JPH11238866A - Solid-state image sensing device - Google Patents

Solid-state image sensing device

Info

Publication number
JPH11238866A
JPH11238866A JP10038584A JP3858498A JPH11238866A JP H11238866 A JPH11238866 A JP H11238866A JP 10038584 A JP10038584 A JP 10038584A JP 3858498 A JP3858498 A JP 3858498A JP H11238866 A JPH11238866 A JP H11238866A
Authority
JP
Japan
Prior art keywords
film
region
silicon oxide
oxide film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10038584A
Other languages
Japanese (ja)
Inventor
Toshio Yoshida
敏雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10038584A priority Critical patent/JPH11238866A/en
Publication of JPH11238866A publication Critical patent/JPH11238866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To dissolve an effect on the sensitivity characteristic of light in a visible region of a solid-state image sensing device, by a method wherein a prescribed film thickness of a first silicon oxide film to cover the whole surface of a substrate, which is used as a light-receiving part region, and a prescribed film thikcness of a first silion nitride film to cover the region of one part of the substrate, which is used as the light-receiving part region, are formed in order between the substrate and an interlayer insulating film. SOLUTION: Boron is ion-implanted in the whole surface of an N-type silicon substrate 1 and thereafter, the boron is thermodiffused to form a P<+> first well layer 7. Then, boron and phosphorus are ion-implanted in a region, which is formed with a P-type second well region 2 and an N-type transfer channel region 4, through an opened photoresist for forming the regions 2 and 4. After the phtoresist is removed, an ion-implantation is performed in a P<+> channel stopper 5 formation region through an opened photoresist for forming a P<+> channel stopper layer 5, and a thermal oxidation is performed to form a gate insulating layer. A first gate electrode 13 is formed to remove the photoresist and thereafter, a thermal oxidation is performed to form an insulating film 14 between the gate electrode 13 and a gate electrode 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像装置、特
に、分光感度等の感度向上を図った固体撮像装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and more particularly, to a solid-state imaging device having improved sensitivity such as spectral sensitivity.

【0002】[0002]

【従来の技術】従来の固体撮像装置の断面構造を図5に
示す。図5において、51はN型シリコン基板、52は
第1のP型ウエル領域、53は受光部を形成するN型不
純物拡散領域、54はN型転送チャネル領域、55はP
型チャネルストッパ領域、56はP型正孔蓄積領域、5
7は第2のP型ウエル領域、58は読み出しゲート部、
59はゲート絶縁膜(シリコン酸化膜)、60はゲート
絶縁膜(シリコン窒化膜)、61はゲート絶縁膜(シリ
コン酸化膜)、62は第1のゲート電極(ポリシリコン
膜)、63はゲート電極間絶縁膜(酸化膜)、64は第
2のゲート電極(ポリシリコン膜)、65は第2のゲー
ト電極上酸化膜、66は平坦化膜(CVD−Si
2)、67は遮光膜(Al−Si)、68はパッシベ
ーション膜(P−SiN)を示す。図5では、受光部の
感光領域は、熱酸化にて形成されるシリコン酸化膜59
と平坦化及び絶縁を目的とし、CVD法にて形成される
シリコン酸化膜66と、保護及び水素供給を目的として
形成されるシリコン窒化膜68により覆われている。
2. Description of the Related Art FIG. 5 shows a sectional structure of a conventional solid-state imaging device. 5, reference numeral 51 denotes an N-type silicon substrate; 52, a first P-type well region; 53, an N-type impurity diffusion region forming a light receiving portion; 54, an N-type transfer channel region;
Channel stopper region, 56 is a P-type hole accumulation region, 5
7 is a second P-type well region, 58 is a read gate unit,
59 is a gate insulating film (silicon oxide film), 60 is a gate insulating film (silicon nitride film), 61 is a gate insulating film (silicon oxide film), 62 is a first gate electrode (polysilicon film), and 63 is a gate electrode. An inter-insulating film (oxide film), 64 is a second gate electrode (polysilicon film), 65 is an oxide film on the second gate electrode, and 66 is a planarization film (CVD-Si).
O 2 ) and 67 indicate a light-shielding film (Al-Si), and 68 indicates a passivation film (P-SiN). In FIG. 5, the photosensitive region of the light receiving section is a silicon oxide film 59 formed by thermal oxidation.
And a silicon oxide film 66 formed by a CVD method for the purpose of planarization and insulation, and a silicon nitride film 68 formed for the purpose of protection and hydrogen supply.

【0003】このように、受光部表面は屈折率の異なる
膜の多層構造にて形成されているため、シリコン酸化
膜、シリコン窒化膜によって、そこを透過する干渉効果
を含めて分光特性上の変化が生じる。そのため、従来に
おいては、シリコン酸化膜の膜厚とシリコン窒化膜の膜
厚との関係を、例えば、人間の目の感度が最も高いグリ
ーンの波長であるλ=550nmの光の透過率が略極大
になるように設定し、固体撮像装置を形成していた。
As described above, since the light receiving portion surface is formed in a multilayer structure of films having different refractive indices, the silicon oxide film and the silicon nitride film cause a change in spectral characteristics including an interference effect transmitted therethrough. Occurs. Therefore, in the related art, the relationship between the thickness of the silicon oxide film and the thickness of the silicon nitride film is determined by, for example, that the transmittance of light of λ = 550 nm, which is the wavelength of green at which the human eye has the highest sensitivity, is substantially maximal. , To form a solid-state imaging device.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来技術に
おいて、シリコン酸化膜は、熱酸化により形成されるシ
リコン酸化膜と、常圧CVD等により形成される平坦化
を目的とする、リンガラス(PSG)やボロンリンガラ
ス(BPSG)のシリコン酸化膜の多層から形成されて
いた。但し、この多層膜は屈折率が略同じであるので、
一つのシリコン酸化膜とみなす。また、シリコン窒化膜
は、プラズマCVD法等により形成されていた。
By the way, in the prior art, the silicon oxide film is made of a silicon oxide film formed by thermal oxidation and a phosphorus glass (PSG) formed for flattening by normal pressure CVD or the like. ) Or a boron oxide glass (BPSG) silicon oxide film. However, since this multilayer film has substantially the same refractive index,
It is regarded as one silicon oxide film. The silicon nitride film has been formed by a plasma CVD method or the like.

【0005】この内、常圧CVD法等により形成される
リンガラス(PSG)やボロンリンガラス(BPSG)
のシリコン酸化膜は、通常平坦化を目的としているた
め、ある程度の膜厚(通常100〜1000nm程度)
が必要なことと、平坦化を目的とし、形成後の熱処理に
よりリフローされることや、常圧CVDそのものの成膜
時の膜厚バラツキが大きいことから、膜厚制御が困難で
あり、このことが透過する光の可視光領域の光感度の制
御性を困難としていた。これらの膜は不純物濃度によっ
てもリフロー性が大きく変わり、リフロー前の成膜のバ
ラツキも大きいので、トータルで考えると、更にばらつ
きが大きくなる。
[0005] Among them, phosphorus glass (PSG) or boron phosphorus glass (BPSG) formed by a normal pressure CVD method or the like.
Since the silicon oxide film is usually intended for planarization, it has a certain thickness (typically about 100 to 1000 nm).
It is difficult to control the film thickness due to the necessity of the method, the reflow by the heat treatment after the formation for the purpose of planarization, and the large variation in the film thickness during the deposition of the atmospheric pressure CVD itself. This makes it difficult to control the light sensitivity in the visible light region of the light transmitted therethrough. The reflow properties of these films vary greatly depending on the impurity concentration, and the variation in film formation before reflow is large.

【0006】本発明の目的は、常圧CVD法等により形
成される平坦化を目的とした、リンガラス(PSG)や
ボロンリンガラス(BPSG)のシリコン酸化膜の膜厚
がばらついても、透過するλ=550nm付近の光の強
度特性に影響を与えず、また、透過する、特に可視光領
域の光の感度特性に影響を与えない固体撮像装置を提供
することにある。
An object of the present invention is to provide a flattened silicon oxide film made of phosphorus glass (PSG) or boron phosphorus glass (BPSG) for planarization formed by a normal pressure CVD method or the like, even if the thickness of the silicon oxide film varies. An object of the present invention is to provide a solid-state imaging device that does not affect the intensity characteristics of light near λ = 550 nm and does not affect the sensitivity characteristics of light that is transmitted, particularly in the visible light region.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の本発明
の固体撮像装置は、同一基板に受光部領域と転送チャネ
ル領域とが形成され、上記受光部領域において光電変換
にて発生された電荷を上記転送チャネル領域に転送する
読み出し領域上にゲート絶縁膜を介して転送電極が形成
され、転送チャネル領域を含む全面に層間絶縁膜が形成
され、該層間絶縁膜上に該転送電極を覆うように遮光膜
が形成され、該遮光膜を含む全面に保護絶縁膜が形成さ
れた固体撮像装置において、少なくとも上記受光部領域
となる基板全面を覆う、所定の膜厚の第1のシリコン酸
化膜と、上記受光部領域となる基板の一部領域を覆う、
所定の膜厚の第1のシリコン窒化膜とが上記基板と上記
層間絶縁膜との間に順次形成されていることを特徴とす
るものである。
According to a first aspect of the present invention, there is provided a solid-state imaging device according to the present invention, wherein a light receiving area and a transfer channel area are formed on the same substrate, and the light receiving area is generated by photoelectric conversion in the light receiving area. A transfer electrode is formed via a gate insulating film over a readout region for transferring charges to the transfer channel region, an interlayer insulating film is formed over the entire surface including the transfer channel region, and the transfer electrode is covered over the interlayer insulating film. In a solid-state imaging device in which a light-shielding film is formed as described above and a protective insulating film is formed on the entire surface including the light-shielding film, a first silicon oxide film of a predetermined film thickness covering at least the entire surface of the substrate serving as the light receiving area. And cover a partial area of the substrate to be the light receiving section area,
A first silicon nitride film having a predetermined thickness is sequentially formed between the substrate and the interlayer insulating film.

【0008】また、請求項2に記載の本発明の固体撮像
装置は、上記第1のシリコン酸化膜及び第1のシリコン
窒化膜の膜厚が共に1nm以上で、且つ、100nm以
下であることを特徴とする、請求項1に記載の固体撮像
装置である。
According to a second aspect of the present invention, in the solid-state imaging device, the first silicon oxide film and the first silicon nitride film each have a thickness of 1 nm or more and 100 nm or less. The solid-state imaging device according to claim 1, wherein:

【0009】また、請求項3に記載の本発明の固体撮像
装置は、上記ゲート絶縁膜が第2のシリコン酸化膜と第
2のシリコン窒化膜とが順次形成され、且つ、上記第1
のシリコン酸化膜と上記第2のシリコン酸化膜とが同じ
厚さで、且つ、上記第1のシリコン窒化膜と上記第2の
シリコン窒化膜とが同じ厚さであることを特徴とする、
請求項1又は請求項2に記載の固体撮像装置である。
According to a third aspect of the present invention, in the solid-state imaging device according to the present invention, the gate insulating film is formed by sequentially forming a second silicon oxide film and a second silicon nitride film, and
Wherein the silicon oxide film and the second silicon oxide film have the same thickness, and the first silicon nitride film and the second silicon nitride film have the same thickness.
A solid-state imaging device according to claim 1 or 2.

【0010】[0010]

【発明の実施の形態】以下、実施の形態に基づいて本発
明について詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments.

【0011】図1は本実施の形態の本発明の固体撮像装
置の断面構造図、図2は図1の固体撮像装置の製造工程
図を示す。図1及び図2において、1はN型シリコン基
板、2は第1のP型ウエル領域、3は受光部を形成する
N型不純物拡散領域、4は転N型転送チャネル領域、5
はP型チャネルストッパ領域、6はP型正孔蓄積領域、
7は第2のP型ウエル領域、8は読み出しゲート部、
9、12はゲート絶縁膜を形成するシリコン酸化膜、1
0はゲート絶縁膜を形成するシリコン窒化膜、11は干
渉膜であるシリコン窒化膜であり、ゲート絶縁膜を形成
するシリコン窒化膜10と同一のものである。また、1
3は第1のゲート電極、14はゲート電極間絶縁膜、1
5は第2のゲート電極、16は第2のゲート電極上のシ
リコン酸化膜、17は平坦化膜、18は遮光膜、19は
パッシベーション膜を示す。
FIG. 1 is a sectional structural view of a solid-state imaging device according to the present invention of this embodiment, and FIG. 2 is a manufacturing process diagram of the solid-state imaging device of FIG. 1 and 2, 1 is an N-type silicon substrate, 2 is a first P-type well region, 3 is an N-type impurity diffusion region forming a light receiving section, 4 is an N-type transfer channel region,
Is a P-type channel stopper region, 6 is a P-type hole accumulation region,
7 is a second P-type well region, 8 is a read gate unit,
Reference numerals 9 and 12 denote silicon oxide films for forming a gate insulating film;
Reference numeral 0 denotes a silicon nitride film forming a gate insulating film, and 11 denotes a silicon nitride film serving as an interference film, which is the same as the silicon nitride film 10 forming a gate insulating film. Also, 1
3 is a first gate electrode, 14 is an insulating film between gate electrodes, 1
Reference numeral 5 denotes a second gate electrode, 16 denotes a silicon oxide film on the second gate electrode, 17 denotes a flattening film, 18 denotes a light shielding film, and 19 denotes a passivation film.

【0012】本発明は、受光部領域の第1のP型ウエル
領域2上に所定の膜厚のシリコン酸化膜9上に受光部領
域の一部を覆うように干渉膜となる、所定の膜厚のシリ
コン窒化膜11が形成されていることを特徴としてい
る。特に、図1に示すように、受光部領域の第1のP型
ウエル領域2上にゲート絶縁膜を形成する、膜厚が1n
m以上で、且つ、100nm以下のシリコン酸化膜9上
に受光部領域の一部を覆うように干渉膜となる、膜厚が
1nm以上で、且つ、100nm以下のシリコン窒化膜
11が形成されていることを特徴としている。
According to the present invention, a predetermined film serving as an interference film is formed on a silicon oxide film 9 having a predetermined thickness on the first P-type well region 2 in the light receiving portion region so as to partially cover the light receiving portion region. It is characterized in that a thick silicon nitride film 11 is formed. In particular, as shown in FIG. 1, a gate insulating film is formed on the first P-type well region 2 in the light receiving portion region, and has a thickness of 1 n.
A silicon nitride film 11 having a film thickness of 1 nm or more and 100 nm or less is formed on the silicon oxide film 9 having a film thickness of 1 nm or more and 100 nm or less so as to cover a part of the light receiving region. It is characterized by having.

【0013】以下、図2を用いて、本発明の一実施の形
態の固体撮像装置の製造工程を説明する。
Hereinafter, a manufacturing process of the solid-state imaging device according to one embodiment of the present invention will be described with reference to FIG.

【0014】まず、図2(a)に示すように、N型シリ
コン基板1の全面にボロンをイオン注入し、その後熱拡
散により、第1のP型ウエル領域7を形成する。次に、
第2のP型ウエル領域2及びN型転送チャネル領域4を
形成するため、第2のP型ウエル領域7及びN型転送チ
ャネル領域4が形成される領域を開口したフォトレジス
トを用いて、ボロン及びリンをイオン注入する。
First, as shown in FIG. 2A, boron is ion-implanted over the entire surface of the N-type silicon substrate 1, and then a first P-type well region 7 is formed by thermal diffusion. next,
In order to form the second P-type well region 2 and the N-type transfer channel region 4, boron is formed using a photoresist having an opening in the region where the second P-type well region 7 and the N-type transfer channel region 4 are formed. And phosphorus are ion-implanted.

【0015】フォトレジスト除去後、P型チャネルスト
ッパ領域5を形成するため、P型チャネルストッパ領域
5形成領域が開口したフォトレジストを用いてボロンを
イオン注入する。
After removing the photoresist, boron ions are implanted using a photoresist having an opening in the region where the P-type channel stopper region 5 is to be formed, in order to form the P-type channel stopper region 5.

【0016】フォトレジストを除去後、熱酸化により、
ゲート絶縁膜を形成する、1nm以上で、且つ、100
nm以下の膜厚のシリコン酸化膜9を形成し、次に、ゲ
ート絶縁膜を形成する、1nm以上で、且つ、100n
m以下の膜厚のシリコン窒化膜10を形成した後、該シ
リコン窒化膜10を酸化することにより、1nm以上
で、且つ、30nm以下のゲート絶縁膜を形成するシリ
コン酸化膜12を形成する。ここで、MONOS(Me
tal Oxide Nitrid OxideSil
con)ゲート構造を用いているが、CCD転送部は通
常のMOS構造であっても何ら問題はない。
After removing the photoresist, thermal oxidation
Forming a gate insulating film, 1 nm or more and 100
forming a silicon oxide film 9 having a thickness of not more than 1 nm and then forming a gate insulating film;
After forming the silicon nitride film 10 having a thickness of not more than m, the silicon nitride film 10 is oxidized to form a silicon oxide film 12 for forming a gate insulating film having a thickness of 1 nm or more and 30 nm or less. Here, MONOS (Me
tal Oxide Nitride OxideSil
con) A gate structure is used, but there is no problem even if the CCD transfer unit has a normal MOS structure.

【0017】次に、第1のゲート電極13を形成するた
めに、CVD法によりポリシリコン膜を堆積した後、P
OCl3法によりリンをドープし、第1のゲート電極1
3形成領域を覆うフォトレジストを用いて、反応性イオ
ンエッチングにより、第1のゲート電極13を形成す
る。フォトレジストを除去した後、ゲート電極間を絶縁
するために、熱酸化により、ゲート電極間絶縁膜14を
形成する。
Next, in order to form the first gate electrode 13, after depositing a polysilicon film by the CVD method,
The first gate electrode 1 is doped with phosphorus by the OCl 3 method.
The first gate electrode 13 is formed by reactive ion etching using a photoresist covering the formation region. After removing the photoresist, an insulating film 14 between the gate electrodes is formed by thermal oxidation to insulate between the gate electrodes.

【0018】次に、図2(b)に示すように、第2のゲ
ート電極15を形成するために、CVD法によりポリシ
リコン膜を堆積した後、POCl3法によりリンをドー
プし、第2のゲート電極15形成領域を覆うフォトレジ
ストを用いて、反応性イオンエッチングにより、第2の
ゲート電極15を形成する。このとき、ゲート絶縁膜を
形成するシリコン窒化膜10はエッチングしない。
Next, as shown in FIG. 2B, in order to form a second gate electrode 15, a polysilicon film is deposited by a CVD method, and then phosphorus is doped by a POCl 3 method. The second gate electrode 15 is formed by reactive ion etching using a photoresist covering the region where the gate electrode 15 is to be formed. At this time, the silicon nitride film 10 forming the gate insulating film is not etched.

【0019】フォトレジストを除去後、絶縁のために、
熱酸化により、第2のゲート電極上絶縁膜16を形成
し、次に受光部を形成するN型不純物拡散領域3及び受
光部表面のP型正孔蓄積層6を形成するために、受光部
を形成するN型不純物拡散領域3形成領域及び受光部表
面のP型正孔蓄積層6形成領域が開口したフォトレジス
トを用いて、リン及びボロンをイオン注入し、その後、
フォトレジストを除去する。
After removing the photoresist, for insulation,
The second insulating film 16 on the gate electrode is formed by thermal oxidation, and then the light receiving portion is formed to form the N-type impurity diffusion region 3 forming the light receiving portion and the P-type hole accumulation layer 6 on the surface of the light receiving portion. Is ion-implanted with phosphorus and boron using a photoresist in which an N-type impurity diffusion region 3 forming region and a P-type hole accumulation layer 6 forming region on the surface of the light receiving portion are opened.
Remove the photoresist.

【0020】次に、図2(c)に示すように、干渉膜で
あるシリコン窒化膜11を形成するため、干渉膜形成領
域を覆うフォトレジストを用い、反応性イオンエッチン
グによりシリコン窒化膜10をパターニングする。
Next, as shown in FIG. 2C, in order to form a silicon nitride film 11 as an interference film, the silicon nitride film 10 is formed by reactive ion etching using a photoresist covering an interference film formation region. Perform patterning.

【0021】次に、図2(d)に示すように、平坦化の
ためにCVD法によりBPSG膜17を堆積し、遮光膜
18を形成するため、スパッタ法によりAl−Si膜を
堆積し、遮光膜18を覆うフォトレジストを用いて、反
応性イオンエッチングにより、遮光膜18を形成する。
Next, as shown in FIG. 2D, a BPSG film 17 is deposited by a CVD method for flattening, and an Al-Si film is deposited by a sputtering method to form a light shielding film 18, The light-shielding film 18 is formed by reactive ion etching using a photoresist covering the light-shielding film 18.

【0022】最後に、パッシベーション膜19であるP
−SiN膜をプラズマCVD法により堆積させ、水素雰
囲気で400℃付近の熱処理によるシンター処理を行い
工程を完了する。
Finally, the passivation film 19, P
A SiN film is deposited by a plasma CVD method, and sintering is performed by heat treatment at about 400 ° C. in a hydrogen atmosphere to complete the process.

【0023】図3は波長550nmについてのシリコン
酸化膜(BPSG)で構成される層間絶縁膜の膜厚とシ
リコン基板内に透過する光の割合を、シリコン酸化膜と
シリコン窒化膜(パッシベーション膜)からなる多層構
造に関して、シュミレーションしたものである。図3に
おける破線は従来構造のシリコン酸化膜30nmとシリ
コン酸化膜(BPSG)で構成される層間絶縁膜200
nmから700nmとシリコン窒化膜(パッシベーショ
ン膜)300nmの多層構造に関してのものであり、実
線は本発明の構造のシリコン酸化膜300nmとシリコ
ン窒化膜30nmとシリコン酸化膜(BPSG)で構成
される層間絶縁膜200nmから700nmとシリコン
窒化膜(パッシベーション膜)30nmの多層構造に関
してのものである。
FIG. 3 shows the thickness of the interlayer insulating film composed of a silicon oxide film (BPSG) for a wavelength of 550 nm and the ratio of light transmitted through the silicon substrate from the silicon oxide film and the silicon nitride film (passivation film). This is a simulation of a multilayer structure. A broken line in FIG. 3 indicates an interlayer insulating film 200 composed of a silicon oxide film 30 nm and a silicon oxide film (BPSG) of a conventional structure.
The present invention relates to a multilayer structure having a thickness of 300 nm to 700 nm and a silicon nitride film (passivation film) of 300 nm. The solid line indicates an interlayer insulating film composed of a silicon oxide film of 300 nm, a silicon nitride film of 30 nm, and a silicon oxide film (BPSG). This relates to a multilayer structure of a film having a thickness of 200 nm to 700 nm and a silicon nitride film (passivation film) having a thickness of 30 nm.

【0024】図3から明らかなように、図1の固体撮像
装置のように、受光部の基板上が、膜厚が1nm以上
で、且つ、100nm以下のシリコン酸化膜と膜厚が1
nmで、且つ、100nm以下のシリコン窒化膜と層間
絶縁膜(BPSG)と保護膜(P−SiN)で形成され
ている場合、透過率のばらつきは従来構造に比べて低減
でき、またその平均値も従来構造より高い値を示す。
As is clear from FIG. 3, as in the solid-state image pickup device of FIG. 1, the substrate on the light receiving section has a silicon oxide film having a thickness of 1 nm or more and 100 nm or less and a silicon oxide film having a thickness of 1 nm or less.
When the silicon nitride film, the interlayer insulating film (BPSG) and the protective film (P-SiN) each having a thickness of 100 nm or less are formed, the variation in the transmittance can be reduced as compared with the conventional structure, and the average value thereof is obtained. Also shows a higher value than the conventional structure.

【0025】シリコン酸化膜及びシリコン窒化膜は、ゲ
ート電極との絶縁膜としても使用されており、シリコン
酸化膜及びシリコン窒化膜が薄いとゲート電極と基板と
の耐圧が劣化するため、使用電圧に合わせて膜厚は設定
され、通常は1nm以上である。また、シリコン酸化膜
厚が厚いと、図4からも明らかなように、感度が劣化
し、100nm以上では従来構造からの優位性が認めら
れない。
The silicon oxide film and the silicon nitride film are also used as an insulating film with the gate electrode. If the silicon oxide film and the silicon nitride film are thin, the withstand voltage between the gate electrode and the substrate deteriorates. The film thickness is set together, and is usually 1 nm or more. In addition, when the silicon oxide film thickness is large, the sensitivity is deteriorated, as is apparent from FIG. 4, and when the silicon oxide film thickness is 100 nm or more, superiority to the conventional structure is not recognized.

【0026】また、シリコン窒化膜が薄いと、ゲート電
極と基板との耐圧劣化が生じるため、通常は1nm以上
に設定する。また、シリコン窒化膜厚が厚いと、図4か
らも明らかなように、感度が劣化し、100nm以上で
はシリコン酸化膜厚の最適化を行っても、従来構造から
の優位性が認められない。
If the silicon nitride film is thin, the withstand voltage between the gate electrode and the substrate deteriorates. Therefore, the thickness is usually set to 1 nm or more. Further, as is apparent from FIG. 4, when the silicon nitride film thickness is large, the sensitivity is deteriorated, and when the silicon oxide film thickness is 100 nm or more, even if the silicon oxide film thickness is optimized, the superiority to the conventional structure is not recognized.

【0027】また、図4は波長550nmについての、
受光部上面のシリコン酸化膜厚及び干渉膜であるシリコ
ン窒化膜厚とシリコン基板内に透過する光の割合を、シ
リコン酸化膜とシリコン窒化膜(パッシベーション膜)
からなる多層膜構造に関してシュミレーションしたもの
である。
FIG. 4 is a graph for a wavelength of 550 nm.
The silicon oxide film and the silicon nitride film (passivation film) are used to determine the ratio of light transmitted through the silicon substrate to the thickness of the silicon oxide film and the silicon nitride film serving as an interference film on the upper surface of the light receiving unit.
Was simulated with respect to a multilayer film structure composed of:

【0028】実線は従来構造の干渉膜であるシリコン窒
化膜がない場合の多層構造に関してのものであり、破線
は本発明構造の干渉膜であるシリコン窒化膜がある場合
の多層構造に関してのものである。
The solid line is for the multilayer structure without the silicon nitride film as the interference film of the conventional structure, and the broken line is for the multilayer structure with the silicon nitride film as the interference film of the present invention structure. is there.

【0029】図4から明らかなように、膜厚が1nm以
上で、且つ、100nm以下、特に30nm以上で、且
つ、60nm以下のシリコン酸化膜と、膜厚が1nm以
上で、且つ、100nm以下、特に30nm以上で、且
つ、60nm以下のシリコン窒化膜のうちから透過率の
よい膜厚比を選択することで、従来構造より高い透過率
を示す。
As is apparent from FIG. 4, a silicon oxide film having a film thickness of 1 nm or more and 100 nm or less, particularly 30 nm or more and 60 nm or less, a silicon oxide film having a film thickness of 1 nm or more and 100 nm or less, In particular, by selecting a film thickness ratio having a good transmittance from a silicon nitride film having a thickness of 30 nm or more and 60 nm or less, a transmittance higher than that of the conventional structure is exhibited.

【0030】[0030]

【発明の効果】以上、詳細に説明したように、本発明を
用いることにより、平坦化を目的として形成される層間
絶縁膜(BPSG及びPSG)の膜厚がばらついても、
透過率のばらつきは低減でき、透過率の平均値も高い値
を示す。したがって、感度が高くばらつきの少ない固体
撮像装置を提供することができる。
As described in detail above, by using the present invention, even if the thickness of the interlayer insulating films (BPSG and PSG) formed for the purpose of planarization varies,
Variation in transmittance can be reduced, and the average value of transmittance also shows a high value. Therefore, it is possible to provide a solid-state imaging device with high sensitivity and little variation.

【0031】また、受光部となる基板上の全面にシリコ
ン酸化膜が形成され、且つ、上記受光部となる基板上の
一部領域にのみシリコン窒化膜が形成されているので、
固体撮像装置形成最終工程である水素シンター工程時で
の受光部のシンター効果をシリコン窒化膜が妨げないた
め、暗電圧の上昇を招かない。
Further, since a silicon oxide film is formed on the entire surface of the substrate serving as the light receiving portion and a silicon nitride film is formed only in a partial region on the substrate serving as the light receiving portion,
Since the silicon nitride film does not hinder the sintering effect of the light receiving portion in the hydrogen sintering step, which is the final step of forming the solid-state imaging device, the dark voltage does not increase.

【0032】さらに、転送電極下のゲート絶縁膜がシリ
コン酸化膜とシリコン窒化膜とが順次形成された構成に
なっている場合、上記受光部のシリコン窒化膜が工程数
の増加を伴わずに形成することができる。
Further, when the gate insulating film under the transfer electrode has a structure in which a silicon oxide film and a silicon nitride film are sequentially formed, the silicon nitride film of the light receiving portion is formed without increasing the number of steps. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の固体撮像装置の構造断
面図である。
FIG. 1 is a structural sectional view of a solid-state imaging device according to an embodiment of the present invention.

【図2】本発明の一実施の形態の固体撮像装置の製造工
程図である。
FIG. 2 is a manufacturing process diagram of the solid-state imaging device according to one embodiment of the present invention;

【図3】波長550nmについての層間絶縁膜の膜厚と
シリコン基板内に透過する光の割合との関係を示した図
である。
FIG. 3 is a diagram showing a relationship between a film thickness of an interlayer insulating film and a ratio of light transmitted through a silicon substrate for a wavelength of 550 nm.

【図4】波長550nmについての、受光部上面のシリ
コン酸化膜厚及びシリコン窒化膜厚とシリコン基板内に
透過する光の割合の関係を示した図である。
FIG. 4 is a diagram showing a relationship between a thickness of a silicon oxide film and a thickness of a silicon nitride film on an upper surface of a light receiving unit and a ratio of light transmitted through a silicon substrate for a wavelength of 550 nm.

【図5】従来の固体撮像装置の製造工程図である。FIG. 5 is a manufacturing process diagram of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

1 N型シリコン基板 2 第1のP型ウエル領域 3 受光部を形成するN型不純物拡散領域 4 N型転送チャネル領域 5 P型チャネルストッパ領域 6 P型正孔蓄積領域 7 第2のP型ウエル領域 8 読み出しゲート部 9、12 ゲート絶縁膜を形成するシリコン酸化膜 10 ゲート絶縁膜を形成するシリコン窒化膜 11 干渉膜 13 第1のゲート電極 14 ゲート電極間絶縁膜 15 第2のゲート電極 16 第2のゲート電極上のシリコン酸化膜 17 平坦化膜 18 遮光膜 19 パッシベーション膜 DESCRIPTION OF SYMBOLS 1 N-type silicon substrate 2 1st P-type well region 3 N-type impurity diffusion region which forms a light receiving part 4 N-type transfer channel region 5 P-type channel stopper region 6 P-type hole accumulation region 7 2nd P-type well Region 8 Read gate section 9, 12 Silicon oxide film forming gate insulating film 10 Silicon nitride film forming gate insulating film 11 Interference film 13 First gate electrode 14 Intergate insulating film 15 Second gate electrode 16th Silicon oxide film on gate electrode 2 17 Planarization film 18 Light shielding film 19 Passivation film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同一基板に受光部領域と転送チャネル領
域とが形成され、上記受光部領域において光電変換にて
発生された電荷を上記転送チャネル領域に転送する読み
出し領域上にゲート絶縁膜を介して転送電極が形成さ
れ、転送チャネル領域を含む全面に層間絶縁膜が形成さ
れ、該層間絶縁膜上に該転送電極を覆うように遮光膜が
形成され、該遮光膜を含む全面に保護絶縁膜が形成され
た固体撮像装置において、 少なくとも上記受光部領域となる基板全面を覆う、所定
の膜厚の第1のシリコン酸化膜と、上記受光部領域とな
る基板の一部領域を覆う、所定の膜厚の第1のシリコン
窒化膜とが上記基板と上記層間絶縁膜との間に順次形成
されていることを特徴とする固体撮像装置。
1. A light receiving portion region and a transfer channel region are formed on the same substrate, and a charge generation generated by photoelectric conversion in the light receiving portion region is transferred to a transfer channel region via a gate insulating film on a readout region. A transfer electrode is formed, an interlayer insulating film is formed on the entire surface including the transfer channel region, a light shielding film is formed on the interlayer insulating film so as to cover the transfer electrode, and a protective insulating film is formed on the entire surface including the light shielding film. A first silicon oxide film of a predetermined thickness covering at least the entire surface of the substrate serving as the light receiving portion region and a predetermined silicon oxide film covering a partial region of the substrate serving as the light receiving portion region. A solid-state imaging device, wherein a first silicon nitride film having a thickness is sequentially formed between the substrate and the interlayer insulating film.
【請求項2】 上記第1のシリコン酸化膜及び第1のシ
リコン窒化膜の膜厚が共に1nm以上で、且つ、100
nm以下であることを特徴とする、請求項1に記載の固
体撮像装置。
2. The first silicon oxide film and the first silicon nitride film both have a thickness of 1 nm or more, and
2. The solid-state imaging device according to claim 1, wherein the diameter is equal to or less than nm.
【請求項3】 上記ゲート絶縁膜が第2のシリコン酸化
膜と第2のシリコン窒化膜とが順次形成され、且つ、上
記第1のシリコン酸化膜と上記第2のシリコン酸化膜と
が同じ厚さで、且つ、上記第1のシリコン窒化膜と上記
第2のシリコン窒化膜とが同じ厚さであることを特徴と
する、請求項1又は請求項2に記載の固体撮像装置。
3. The gate insulating film according to claim 1, wherein a second silicon oxide film and a second silicon nitride film are sequentially formed, and the first silicon oxide film and the second silicon oxide film have the same thickness. 3. The solid-state imaging device according to claim 1, wherein the first silicon nitride film and the second silicon nitride film have the same thickness. 4.
JP10038584A 1998-02-20 1998-02-20 Solid-state image sensing device Pending JPH11238866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10038584A JPH11238866A (en) 1998-02-20 1998-02-20 Solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10038584A JPH11238866A (en) 1998-02-20 1998-02-20 Solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPH11238866A true JPH11238866A (en) 1999-08-31

Family

ID=12529353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10038584A Pending JPH11238866A (en) 1998-02-20 1998-02-20 Solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPH11238866A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864475B1 (en) 1999-11-08 2005-03-08 Mitsubishi Denki Kabushiki Kaisha Image sensor having uniform sensitivity
JP2006229150A (en) * 2005-02-21 2006-08-31 Sony Corp Solid-state imaging device and method of manufacturing the same
JP2006332124A (en) * 2005-05-23 2006-12-07 Matsushita Electric Ind Co Ltd Solid-state image pickup element and manufacturing method thereof
KR100683390B1 (en) * 1999-12-28 2007-02-15 매그나칩 반도체 유한회사 Method for manufacturing image sensor
JP2010199442A (en) * 2009-02-26 2010-09-09 Sharp Corp Method of forming resist pattern, method of manufacturing semiconductor device, method of manufacturing solid-state imaging element, solid-state imaging element, and electronic information equipment
JP2010205843A (en) * 2009-03-02 2010-09-16 Sharp Corp Solid-state image sensor, method of manufacturing the same, and electronic information apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864475B1 (en) 1999-11-08 2005-03-08 Mitsubishi Denki Kabushiki Kaisha Image sensor having uniform sensitivity
KR100683390B1 (en) * 1999-12-28 2007-02-15 매그나칩 반도체 유한회사 Method for manufacturing image sensor
JP2006229150A (en) * 2005-02-21 2006-08-31 Sony Corp Solid-state imaging device and method of manufacturing the same
JP2006332124A (en) * 2005-05-23 2006-12-07 Matsushita Electric Ind Co Ltd Solid-state image pickup element and manufacturing method thereof
JP2010199442A (en) * 2009-02-26 2010-09-09 Sharp Corp Method of forming resist pattern, method of manufacturing semiconductor device, method of manufacturing solid-state imaging element, solid-state imaging element, and electronic information equipment
JP2010205843A (en) * 2009-03-02 2010-09-16 Sharp Corp Solid-state image sensor, method of manufacturing the same, and electronic information apparatus

Similar Documents

Publication Publication Date Title
TWI399849B (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP4083542B2 (en) Manufacturing method of image sensor with reduced dark current
JP4006320B2 (en) Manufacturing method of image sensor with reduced dark current
JP3723124B2 (en) Solid-state imaging device
US6525356B1 (en) Solid imaging device
JP3541155B2 (en) Solid-state imaging device and method of manufacturing the same
JP2007150087A (en) Solid-state imaging element and its manufacturing method
US7323758B2 (en) Solid state imaging device and method for producing the same
JP3003590B2 (en) Solid-state imaging device and method of manufacturing the same
JP4395437B2 (en) Image sensor and manufacturing method thereof
JPH11238866A (en) Solid-state image sensing device
US5210049A (en) Method of making a solid state image sensor
US7375019B2 (en) Image sensor and method for fabricating the same
JPH05226631A (en) Manufacture of ccd image element
JP2006351759A (en) Solid-state imaging device and manufacturing method thereof
JP6254829B2 (en) Solid-state imaging device and manufacturing method thereof
JP2003007988A (en) Solid-state imaging device and method of manufacturing the same
JPH10125892A (en) Manufacture of solid-state image sensor
JP2019046867A (en) Semiconductor device and method of manufacturing the same
JP4705791B2 (en) Manufacturing method of solid-state imaging device
KR100538068B1 (en) Method for fabricating CMOS image sensor with improved photo sensitivity
KR20000008283A (en) Solid pickup device and fabricating method of the same
JP2000340783A (en) Manufacturing method of solid-state image pickup device
JP2006351788A (en) Solid-state image pickup element and manufacturing method thereof
JP4162480B2 (en) Solid-state imaging device and manufacturing method thereof