aluminum silicide are dry-etched at the same time, the patterns of the titanium nitride film 60 and the light screening film 61 can be made in self alignment. For a solid image pickup element being formed this way, since the reflectance of the titanium nitride film 60 is low, even if the light 63, which has entered aslant the n-type impurity layer of a photoelectric transfer element part 53, enters the titanium nitride film 60, being reflected by a semiconductor substrate 50, the titanium film 60 absorbs the greater part of the light, so the light entered in the region other than the n-type impurity layer of the photoelectric transfer element part 53 is reduced and the generation of smear is suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体撮像装置の製造方法、特に光吸収膜の形成
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a solid-state imaging device, and particularly to a method for forming a light-absorbing film.

従来の技術 一般に固体撮像装置は光電変換素子の受光面に投影され
た被写体像による信号電荷を、マトリックス状に配列し
た感光画素部において、サンプリングし、この信号電荷
を電荷転送部によって転送し、画像信号として外部モニ
ター等に出力するものである。光電変換によって基盤中
に発生した信号電荷は、各画素間で分離される必要があ
る。この場合、各画素間が光学的にも完全に分離されて
いることが必要である。
2. Description of the Related Art In general, a solid-state imaging device samples signal charges from a subject image projected on the light-receiving surface of a photoelectric conversion element in a photosensitive pixel section arranged in a matrix, and transfers the signal charges by a charge transfer section to create an image. It is output as a signal to an external monitor, etc. Signal charges generated in the substrate by photoelectric conversion need to be separated between each pixel. In this case, each pixel must be completely separated optically.

固体撮像素子は、半導体基盤中に形成された光電変換素
子部と電荷転送部、光電変換素子部と電荷転送部を電気
的に分離するための分離拡散層が形成されており、半導
体基盤上にはゲート酸化膜を介して転送電極、さらに上
面に酸化膜を介して光電変換素子部以外の領域に入射す
る光を遮光するためのアルミニュウムやアルミニュウム
シリサイド等の遮光膜が形成され、最後に保護膜が、半
導体基盤全面に形成されている。
A solid-state image sensor has a photoelectric conversion element part and a charge transfer part formed in a semiconductor substrate, and a separation diffusion layer for electrically separating the photoelectric conversion element part and the charge transfer part. A transfer electrode is formed through the gate oxide film, and then a light shielding film such as aluminum or aluminum silicide is formed on the top surface to block light from entering areas other than the photoelectric conversion element through the oxide film, and finally a protective film is formed. is formed over the entire surface of the semiconductor substrate.

しかし、このような構成の固体撮像装置では光電変換素
子部の窓に斜め方向から入射した光は、半導体基盤表面
で反射し、遮光膜下層の膜中を通って遮光膜の裏面部で
再度反射され、光電変換素子部以外の領域に入射する。
However, in a solid-state imaging device with such a configuration, light that enters the window of the photoelectric conversion element from an oblique direction is reflected on the surface of the semiconductor substrate, passes through the film below the light-shielding film, and is reflected again on the back surface of the light-shielding film. and enters a region other than the photoelectric conversion element section.

半導体基盤中に入射した光によって半導体基盤中に発生
した電荷が、直接または拡散によって転送され、画像信
号として出力されると、画像上にスミアと呼ばれる現像
が発生する。
When charges generated in a semiconductor substrate by light incident on the semiconductor substrate are transferred directly or by diffusion and output as an image signal, a development called smear occurs on the image.

スミアは固体撮像素子が光学的に十分分離されていない
ために生じる現象である。
Smear is a phenomenon that occurs because solid-state imaging devices are not optically separated sufficiently.

スミアを低減するためには、光が入射する光電変換素子
部の受光窓の開口を狭くすればよいが、固体撮像装置の
感度は受光窓の開口幅に比例しているため有効な手段で
はない。このため高融点金属層と転送電極間に、十分な
厚さを持つ絶縁膜と燐(P)を含んだ絶縁層を形成する
方法(特開昭64−64355)が提案されている。
In order to reduce smear, it is possible to narrow the aperture of the light receiving window of the photoelectric conversion element where light enters, but this is not an effective measure because the sensitivity of the solid-state imaging device is proportional to the aperture width of the light receiving window. . For this reason, a method has been proposed (Japanese Unexamined Patent Publication No. 64-64355) in which an insulating film having a sufficient thickness and an insulating layer containing phosphorus (P) are formed between the high melting point metal layer and the transfer electrode.

第4図に上記従来の発明を説明する固体撮像装置の断面
図を示す。半導体基盤1表面に光電変換素子部2と電荷
転送部3、及び光電変換素子部2と電荷転送部3を電気
的に分離する分離拡散層4を形成し、半導体基盤1上に
ゲート酸化膜5を介して転送電極膜6を形成し、転送電
極膜6の表面層に薄い酸化膜を形成する。次に半導体基
盤1全面に厚い酸化膜7を形成した後、酸化膜8表面に
燐を添加・拡散して燐拡散層9を形成する。この後、モ
リブデンシリサイド(MoSi)等の高融点金属層10
が電荷転送部3を覆うように形成し、その後光電変換素
子部2上に受光窓11を形成する。
FIG. 4 shows a sectional view of a solid-state imaging device for explaining the above-mentioned conventional invention. A photoelectric conversion element section 2 and a charge transfer section 3, and an isolation diffusion layer 4 for electrically separating the photoelectric conversion element section 2 and charge transfer section 3 are formed on the surface of the semiconductor substrate 1, and a gate oxide film 5 is formed on the semiconductor substrate 1. A transfer electrode film 6 is formed through the transfer electrode film 6, and a thin oxide film is formed on the surface layer of the transfer electrode film 6. Next, after forming a thick oxide film 7 over the entire surface of the semiconductor substrate 1, phosphorus is added and diffused onto the surface of the oxide film 8 to form a phosphorus diffusion layer 9. After this, a high melting point metal layer 10 such as molybdenum silicide (MoSi) is formed.
is formed to cover the charge transfer section 3, and then a light receiving window 11 is formed on the photoelectric conversion element section 2.

さらに、素子保護膜の酸化膜12を形成し、酸化膜12
表面に燐拡散層13を形成した後、アルミニュウムやア
ルミニニウムシリサイドの遮光膜パターン14を上面に
形成し、最後に、保護絶縁膜15を半導体基盤1全面に
堆積する。
Furthermore, an oxide film 12 as an element protection film is formed.
After forming a phosphorus diffusion layer 13 on the surface, a light shielding film pattern 14 of aluminum or aluminum silicide is formed on the upper surface, and finally, a protective insulating film 15 is deposited on the entire surface of the semiconductor substrate 1.

しかし、上記従来技術の構成では、高融点金属層10と
してモリブデンシリサイドを用いるため光の反射率が高
い。このため高融点金属層10と転送電極層6の間に十
分に厚い酸化膜8と燐拡散層9を形成した場合、光電変
換素子部2に斜め方向から入射した光15は半導体基盤
1表面で反射した後、高融点金属層10裏面で反射され
、光電変換素子部2以外の領域に入射してスミア発生の
銹因となる。また、遮光膜パターン13に直接入射する
光15は一部透過し、光電変換素子部3以外の領域に到
達してスミアの原因となっている。
However, in the configuration of the prior art described above, since molybdenum silicide is used as the high melting point metal layer 10, the reflectance of light is high. Therefore, if a sufficiently thick oxide film 8 and phosphorus diffusion layer 9 are formed between the high melting point metal layer 10 and the transfer electrode layer 6, the light 15 incident on the photoelectric conversion element section 2 from an oblique direction will not reach the surface of the semiconductor substrate 1. After being reflected, it is reflected on the back surface of the high-melting point metal layer 10 and enters a region other than the photoelectric conversion element section 2, causing rust that causes smear. Moreover, part of the light 15 directly incident on the light-shielding film pattern 13 is transmitted and reaches areas other than the photoelectric conversion element portion 3, causing smear.

これは遮光膜パターン13を透過した光が高融点金属層
10表面に入射し、乱反射されて高融点金属層1,0の
上層に形成された酸化膜12中を、乱反射された光が伝
搬し光電変換素子部3以外の領域に到達し、スミアを発
生させる。
This is because light that has passed through the light shielding film pattern 13 enters the surface of the high melting point metal layer 10, is diffusely reflected, and then propagates through the oxide film 12 formed on the top layer of the high melting point metal layers 1 and 0. It reaches areas other than the photoelectric conversion element section 3 and causes smear.

このような問題点を解決する方法として光電変換素子部
上に光吸収膜を形成した後、光吸収膜上に遮光膜を形成
する(特開平1−107567)方法が有効な手段であ
ることが知られている。
As a method to solve such problems, it has been found that an effective method is to form a light-absorbing film on the photoelectric conversion element portion and then form a light-shielding film on the light-absorbing film (Japanese Patent Application Laid-open No. 1-107567). Are known.

第5図に光電変換素子上に光吸収膜を持つ素子の断面図
を示す。
FIG. 5 shows a cross-sectional view of an element having a light absorption film on a photoelectric conversion element.

p型ウェル層20を形成したn型半導体基盤21表面に
光電変換素子部22と電荷転送部23及び光電変換素子
部22と電荷転送部23を電気的に分離する分離拡散層
24を形成し、その上にゲート酸化膜25と転送電極膜
26を形成した後、半導体基盤22全面上に薄い酸化膜
27とを形成する。さらに半導体基盤20全面に厚い酸
化膜28を形成した後、シリコン酸化膜や酸化マグネシ
ュウム中にニッケル(Ni)微粒子を30体積%含有し
てなる光吸収膜29と光吸収膜29上に直接遮光膜30
を形成した後、保護膜として酸化膜31を形成する。
On the surface of the n-type semiconductor substrate 21 on which the p-type well layer 20 is formed, a photoelectric conversion element section 22 and a charge transfer section 23 and a separation diffusion layer 24 for electrically separating the photoelectric conversion element section 22 and the charge transfer section 23 are formed; After forming a gate oxide film 25 and a transfer electrode film 26 thereon, a thin oxide film 27 is formed over the entire surface of the semiconductor substrate 22. Furthermore, after forming a thick oxide film 28 on the entire surface of the semiconductor substrate 20, a light-absorbing film 29 made of a silicon oxide film or magnesium oxide containing 30% by volume of nickel (Ni) particles and a light-shielding film directly on the light-absorbing film 29 are formed. 30
After forming, an oxide film 31 is formed as a protective film.

発明が解決しようとする課題 しかし、上記従来技術の構成では、光吸収膜29の膜厚
0.1μm−1,0μmであって酸化膜や酸化マグネシ
ュウム中にニッケルの微粒子を含ませるため0.1μm
の薄い酸化膜を用いた場合、酸化膜表面にあれが生じ、
薄い酸化膜を用いるため光の吸収率が下がり信頼性が低
下すると言う欠点がある。
Problems to be Solved by the Invention However, in the configuration of the prior art described above, the thickness of the light absorption film 29 is 0.1 μm to 1.0 μm, and the thickness is 0.1 μm because the nickel fine particles are included in the oxide film or magnesium oxide.
When using a thin oxide film, roughness occurs on the oxide film surface,
Since a thin oxide film is used, the light absorption rate decreases, resulting in a decrease in reliability.

また吸収率を上げるために1.0μmの膜を用いた場合
、光吸収膜29上に形成された遮光膜30が固体搬像素
子内の配線層や周辺回路とのコンタクト部で半導体基盤
20と直接コンタクトを取るように設計されていること
から、遮光膜30と半導体基盤20とのコンタクト部分
では遮光膜30下層部の膜厚とコンタクト窓幅の比(ア
スペクト比)が大きくなってしまい遮光膜の断切れを起
こしてしまう。断切れが起こった場合、素子の電気的特
性に悪影響を及ぼす事はもちろん、断切れ部から入射し
た光が、断切れ部近辺の光電変換素子部22以外の領域
に到達し、スミアを発生させ素子の信頼性を低下させる
In addition, when a 1.0 μm film is used to increase the absorption rate, the light shielding film 30 formed on the light absorption film 29 connects to the semiconductor substrate 20 at the contact area with the wiring layer or peripheral circuit in the solid-state image device. Since it is designed to make direct contact, the ratio of the thickness of the lower layer of the light shielding film 30 to the contact window width (aspect ratio) becomes large at the contact portion between the light shielding film 30 and the semiconductor substrate 20. This will cause a disconnection. If a break occurs, not only will it have a negative effect on the electrical characteristics of the element, but the light incident from the break will reach areas other than the photoelectric conversion element 22 near the break, causing smear. Decreases device reliability.

また、コンタクト部では遮光膜30にアルミニュウムや
アルミニュウムシリサイドが用いられるため、コンタク
ト部でのコンタクト抵抗が大きくなると言う欠点がある
Furthermore, since aluminum or aluminum silicide is used for the light shielding film 30 in the contact portion, there is a drawback that the contact resistance in the contact portion increases.

さらに、上記従来の構成では光吸収膜29として酸化膜
や酸化マグネシュウムに金属を含ませるがマグネシュウ
ムは素子形成の上で汚染源になり素子の信頼性が低下す
る。
Further, in the above-mentioned conventional structure, metal is included in the oxide film or magnesium oxide as the light absorption film 29, but magnesium becomes a source of contamination during device formation and reduces the reliability of the device.

また酸化膜や酸化マグネシュウムにニッケルを含ませる
方法としてはCVD形成、イオン注入、spin−on
−glassに含有する方法などが考えられるがCVD
形成は光吸収膜29のマグネジニウムが汚染源になる。
In addition, methods for incorporating nickel into an oxide film or magnesium oxide include CVD formation, ion implantation, and spin-on.
- Possible methods include including it in glass, but CVD
Magnesium in the light absorption film 29 becomes a source of contamination.

また光吸収膜に含有されたニッケルを安定的に生成でき
るようなガスの入手が困難である。
Furthermore, it is difficult to obtain a gas that can stably generate the nickel contained in the light absorption film.

イオン注入による形成方法では酸化膜の表面層にしかイ
オンが注入されないためニッケルを均一に含有した厚い
層を作ることができない。
In the formation method using ion implantation, ions are implanted only into the surface layer of the oxide film, and therefore a thick layer uniformly containing nickel cannot be formed.

スピンコードで形成する場合、ニッケルの含有体積が3
0体積%と非常に多いため表面あれが生じたり、膜厚を
厚くすると酸化膜にワレが生じる。
When formed by spin cord, the volume of nickel contained is 3
Since the amount is very high (0% by volume), surface roughness occurs, and when the film thickness is increased, cracks occur in the oxide film.

またスピンコード時に、spin−on−glassに
含有した金属が基盤周辺に集まり、基盤内部で金属の含
有濃度にばらつきがでるため、吸収率が場所によって異
なってしまう。
Further, during spin coding, the metal contained in the spin-on-glass gathers around the substrate, causing variations in the concentration of metal inside the substrate, causing absorption rates to vary depending on location.

このように酸化膜にニッケルを30体積%含有すること
を安定的に形成することは困難であり、光吸収膜29を
形成する工程が複雑で、素子の信頼性を低下させること
になる。
In this way, it is difficult to stably form an oxide film containing 30% by volume of nickel, and the process of forming the light absorption film 29 is complicated, which reduces the reliability of the device.

本発明の目的は、上記課題を解決するもので、光電変換
素子部に斜めより入射する光や遮光膜を透過して入射す
る光が、光電変換素子部以外の領域に入射することを防
ぐと同時に、光吸収膜の形成工程が簡単で再現性がよく
安定した膜が均一に形成でき、薄い膜厚でも十分な光吸
収率をもち、さらにコンタクト部での断切れが生じず、
また、半導体基盤とのコンタクト抵抗を低くできる固体
撮像装置の製造方法を提供するものである。
An object of the present invention is to solve the above-mentioned problems, and to prevent light that is obliquely incident on the photoelectric conversion element section or light that is incident after passing through the light-shielding film from entering areas other than the photoelectric conversion element section. At the same time, the process of forming the light-absorbing film is simple, and a stable film with good reproducibility can be formed uniformly, and even with a thin film thickness, it has sufficient light absorption rate, and there is no breakage at the contact area.
The present invention also provides a method for manufacturing a solid-state imaging device that can reduce contact resistance with a semiconductor substrate.

課題を解決するための手段 、1−記問題点を解決するために、本発明は半導体基盤
表面に光電変換素子部と電荷転送部と、前記光電変換素
子部と前記電荷転送部を分離する拡散分離層を形成し、
前記半導体基盤上にゲート絶縁膜と転送電極膜を形成し
、転送電極膜の所定の位置をエツチング除去し、その上
に絶縁膜を形成し、絶縁膜の所定領域をエツチング除去
して半導体基盤を露呈させた後、窒化チタニュウム膜と
遮光膜を形成し、窒化チタニュウム膜と遮光膜の2層膜
の所定領域を一度にエツチングする。
Means for Solving the Problems In order to solve the problem described in item 1-, the present invention provides a photoelectric conversion element portion and a charge transfer portion on the surface of a semiconductor substrate, and a diffusion layer for separating the photoelectric conversion element portion and the charge transfer portion. forming a separation layer,
A gate insulating film and a transfer electrode film are formed on the semiconductor substrate, a predetermined position of the transfer electrode film is etched away, an insulating film is formed thereon, and a predetermined region of the insulating film is etched away to remove the semiconductor substrate. After the exposure, a titanium nitride film and a light shielding film are formed, and predetermined areas of the two-layer film of the titanium nitride film and the light shielding film are etched at once.

また、半導体基盤表面に光電変換素子部と電荷転送部と
拡散分離層とゲート絶縁膜と転送電極膜を形成(7、転
送電極膜の所定の位置をエツチング除去し、絶縁膜を形
成し、絶縁膜の所定領域をエツチング除去して基盤を露
呈させた後、チタニュウム膜と窒化チタニュウム膜と遮
光膜を形成し、前記チタニュウム膜と窒化チタニ二つム
膜と遮光膜の3層膜の所定領域を一度にエツチングする
In addition, a photoelectric conversion element section, a charge transfer section, a diffusion separation layer, a gate insulating film, and a transfer electrode film are formed on the surface of the semiconductor substrate (7. Predetermined positions of the transfer electrode film are etched and removed, an insulating film is formed, and an insulating film is removed. After etching a predetermined region of the film to expose the substrate, a titanium film, a titanium nitride film, and a light shielding film are formed, and a predetermined region of the three-layer film of the titanium film, titanium nitride dual film, and light shielding film is etched. Etching at once.

また、半導体基盤表面に光電変換素子部と電荷転送部と
拡散分離層とゲート絶縁膜と転送電極膜を形成し、転送
電極膜の所定の位置をエツチング除去し、絶縁膜を形成
し、絶縁膜の所定領域をエツチング除去して基盤を露呈
させた後、基盤上にチタニュウム膜と窒化チタニコウム
膜と遮光膜を外気にさらすことなく連続的に形成し、チ
タニュウム膜と窒化チタニュウム膜と遮光膜の3層膜の
所定領域を一度にエツチングする。
In addition, a photoelectric conversion element section, a charge transfer section, a diffusion separation layer, a gate insulating film, and a transfer electrode film are formed on the surface of the semiconductor substrate, a predetermined position of the transfer electrode film is etched away, an insulating film is formed, and an insulating film is formed. After exposing the substrate by etching a predetermined area, a titanium film, a titanium nitride film, and a light shielding film are successively formed on the base without exposing it to the outside air. A predetermined area of the layer is etched at once.

作用 本発明は光吸収層に窒化チタニュウム膜と遮光膜の2層
、またはチタニュウム膜とWE化チタニュウム膜と遮光
膜の3層構造を用いることで斜めより入射する光や遮光
膜を透過した光によるスミアの発生を防止するとともに
、同一スパッタ装置内で光吸収膜と遮光膜が形成できる
ので光吸収膜の形成工程が簡単で再現性よく安定した膜
が形成でき、薄い膜でも十分な光吸収率をもち、さらに
コンタクト部のアスペクト比が小さくできるので光吸収
膜や遮光膜の断切れが生じない。コンタクト抵抗も小さ
くできる。
Function The present invention uses a two-layer structure of a titanium nitride film and a light-shielding film for the light absorption layer, or a three-layer structure of a titanium film, a WE-treated titanium film, and a light-shielding film, thereby absorbing light that is incident from an angle or light that has passed through the light-shielding film. In addition to preventing the occurrence of smearing, the light-absorbing film and light-shielding film can be formed in the same sputtering device, making the process of forming the light-absorbing film simple and allowing a stable film to be formed with good reproducibility.Even a thin film can have sufficient light absorption. Furthermore, since the aspect ratio of the contact portion can be made small, no breakage occurs in the light absorbing film or the light shielding film. Contact resistance can also be reduced.

実施例 第1図に本発明の第1の実施例である固体撮像装置の製
造方法の工程断面図を示す。
Embodiment FIG. 1 shows a process cross-sectional view of a method for manufacturing a solid-state imaging device, which is a first embodiment of the present invention.

第1図に沿って本発明の詳細な説明する。The present invention will be explained in detail with reference to FIG.

半導体基盤50としてn型(100)抵抗率20Ω・c
rn−30Ω・cmのシリコンウェハを用いる。
As the semiconductor substrate 50, n-type (100) resistivity 20Ω・c
A silicon wafer of rn-30Ω·cm is used.

まず、半導体基盤50上にイオン注入のマスクとして約
0.02μmの熱酸化膜を形成した後、たとえば加速電
圧100KeV、注入量3.4×lQ目crr+−2で
ボロンイオンを注入し、アニールしてボロンを活性化し
てp型ウェル層52を形成する。次に熱酸化膜51上に
充電変換素子部53の領域を窓開けしたレジストパター
ンを形成し、このレジストパターンをマスクに、たとえ
ば加速電圧160KeV、注入量2.9 X 1012
>−2でリンイオンを注入し、光電変換素子部53を形
成する。同様にして電荷転送部54の領域を窓開けした
レジストパターンをマスクに、たとえば、加速電圧10
0KeV、注入量3.4 X 1012cm−2でリン
イオンを注入し電荷転送部54を形成する。
First, a thermal oxide film of about 0.02 μm is formed on the semiconductor substrate 50 as a mask for ion implantation, and then boron ions are implanted at an acceleration voltage of 100 KeV and an implantation amount of 3.4×lQ crr+-2, and then annealed. The p-type well layer 52 is formed by activating boron. Next, a resist pattern is formed on the thermal oxide film 51 in which a region of the charge conversion element section 53 is opened, and using this resist pattern as a mask, for example, an acceleration voltage of 160 KeV and an implantation amount of 2.9 x 1012 are applied.
>-2, phosphorus ions are implanted to form the photoelectric conversion element portion 53. Similarly, using a resist pattern with a window opened in the region of the charge transfer section 54 as a mask, for example,
Phosphorus ions are implanted at 0 KeV and at an implantation dose of 3.4×10 12 cm −2 to form the charge transfer portion 54 .

さらに同様に光電変換素子部53のn型不純物層と電荷
転送部54のn型ウェル層との間に素子分離用のp゛ 
不純物層55を形成する。ごの後、レジストパターンを
除去し、さらに熱酸化膜をウェットエツチングで除去す
る(第1図(a))。
Further, in the same way, a p
An impurity layer 55 is formed. After etching, the resist pattern is removed, and the thermal oxide film is further removed by wet etching (FIG. 1(a)).

次に半導体基盤50全面にゲート酸化膜56として約0
.1μm厚の熱酸化膜を形成した後、転送電極57とし
てCVDを使って約0.3μm厚のポリシリコン膜を形
成する。この後、転送電極57になる領域にレジストパ
ターンを形成し、レジストパターンをマスクにポリシリ
コンをエツチングして、ポリシリコン電極パターンを形
成する。この後、レジストパターンを除去し、ポリシリ
コンの表面を0.15μm−0,3μm厚程度熱酸化し
酸化膜58を形成する。
Next, a gate oxide film 56 is formed on the entire surface of the semiconductor substrate 50.
.. After forming a thermal oxide film with a thickness of 1 μm, a polysilicon film with a thickness of about 0.3 μm is formed as a transfer electrode 57 using CVD. Thereafter, a resist pattern is formed in a region that will become the transfer electrode 57, and polysilicon is etched using the resist pattern as a mask to form a polysilicon electrode pattern. Thereafter, the resist pattern is removed, and the surface of the polysilicon is thermally oxidized to a thickness of about 0.15 μm to 0.3 μm to form an oxide film 58.

次に半導体基盤50全面上に膜厚0.2μm −〇、5
μmのCVD絶縁膜59を形成する。ここでは約0.3
μmで実施した(第1図(b))。
Next, on the entire surface of the semiconductor substrate 50, a film with a thickness of 0.2 μm −〇, 5
A CVD insulating film 59 having a thickness of μm is formed. Here about 0.3
It was carried out in μm (Fig. 1(b)).

次にCVD絶縁膜59上に固体撮像装置の周辺回路部(
領域■)等で半導体基盤50とコンタクトする部分を窓
開けしたレジストパターンを形成した後、反応性イオン
エツチングを用いてCVD絶縁膜59、および下層の酸
化膜58をエツチング除去して基盤50面を露呈する。
Next, the peripheral circuit section of the solid-state imaging device (
After forming a resist pattern with windows in contact with the semiconductor substrate 50 in areas (3) and the like, the CVD insulating film 59 and the underlying oxide film 58 are etched away using reactive ion etching, and the surface of the substrate 50 is etched away. Reveal.

この後、レジストパターンを除去する。After this, the resist pattern is removed.

次にチタニュウムターゲソトを、ガスに窒素(N2)と
アルゴン(Ar)の混合ガス(N2/Ar=70/30
、ガス圧力10 rr+Torrでスパッタして膜厚的
0.1μmの窒化チタニ、ウム膜60を半導体基盤50
全面に形成する。
Next, titanium target material was added to the mixed gas of nitrogen (N2) and argon (Ar) (N2/Ar=70/30).
, a titanium nitride film 60 with a film thickness of 0.1 μm is sputtered at a gas pressure of 10 rr+Torr on a semiconductor substrate 50.
Form on the entire surface.

ここでは窒化チタニュウb膜60の膜厚を0,1μmで
用いた例を示したが0.03μm−=0.27zmの膜
厚であればよい。
Here, an example is shown in which the titanium nitride B film 60 is used with a thickness of 0.1 .mu.m, but a thickness of 0.03 .mu.m-=0.27 zm may be used.

次に窒化チタニュウム@60上にスパッタ法を用いてア
ルミニュウムシリサイド(アルミニュウム中にシリコン
を約1%含有)の遮光膜61を0.5μm−1,0μm
の厚さに形成する(第1図(C))。
Next, a light-shielding film 61 of aluminum silicide (approximately 1% silicon in aluminum) is applied to the titanium nitride@60 using a sputtering method to a thickness of 0.5 μm to 1.0 μm.
(FIG. 1(C)).

この後、遮光膜61上にフォトレジストを塗布。After that, a photoresist is applied on the light shielding film 61.

露光、現像して余分な光が入射しないようにするための
領域にレジストパターンを形成する。
A resist pattern is formed in an area to prevent extra light from entering by exposure and development.

次に、窒化チタニュウム膜60とアルミニュウムシリサ
イドの遮光膜61の両層を同時に反応性イオンエツチン
グを用いてエツチングし遮光膜パターン61aを形成す
る。
Next, both the titanium nitride film 60 and the aluminum silicide light shielding film 61 are etched simultaneously using reactive ion etching to form a light shielding film pattern 61a.

最後に、半導体基盤50全面に表面保護膜62としてプ
ラズマCVD法でプラズマシリコン酸化膜またはプラズ
マオキシナイトライド膜を膜厚的0.4μm堆積する(
第1図(d))。
Finally, a plasma silicon oxide film or a plasma oxynitride film is deposited to a thickness of 0.4 μm over the entire surface of the semiconductor substrate 50 as a surface protection film 62 by plasma CVD (
Figure 1(d)).

以−1−のように、本発明で用いる窒化チタニュウム膜
60では、膜厚が薄くなれば窒化チタニュウム膜60表
面での光の吸収率は増加し、スミアの発生を抑え、さら
に半導体基盤50に与えるストレスをも小さくできるた
め、素子特性の信頼性が上がる。
As described in -1- above, in the titanium nitride film 60 used in the present invention, as the film thickness becomes thinner, the light absorption rate on the surface of the titanium nitride film 60 increases, suppressing the occurrence of smear, and further improving the semiconductor substrate 50. Since the applied stress can also be reduced, reliability of device characteristics increases.

また半導体基盤50表面とのコンタクト部分での窒化チ
タニュウム膜60は剥離しにくくなるが、コンタクト抵
抗が大きくなってしまうということはあるが従来用いら
れているアルミニニウムシリサイドと比較するとまった
く問題なく使用できる。
Furthermore, the titanium nitride film 60 at the contact portion with the surface of the semiconductor substrate 50 becomes difficult to peel off, but it can be used without any problems compared to the conventionally used aluminum silicide, although the contact resistance may increase. .

膜厚が厚くなれば、逆に反射率が増加し、膜の剥離が生
じ易く、半導体基盤50に与えるストレスも大きくなる
。この反面、コンタクト抵抗は小さくなる。
Conversely, as the film thickness increases, the reflectance increases, the film is more likely to peel off, and the stress applied to the semiconductor substrate 50 also increases. On the other hand, contact resistance becomes smaller.

このように窒化チタニュウム膜60の膜厚は素子特性を
左右するもので、窒化チタニュウム膜60の膜厚が0.
03μm以下ではスパッタによる膜形成が均一に行われ
ず、素子の信頼性を低下さぜる。0.2μm以上では膜
の剥離が顕著になるため素子形成の歩留りが低下する。
As described above, the thickness of the titanium nitride film 60 influences the device characteristics, and the thickness of the titanium nitride film 60 is 0.05%.
If the thickness is less than 0.03 μm, film formation by sputtering will not be uniformly performed, which will reduce the reliability of the device. If the thickness is 0.2 μm or more, peeling of the film becomes noticeable and the yield of device formation decreases.

このような理由から膜厚としては0.1μmを用いるこ
とが最適である。
For these reasons, it is optimal to use a film thickness of 0.1 μm.

また本発明では、窒化チタニュウム膜60とアルミニュ
ウムシリサイドの遮光膜61は同一スパッタ装置のチャ
ンバー内で連続的に形成することができる。
Further, in the present invention, the titanium nitride film 60 and the light shielding film 61 of aluminum silicide can be continuously formed in the chamber of the same sputtering apparatus.

すなわち、窒化チタニュウム膜60はチタニュウムター
ゲットをアルゴンと窒素の混合ガスでスパッタ形成した
後、同一チャンバー内にあるアルミニュウムシリサイド
ターゲットの下に半導体基盤50を移動し、アルミニュ
ウムシリサイドの遮光膜61をアルゴンガスでスパッタ
形成する。
That is, the titanium nitride film 60 is formed by sputtering a titanium target with a mixed gas of argon and nitrogen, then the semiconductor substrate 50 is moved under the aluminum silicide target in the same chamber, and the light shielding film 61 of aluminum silicide is formed with argon gas. Form by sputtering.

実施例では膜厚的0.8μmのアルミニュウムシリサイ
ドを用いているが、この膜厚は配線の信頼性と遮光膜と
しての信頼性を相互に満足するような値になるように選
んでいる。
In the embodiment, aluminum silicide with a film thickness of 0.8 μm is used, and this film thickness is selected so as to satisfy both the reliability of the wiring and the reliability as a light shielding film.

光吸収膜と遮光膜のエツチングでは、窒化チタニュウム
膜60とアルミニュウムシリサイドの遮光膜61を同時
にドライエツチングするために、RFパワー約250W
、ガス圧力2Q Q mTorr、ガス種とガス流量は
トリクロロはう素(BCl2)20sccrnと塩素(
C1’z)70secmとトリクooメタ7 (CDC
l2)10secmと窒素(N2 )50secmの混
合ガスを用いて、平行平板型プラズマエツチング装置で
行うと、窒化チタニュウム膜60の端部と上層のアルミ
ニニウムシリサイドの遮光膜61端部がほぼ一致するよ
うにエツチングされ、セルフアライメントで窒化チタニ
ュウム膜60と遮光膜61のパターンを形成することが
できる。
In etching the light absorbing film and the light shielding film, an RF power of approximately 250 W is used to dry-etch the titanium nitride film 60 and the aluminum silicide light shielding film 61 at the same time.
, gas pressure 2Q Q mTorr, gas type and gas flow rate are trichloroboron (BCl2) 20 sccrn and chlorine (
C1'z) 70sec and triku oo meta 7 (CDC
l2) When etching is performed using a parallel plate type plasma etching apparatus using a mixed gas of 10 sec and nitrogen (N2) 50 sec, the edge of the titanium nitride film 60 and the edge of the upper aluminum silicide light shielding film 61 are almost aligned. The pattern of the titanium nitride film 60 and the light shielding film 61 can be formed by self-alignment.

以上のようにして形成された固体撮像素子は、窒化チタ
ニュウム膜60が従来の高融点金属層、例えばモリブデ
ンシリサイドと比較して反射率が低いため(吸収率が高
い)光電変換素子部53のn型不純物層に斜めより入射
した光63が半導体基盤50で反射されて窒化チタニュ
ウム[60に入射しても、光の大部分を窒化チタニュウ
ム膜60が吸収する(アルミニュウムに比べて反射率は
20%程度、モリブデンシリサイドはアルミニュウムに
比べて90%程度)ため、光電変換素子部53のn型不
純物層以外の領域に入射される光が低減され、スミアの
発生が抑えられる。
In the solid-state image sensor formed as described above, the titanium nitride film 60 has a lower reflectance (higher absorption) than a conventional high-melting point metal layer, such as molybdenum silicide, so the photoelectric conversion element portion 53 is Even if light 63 incident obliquely on the type impurity layer is reflected by the semiconductor substrate 50 and incident on the titanium nitride film 60, most of the light is absorbed by the titanium nitride film 60 (reflectance is 20% compared to aluminum). molybdenum silicide is about 90% that of aluminum), the light incident on regions other than the n-type impurity layer of the photoelectric conversion element portion 53 is reduced, and the occurrence of smear is suppressed.

また、窒化チタニュウム膜60が遮光膜61と接して形
成されているため、アルミニニウムシリサイドからなる
遮光膜61に直接入射し、透過した光64が窒化チタニ
二つム膜60で吸収され光電変換素子部53のn型不純
物層以外の領域に入り込むことがなくなるため、スミア
の発生が抑えられる。
In addition, since the titanium nitride film 60 is formed in contact with the light shielding film 61, the light 64 that is directly incident on the light shielding film 61 made of aluminum silicide and transmitted is absorbed by the titanium nitride double film 60 and is used as a photoelectric conversion element. Since the impurity does not enter into regions other than the n-type impurity layer of the portion 53, the occurrence of smear can be suppressed.

さらに、従来技術では高融点金属層上に絶縁膜を形成し
た後、遮光膜を形成するため、固体撮像装置内部に入射
してきた光が転送電極に到達するまでに通過する各薄膜
層で反射されたり、層内を光が伝搬できる厚い層が形成
されている。これに対して、本発明の固体撮像装置では
転送電極57から遮光膜61までの厚さが薄く形成され
ているので、入射光によるスミアの発生が低減できる。
Furthermore, in the conventional technology, a light shielding film is formed after forming an insulating film on a high-melting point metal layer, so light entering the solid-state imaging device is reflected by each thin film layer that it passes through before reaching the transfer electrode. A thick layer is formed that allows light to propagate within the layer. In contrast, in the solid-state imaging device of the present invention, since the thickness from the transfer electrode 57 to the light shielding film 61 is formed thin, the occurrence of smear due to incident light can be reduced.

また、周辺回路部で遮光膜61のコンタクトを取る場合
、従来の技術では遮光膜下層の膜全膜厚が約2.0μm
程度必要になるのに対して、本発明では約1.0μmと
半分の膜厚ですむためアスペクト比が半分になり、コン
タクト部に形成された遮光膜61の断切れが起こり難く
、素子の信頼性が向上する。よって断切れ部から入射し
て来る光が転送電極に回り込みスミアを発生することが
防止できる。
In addition, when contacting the light shielding film 61 in the peripheral circuit section, in the conventional technology, the total thickness of the lower layer of the light shielding film is approximately 2.0 μm.
However, in the present invention, the film thickness is only about 1.0 μm, which is half the thickness, so the aspect ratio is halved, and the light shielding film 61 formed in the contact area is less likely to break, improving the reliability of the device. Improves sex. Therefore, it is possible to prevent light incident from the cut-off portion from entering the transfer electrode and causing smear.

第2図に本発明の第2の実施例である固体撮像装置の製
造方法の工程断面図を示す。
FIG. 2 shows a process cross-sectional view of a method for manufacturing a solid-state imaging device according to a second embodiment of the present invention.

第2図に従って本発明の詳細な説明する。The present invention will be explained in detail according to FIG.

半導体基盤50としてn型(100)抵抗率20Ω−a
m−30Ω’Cmのシリコンウニハラ用い、半導体基盤
50上にイオン注入のマスクとして約0.02μmの熱
酸化膜を形成した後イオン注入でp型ウェル層52、光
電変換素子部53、電荷転送部54と素子分離用のp゛
不純物層55を形成する。この後、レジストパターンを
除去し、さらに熱酸化膜をウェットエツチングで除去す
る(第2図(a))。
N-type (100) resistivity 20Ω-a as semiconductor substrate 50
After forming a thermal oxide film of approximately 0.02 μm as a mask for ion implantation on the semiconductor substrate 50 using silicon unihara of m-30 Ω'Cm, the p-type well layer 52, photoelectric conversion element portion 53, and charge transfer are formed by ion implantation. 54 and a p impurity layer 55 for element isolation are formed. Thereafter, the resist pattern is removed, and the thermal oxide film is further removed by wet etching (FIG. 2(a)).

次に半導体基盤50全面にゲート酸化膜56として約0
.1μm厚の熱酸化膜を形成した後、転送電極57とし
て(、VDを使って約0.3μm厚のポリシリコン膜を
形成する。この後レジストパターンを形成し、レジスト
パターンをマスクにポリシリコンをエツチングしてポリ
シリコン電極パターン57aを形成し、レジストパター
ンを除去する。
Next, a gate oxide film 56 is formed on the entire surface of the semiconductor substrate 50.
.. After forming a thermal oxide film with a thickness of 1 μm, a polysilicon film with a thickness of approximately 0.3 μm is formed as a transfer electrode 57 using VD. After this, a resist pattern is formed, and polysilicon is deposited using the resist pattern as a mask. A polysilicon electrode pattern 57a is formed by etching, and the resist pattern is removed.

この後、ポリシリコンの表面を0.15μm0.3μm
厚程度熱酸化し酸化膜58を形成する。
After this, the surface of polysilicon is 0.15 μm to 0.3 μm.
An oxide film 58 is formed by thermal oxidation to a certain extent.

さらに、膜厚0,2μm−0,5μmのCVD絶縁膜5
9を形成する(第2図(b))。
Furthermore, a CVD insulating film 5 with a film thickness of 0.2 μm to 0.5 μm
9 (Fig. 2(b)).

次にCVD絶縁膜59上に固体撮像装置の周辺回路部(
領域I)等で半導体基盤50とコンタクトする部分を窓
開けしたレジストパターンを形成した後、反応性イオン
エツチングを用いてCVD絶縁膜59および下層の酸化
膜58をエツチング除去して半導体基盤50面を露呈す
る。この後、レジストパターンを除去する。
Next, the peripheral circuit section of the solid-state imaging device (
After forming a resist pattern in which a window is opened at a portion that contacts the semiconductor substrate 50 in region I), etc., the CVD insulating film 59 and the underlying oxide film 58 are etched away using reactive ion etching, and the surface of the semiconductor substrate 50 is etched. Reveal. After this, the resist pattern is removed.

以上の構成については第1の実施例の構成と同じである
The above configuration is the same as that of the first embodiment.

次にチタニュウムターゲントをアルゴン(Ar)ガス、
ガス圧力10mTorrでスパッタしてチタニュウム膜
80を0.01μrn=0.1μI堆積する。
Next, the titanium target was exposed to argon (Ar) gas.
A titanium film 80 is deposited to a thickness of 0.01 μrn=0.1 μI by sputtering at a gas pressure of 10 mTorr.

チタニュウム膜80を0.02μm程度堆積した地点で
スパッタチャンバー内に窒素ガスを入れ始め窒素(N2
 ) トアルゴン(Ar)の混合ガス比がN2/ A、
 r = 70 / 30、ガス圧力I Q mTor
rでチタニュウムターゲットをスパッタして膜厚約0゜
03μm−0,2μmの窒化チタニュウム膜81を形成
する。
At the point where the titanium film 80 has been deposited to a thickness of about 0.02 μm, nitrogen gas is started to be introduced into the sputtering chamber.
) The mixed gas ratio of argon (Ar) is N2/A,
r = 70 / 30, gas pressure I Q mTor
A titanium nitride film 81 having a thickness of approximately 0.03 μm to 0.2 μm is formed by sputtering a titanium target at r.

さらに同一チャンバーで窒素ガスを停止した後、アルミ
ニュウムシリサイドターゲット下に半導体基盤50を移
動させ、アルゴンガスで連続的にスパッタし窒化チタニ
ュウム膜81上にアルミニュウムシリサイド(アルミニ
ュウム中にシリコンを約1%含有)の遮光膜82を0.
5μm−1,,0μmの厚さに形成する(第2図(C)
)。
Furthermore, after stopping the nitrogen gas in the same chamber, the semiconductor substrate 50 is moved under the aluminum silicide target, and sputtered continuously with argon gas to form aluminum silicide (containing about 1% silicon in aluminum) on the titanium nitride film 81. The light shielding film 82 of 0.
Formed to a thickness of 5 μm-1,0 μm (Figure 2 (C)
).

この後、遮光膜82上にフォトレジストを塗布、露光、
現像して余分な光が入射しないようにする領域にレジス
トパターンを形成する。
After that, a photoresist is applied on the light shielding film 82, exposed to light,
A resist pattern is formed in the area where it is to be developed to prevent excess light from entering.

次に、チタニュウム膜80と窒化チタニュウム膜81と
アルミニニウムシリサイドの遮光膜82の全層を、同時
に反応性イオンエツチングを用いてエツチングし遮光膜
パターン82aを形成する。
Next, all layers of the titanium film 80, titanium nitride film 81, and aluminum silicide light shielding film 82 are simultaneously etched using reactive ion etching to form a light shielding film pattern 82a.

最後に、半導体基盤50全面に表面保護膜83としてプ
ラズマCVD法でプラズマシリコン酸化膜またはプラズ
マオキシナイトライド膜を膜厚約0.4μm堆積する(
第2図(d))。
Finally, a plasma silicon oxide film or a plasma oxynitride film is deposited to a thickness of approximately 0.4 μm as a surface protective film 83 on the entire surface of the semiconductor substrate 50 by plasma CVD (
Figure 2(d)).

以上のように本発明ではチタニュウム膜80、窒化チタ
ニュウム膜81とアルミニュウムシリサイドでなる遮光
膜82が連続的に外部に取り出すことなく形成すること
ができるため、従来の種々の製造方法を用いる場合より
工程の簡略化を図ることができ、またスパッタというき
わめて安定的な工程のため信頼性の高い素子を作ること
ができる 第1の実施例で述べたように窒化チタニュウム膜81の
使用膜厚が薄くなれば窒化チタニュウム膜81での光の
反射率は減少しスミアの発生を抑え、半導体基盤50に
与えるストレスをも小さくできるため素子特性の信頼性
が上がる。
As described above, in the present invention, the titanium film 80, the titanium nitride film 81, and the light shielding film 82 made of aluminum silicide can be formed continuously without taking them out to the outside. As described in the first embodiment, the thickness of the titanium nitride film 81 used can be reduced. For example, the reflectance of light on the titanium nitride film 81 is reduced, the occurrence of smear is suppressed, and the stress applied to the semiconductor substrate 50 can also be reduced, thereby increasing the reliability of device characteristics.

また基盤50表面とコンタクトする部分での窒化チタニ
ュウム膜81は剥離しにくくなるが、コンタクト抵抗が
大きくなってしまう。
Further, although the titanium nitride film 81 in the portion in contact with the surface of the substrate 50 becomes difficult to peel off, the contact resistance increases.

使用膜厚が厚くなれば逆に反射率が増加し、膜の剥離が
生じ易く、半導体基盤50に与えるストレスも大きくな
る。この反面コンタクト抵抗は小さくなってしまう。
Conversely, as the thickness of the film used increases, the reflectance increases, the film is more likely to peel off, and the stress applied to the semiconductor substrate 50 also increases. On the other hand, the contact resistance becomes small.

しかし、チタニュウム膜80は使用膜厚が薄い場合には
、膜が剥離し難く、半導体基盤50に与えられるストレ
スが小さくなり、コンタクト部でのリーク電流が小さく
できるが、コンタクト抵抗は大きくなる。
However, when the titanium film 80 is thin, it is difficult to peel off, the stress applied to the semiconductor substrate 50 is reduced, and the leakage current at the contact portion can be reduced, but the contact resistance increases.

チタニュウム膜80の光吸収率はアルミニュウムに対し
て50%程度であるが、モリブデンシリサイドのような
高融点金属より吸収率は高い。
The light absorption rate of the titanium film 80 is about 50% that of aluminum, but the absorption rate is higher than that of a high melting point metal such as molybdenum silicide.

逆に膜厚が厚い場合には膜はがれが生じ易く、半導体基
盤50に与えられるストレスが大きくなるが、コンタク
ト抵抗は小さくなる。
On the other hand, if the film is thick, the film is likely to peel off, and the stress applied to the semiconductor substrate 50 increases, but the contact resistance decreases.

この両膜を適当に組み合わせることで、剥離がなく、半
導体基盤50に与えるストレスが小さく、コンタクト抵
抗の小さい光吸収膜が形成できる。
By appropriately combining these two films, it is possible to form a light absorption film that does not peel off, applies little stress to the semiconductor substrate 50, and has low contact resistance.

第3図に第2の実施例で窒化チタニ二つムの膜厚81を
0.1μm一定としチタニュウム膜80の膜厚を変化さ
せたときのコンタクト抵抗値の関係を示す。
FIG. 3 shows the relationship between contact resistance values when the film thickness 81 of the titanium nitride film 80 is kept constant at 0.1 μm and the film thickness of the titanium film 80 is varied in the second embodiment.

チタニュウム膜厚が′0′の時はシリコン基盤50に直
接窒化チタニュウム膜81がコンタクトしている場合を
示している。
When the titanium film thickness is '0', it indicates that the titanium nitride film 81 is in direct contact with the silicon substrate 50.

このことからチタニュウム膜60のコンタクト抵抗は0
.02μm以上で飽和しその値は窒化チタニaウム膜8
1の場合の約100分の工程度である。
From this, the contact resistance of the titanium film 60 is 0.
.. It saturates at 0.02 μm or more, and its value is 8.
The process time is approximately 100 minutes in case of No. 1.

この結果より、薄い窒化チタニュウム膜81を用いた場
合に発生するコンタクト抵抗が大きくなるという欠点を
、チタニュウム膜80と窒化チタニュウム膜81の2層
構造の光吸収膜を用いる事によって完全に解決すること
ができる。
From this result, it is possible to completely solve the drawback of increased contact resistance that occurs when using a thin titanium nitride film 81 by using a light absorption film with a two-layer structure of titanium film 80 and titanium nitride film 81. Can be done.

また、窒化チタニュウム膜81とチタニュウム膜80の
2層構造にすることによって光の反射率を低く抑え、ス
ミアが少なく、膜の剥離がなく、基盤に与えるストレス
が小さく、コンタクト抵抗の小さい固体撮像装置が形成
できる。
In addition, the two-layer structure of the titanium nitride film 81 and the titanium film 80 suppresses the reflectance of light, resulting in less smearing, no peeling of the film, less stress on the substrate, and a solid-state imaging device with low contact resistance. can be formed.

本発明でチタニュウム膜80と窒化チタニュウム膜81
とアルミニュウムシリサイドでなる遮光膜82を同時に
ドライエツチングするのに、RFパワー約250W、ガ
ス圧力200mTorr、ガス種とガス流量はトリクロ
ロはう素(BC4!a)20scemと塩素(C12)
70secmとト・リクロロメタ” (CHCl、+ 
)10scemと窒素(N2 )50secmの混合ガ
スを用いて、平行平板型プラズマエツチング装置で行う
と、チタニュウム膜80の端部と窒化チタニュウム膜8
1の端部と上層のアルミニュウムシリサイドの遮光膜8
2端部がほぼ一致した形状にエツチングされセルフアラ
イメントでチタニュウム膜80と窒化チタニュウム膜8
1と遮光膜82のパターンを形成することができる。
In the present invention, the titanium film 80 and the titanium nitride film 81
To simultaneously dry-etch the light-shielding film 82 made of aluminum silicide, the RF power is about 250 W, the gas pressure is 200 mTorr, and the gas types and gas flow rates are trichloroboron (BC4!a) at 20 scem and chlorine (C12).
70sec and trichlormeth” (CHCl, +
) and nitrogen (N2) at 50 sec in a parallel plate plasma etching apparatus, the edge of the titanium film 80 and the titanium nitride film 8 are etched.
1 and the upper layer of aluminum silicide light shielding film 8
The titanium film 80 and the titanium nitride film 8 are etched so that the two ends almost match each other and are self-aligned.
1 and a pattern of the light shielding film 82 can be formed.

従来ではウェハ内での堆積膜厚のばらつきやエツチング
の面内ばらつきが、遮光膜と吸収膜で異なり素子の信頼
性を低下させたり、さらには歩留り低下をもたらしてい
たが本発明によって信頼性の高い固体撮像装置が大量に
生産できるようになった。
Conventionally, variations in the deposited film thickness within the wafer and in-plane variations in etching differed between the light-shielding film and the absorbing film, reducing the reliability of devices and even lowering the yield.However, the present invention improves reliability. High-quality solid-state imaging devices can now be produced in large quantities.

第2の実施例で形成された固体撮像素子は、前記第1の
実施例で説明した効果と同じ効果すなオ)ち、光電変換
素子部53のn型不純物層に斜めより入射した光が反射
され光電変換素子部53以外の領域に入射される光を低
減でき、遮光膜を透過し転送電極に入射しようとする光
も低減されスミアの発生を防止できる。
The solid-state image sensor formed in the second embodiment has the same effect as that described in the first embodiment, i.e., light incident obliquely on the n-type impurity layer of the photoelectric conversion element portion 53. It is possible to reduce the amount of light that is reflected and enters areas other than the photoelectric conversion element portion 53, and the amount of light that is transmitted through the light shielding film and attempts to enter the transfer electrodes is also reduced, making it possible to prevent the occurrence of smear.

さらに、第1の実施例で示したように周辺回路部のコン
タクト形成時の断切れを防止できる。ただし、第1の実
施例に比べるとチタニュウム膜80の膜厚分厚くなるが
その値はたかだか約0.02μmで無視できる値になっ
ている。
Furthermore, as shown in the first embodiment, it is possible to prevent disconnection during contact formation in the peripheral circuit section. However, although the thickness of the titanium film 80 is thicker than in the first embodiment, the thickness is at most about 0.02 μm, which is negligible.

最後に、従来の固体撮像装置と本実施例で製作した固体
撮像装置のスミアを測定したところ、スミアの発生量は
、従来のもので0.1%、本実施例では0.01%と一
桁以上のスミアの低減が可能となった。
Finally, when we measured the smear of the conventional solid-state imaging device and the solid-state imaging device manufactured in this example, we found that the amount of smear generated was 0.1% in the conventional device and 0.01% in this example. It has become possible to reduce smear by more than an order of magnitude.

ここでスミアの発生量は次の式から求めた。Here, the amount of smear generation was determined from the following formula.

以上のことから、チタニュウム膜80の膜厚が0.02
μm程度にするとコンタクト抵抗が低く、膜の剥離が起
こりにくくなる。
From the above, the film thickness of the titanium film 80 is 0.02
When the thickness is about μm, the contact resistance is low and the film is less likely to peel off.

なお、本実施例ではn型半導体基盤にp型ウェル層を形
成したが、n型半導体基盤を用いても同様の事ができる
In this embodiment, the p-type well layer is formed on an n-type semiconductor substrate, but the same thing can be done using an n-type semiconductor substrate.

なお、本実施例では高融点金属膜としてチタニュウム膜
、高融点金属化合物膜として窒化チタニュウム膜を用い
たが、チタニュウム膜の代わりにタングステン膜、モリ
ブデン膜、クロム膜等の高融点金属膜を用いてもよく、
また、窒化チタニ、ウム膜の代わりにチタンタングステ
ン膜や窒化モリブデン膜等の高融点金属化合物を用いて
も上記実施例と同じ効果が得られるものである。
In this example, a titanium film was used as the high melting point metal film, and a titanium nitride film was used as the high melting point metal compound film, but a high melting point metal film such as a tungsten film, a molybdenum film, a chromium film, etc. Good too,
Further, the same effect as in the above embodiment can be obtained even if a high melting point metal compound such as a titanium tungsten film or a molybdenum nitride film is used instead of the titanium nitride or ium film.

発明の効果 本発明の目的は、上記課題を解決するもので、光電変換
素子部に斜めより入射する光や遮光膜を透過して入射す
る光が光電変換素子部以外の領域に入射することを防ぐ
と同時に、光吸収膜の形成工程が簡単で再現性がよく安
定した膜が形成でき、薄い膜厚でも十分な光吸収性能を
もち、さらにコンタク部のアスペクト比が小さくできる
ため断切れが生じない。また、コンタクト部での基盤と
のコンタクト抵抗を低くできる。すなわち、本発明によ
って信頼性の高い固体撮像装置が安定した工程で高歩留
りに形成することができる。
Effects of the Invention An object of the present invention is to solve the above-mentioned problems, and to prevent light that enters the photoelectric conversion element from an oblique direction or light that passes through a light-shielding film from entering an area other than the photoelectric conversion element. At the same time, the formation process of the light-absorbing film is simple, and a stable film with good reproducibility can be formed, and even a thin film has sufficient light-absorbing performance.Furthermore, the aspect ratio of the contact part can be made small, which prevents breakage. do not have. Furthermore, the contact resistance with the substrate at the contact portion can be reduced. That is, according to the present invention, a highly reliable solid-state imaging device can be formed in a stable process with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を説明するための固体撮
像装置の製造工程断面図、第2図は本発明の第2の実施
例を説明するための固体撮像装置の製造工程断面図、第
3図はチタニュウム膜の膜厚に対するコンタクト抵抗の
関係を示す図、第4図は従来の技術を説明するだめの図
、第5図は従来の技術を説明するための図である。 1・・・・・・半導体基盤、2・・・・・・光電変換素
子部、3・・・・・・電荷転送部、4・・・・・・分離
拡散層、5・・・・・・ゲート酸化膜、6・・・・・・
転送電極膜、7・・・・・・酸化膜、9・・・・・・燐
拡散層、10・・・・・・高融点金属層、11・・・・
・・窓、12・・・・・・酸化膜、13・・・・・・燐
拡散層、14・・・・・遮光膜パターン、15・・・・
・・保護絶縁膜、20・・・・・・p型ウェル層、21
・・・・・・半導体基盤、22・・・・・・光電変換素
子部、23・・・・・・電荷転送部、24・・・・・・
分離拡散層、25・・・・・・ゲート酸化膜、26・・
・・・・転送電極膜、27・・・・・・酸化膜、28・
・・・・・酸化膜、29・・・・・・光吸収膜、30・
・・・・・遮光膜、31・・・・・・酸化膜、50・・
・・・・半導体基盤、52・・・・・・p型ウェル層、
53・・・・・・光電変換素子部、54・・・・・・電
荷転送部、55・・・・・・不純物層、56・・・・・
・ゲート酸化膜、57・・・・・・転送電極膜、58・
・・・・・酸化膜、59・・・・・・CVD絶縁模、6
0・・・・・・窒化チタニュウム膜、61・・・・・・
遮光膜、62・・・・・・表面保護膜、63・・・・・
・斜めより入射した光、64・・・・・・透過した光、
80・・・・・・チタニュウム膜、81・旧・・窒化チ
タニュウム膜、82・・・・・・遮光膜、83・・・・
・・表面保護膜。
FIG. 1 is a sectional view of the manufacturing process of a solid-state imaging device for explaining the first embodiment of the present invention, and FIG. 2 is a sectional view of the manufacturing process of the solid-state imaging device for explaining the second embodiment of the invention. FIG. 3 is a diagram showing the relationship between contact resistance and titanium film thickness, FIG. 4 is a diagram for explaining the conventional technique, and FIG. 5 is a diagram for explaining the conventional technique. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Photoelectric conversion element section, 3... Charge transfer section, 4... Separation diffusion layer, 5...・Gate oxide film, 6...
Transfer electrode film, 7... Oxide film, 9... Phosphorus diffusion layer, 10... High melting point metal layer, 11...
... window, 12 ... oxide film, 13 ... phosphorus diffusion layer, 14 ... light shielding film pattern, 15 ...
...Protective insulating film, 20...P-type well layer, 21
... Semiconductor substrate, 22 ... Photoelectric conversion element section, 23 ... Charge transfer section, 24 ...
Separation diffusion layer, 25... Gate oxide film, 26...
...Transfer electrode film, 27... Oxide film, 28.
... Oxide film, 29 ... Light absorption film, 30.
... Light shielding film, 31 ... Oxide film, 50 ...
... Semiconductor substrate, 52 ... P-type well layer,
53...Photoelectric conversion element section, 54...Charge transfer section, 55...Impurity layer, 56...
・Gate oxide film, 57... Transfer electrode film, 58.
...Oxide film, 59...CVD insulation pattern, 6
0...Titanium nitride film, 61...
Light shielding film, 62...Surface protection film, 63...
・Light incident from an angle, 64... Light transmitted,
80... Titanium film, 81... Old titanium nitride film, 82... Light shielding film, 83...
...Surface protective film.

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基盤表面に光電変換素子部と電荷転送部を
形成する工程と、前記光電変換素子部と前記電荷転送部
を分離する拡散分離層を形成する工程と、前記半導体基
盤上にゲート絶縁膜と転送電極膜を形成する工程と、前
記転送電極膜の所定の位置をエッチング除去する工程と
、前記半導体基盤上に絶縁膜を形成する工程と、前記絶
縁膜の所定領域をエッチング除去して前記半導体基盤を
露呈させる工程と、前記半導体基盤上に高融点金属化合
物膜を形成する工程と、前記高融点金属化合物膜上に遮
光膜を形成する工程と、前記高融点金属化合物膜と遮光
膜の2層膜の所定領域をエッチングして底面に前記絶縁
膜面が露呈する開口を形成する工程を備えたことを特徴
とする固体撮像装置の製造方法。
(1) A step of forming a photoelectric conversion element section and a charge transfer section on the surface of the semiconductor substrate, a step of forming a diffusion separation layer that separates the photoelectric conversion element section and the charge transfer section, and a step of forming a gate insulation layer on the semiconductor substrate. a step of forming a film and a transfer electrode film, a step of etching away a predetermined position of the transfer electrode film, a step of forming an insulating film on the semiconductor substrate, and a step of etching away a predetermined region of the insulating film. a step of exposing the semiconductor substrate, a step of forming a high melting point metal compound film on the semiconductor substrate, a step of forming a light shielding film on the high melting point metal compound film, and a step of forming the high melting point metal compound film and the light shielding film. A method of manufacturing a solid-state imaging device, comprising the step of etching a predetermined region of the two-layer film to form an opening at the bottom through which the surface of the insulating film is exposed.
(2)半導体基盤表面に光電変換素子部と電荷転送部を
形成する工程と、前記光電変換素子部と前記電荷転送部
を分離する拡散分離層を形成する工程と、前記半導体基
盤上にゲート絶縁膜と転送電極膜を形成する工程と、前
記転送電極膜の所定の位置をエッチング除去する工程と
、前記半導体基盤上に絶縁膜を形成する工程と、前記絶
縁膜の所定領域をエッチング除去して前記半導体基盤を
露呈させる工程と、前記半導体基盤上に高融点金属膜を
形成する工程と、前記高融点金属膜上に高融点金属化合
物膜を形成する工程と、前記高融点金属化合物膜上に遮
光膜を形成する工程と、前記高融点金属膜と高融点金属
化合物膜と遮光膜の3層膜の所定領域をエッチングして
底面に前記絶縁膜面が露呈する開口を形成する工程を備
えたことを特徴とする固体撮像装置の製造方法。
(2) A step of forming a photoelectric conversion element section and a charge transfer section on the surface of the semiconductor substrate, a step of forming a diffusion separation layer that separates the photoelectric conversion element section and the charge transfer section, and a step of forming gate insulation on the semiconductor substrate. a step of forming a film and a transfer electrode film, a step of etching away a predetermined position of the transfer electrode film, a step of forming an insulating film on the semiconductor substrate, and a step of etching away a predetermined region of the insulating film. a step of exposing the semiconductor substrate, a step of forming a refractory metal film on the semiconductor substrate, a step of forming a refractory metal compound film on the refractory metal film, and a step of forming a refractory metal compound film on the refractory metal compound film. the step of forming a light shielding film; and the step of etching a predetermined region of the three-layer film of the high melting point metal film, the high melting point metal compound film, and the light shielding film to form an opening on the bottom surface through which the surface of the insulating film is exposed. A method of manufacturing a solid-state imaging device, characterized in that:
(3)半導体基盤表面に光電変換素子部と電荷転送部を
形成する工程と、前記光電変換素子部と前記電荷転送部
を分離する拡散分離層を形成する工程と、前記半導体基
盤上にゲート絶縁膜と転送電極膜を形成する工程と、前
記転送電極膜の所定の位置をエッチング除去する工程と
、前記半導体基盤上に絶縁膜を形成する工程と、前記絶
縁膜の所定の領域をエッチング除去して前記半導体基盤
を露呈させる工程と、前記半導体基盤上に高融点金属膜
と前記高融点金属膜上に高融点金属化合物膜と前記高融
点金属化合物膜上に遮光膜を外気にさらすことなく連続
的に形成する工程と、前記高融点金属膜と高融点金属化
合物膜と遮光膜の3層膜の所定領域をエッチングして底
面に前記絶縁膜面が露呈する開口を形成する工程を備え
たことを特徴とする固体撮像装置の製造方法。
(3) A step of forming a photoelectric conversion element section and a charge transfer section on the surface of the semiconductor substrate, a step of forming a diffusion separation layer that separates the photoelectric conversion element section and the charge transfer section, and a step of forming gate insulation on the semiconductor substrate. a step of forming a film and a transfer electrode film, a step of etching away a predetermined position of the transfer electrode film, a step of forming an insulating film on the semiconductor substrate, and a step of etching away a predetermined region of the insulating film. a step of exposing the semiconductor substrate by exposing the semiconductor substrate, and continuously forming a high melting point metal film on the semiconductor substrate, a high melting point metal compound film on the high melting point metal film, and a light shielding film on the high melting point metal compound film without exposing to the outside air. and a step of etching a predetermined region of the three-layer film of the high melting point metal film, the high melting point metal compound film, and the light shielding film to form an opening on the bottom surface through which the insulating film surface is exposed. A method for manufacturing a solid-state imaging device, characterized by:
(4)前記高融点金属膜にチタニュウム膜を、前記高融
点金属化合物膜に窒化チタニュウム膜を用いることを特
徴とする特許請求の範囲第1項と第2項に記載した固体
撮像装置の製造方法。
(4) A method for manufacturing a solid-state imaging device according to claims 1 and 2, characterized in that a titanium film is used as the high melting point metal film, and a titanium nitride film is used as the high melting point metal compound film. .
JP1286842A 1989-11-01 1989-11-01 Manufacture of solid-state image pickup device Pending JPH03147366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286842A JPH03147366A (en) 1989-11-01 1989-11-01 Manufacture of solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286842A JPH03147366A (en) 1989-11-01 1989-11-01 Manufacture of solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH03147366A true JPH03147366A (en) 1991-06-24

Family

ID=17709739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286842A Pending JPH03147366A (en) 1989-11-01 1989-11-01 Manufacture of solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH03147366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344666B1 (en) * 1998-11-11 2002-02-05 Kabushiki Kaisha Toshiba Amplifier-type solid-state image sensor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842368A (en) * 1981-09-07 1983-03-11 Fuji Photo Optical Co Ltd Solid-state image pickup element
JPS59224169A (en) * 1984-05-11 1984-12-17 Hitachi Ltd Solid state image sensor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842368A (en) * 1981-09-07 1983-03-11 Fuji Photo Optical Co Ltd Solid-state image pickup element
JPS59224169A (en) * 1984-05-11 1984-12-17 Hitachi Ltd Solid state image sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344666B1 (en) * 1998-11-11 2002-02-05 Kabushiki Kaisha Toshiba Amplifier-type solid-state image sensor device

Similar Documents

Publication Publication Date Title
JP2848268B2 (en) Solid-state imaging device and method of manufacturing the same
US5188970A (en) Method for forming an infrared detector having a refractory metal
KR100194841B1 (en) Solid state phase detection device manufacturing method
JP2001068659A (en) Optical barrier rib
JPS63244879A (en) Solid-state image sensing device
JPH11111957A (en) Solid-state image-pickup element, manufacture thereof, and manufacture of semiconductor device
JPH03147366A (en) Manufacture of solid-state image pickup device
US6627929B2 (en) Solid state CCD image sensor having a light shielding layer
JPH08288484A (en) Manufacture of solid-state image pickup element
JPH11238866A (en) Solid-state image sensing device
US6563134B1 (en) Optoelectronic microelectronic fabrication with attenuated light leakage
JPH0730088A (en) Manufacture of solid-state image sensing device
JPH04263469A (en) Solid-state image sensing device
JPH04333282A (en) Solid-state image sensing device
US5132761A (en) Method and apparatus for forming an infrared detector having a refractory metal
JPH05315591A (en) Forming method of photoelectron readout part of ccd image sensor
JP3092271B2 (en) Method for manufacturing solid-state imaging device
JPH06204443A (en) Solid-state image sensing apparatus and manufacture thereof
JPH06196679A (en) Solid-state image sensing device and manufacture thereof
JPS61198774A (en) Solid state image pick-up device and manufacture thereof
JP2005026566A (en) Method for forming metal film and method for manufacturing solid state imaging device
JPH03190272A (en) Solid-state camera device
JPH07101734B2 (en) Method of manufacturing solid-state imaging device
KR100779392B1 (en) Semiconductor device and method of manufacturing the semiconductor device
JPH04245474A (en) Solid-state image pick-up element