JPH03145169A - Current limiting device - Google Patents

Current limiting device

Info

Publication number
JPH03145169A
JPH03145169A JP1283759A JP28375989A JPH03145169A JP H03145169 A JPH03145169 A JP H03145169A JP 1283759 A JP1283759 A JP 1283759A JP 28375989 A JP28375989 A JP 28375989A JP H03145169 A JPH03145169 A JP H03145169A
Authority
JP
Japan
Prior art keywords
current limiting
current
limiting element
magnetic field
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1283759A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Naoki Uno
直樹 宇野
Nakahiro Harada
原田 中裕
Satoru Tanaka
悟 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1283759A priority Critical patent/JPH03145169A/en
Publication of JPH03145169A publication Critical patent/JPH03145169A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To shield a current limiting device from an external magnetic field and a self-generated magnetic field so as to enable it to display a highly reliable current limiting effect to the shortcircuit trouble of a power system by a method wherein the current limiting element formed of oxide superconductive material is provided, and a superconductive magnetic shielding member is provided enveloping the element concerned. CONSTITUTION:A current limiting element 10 is connected to a bus cable 11 of a power system. The current limiting element 10 is mounted inside a cryostat 12 with the bus cable 11. The cryostat 12 is composed of a coolant chamber 13 filled with liquid nitrogen which cools an oxide superconductive material down to a critical temperature or below and a heat insulating layer 14 provided at the outer peripheral face of the coolant chamber 13 to thermally insulate the inside of the chamber 13 through vacuum. An oxide superconductive material layer 15 is formed on the inner peripheral face of the coolant chamber 13. The oxide superconductive material concerned becomes perfectly diamagnetic at a critical temperature or below to shield the inside of the chamber 13 from an external magnetic flux through Meissner effect. Therefore, a superconductive magnetic shielding member provided with an oxide superconductive material layer is able to shield a current limiting element from an external magnetic field displaying a magnetic shielding effect enough.

Description

【発明の詳細な説明】 [産業上の利用分野3 本発明は、電力系統の短絡に伴う異常電流を抑制する限
流装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 3] The present invention relates to a current limiting device that suppresses abnormal current caused by a short circuit in a power system.

[従来の技術] 電流系統に短絡事故が発生すると、その短絡場所で多量
の異常電流が流れる。この結果、電流系統において電流
量のロスが生じる。このため、短絡事故時には電流ロス
を補償するために、より多くの電流を流す必要がある。
[Prior Art] When a short circuit occurs in a current system, a large amount of abnormal current flows at the short circuit location. As a result, a loss in the amount of current occurs in the current system. Therefore, in the event of a short-circuit accident, it is necessary to flow more current to compensate for the current loss.

すなわち、電流系統には、短絡事故時のピーク電流に対
応した電流容量が要求される。このような電流容量の増
加は、電流系統の設備の変更等を必要とし、経済的に大
きな負担を招く。したがって、できるかぎり短絡に伴う
異常電流(以下、短絡電流という)を少なくすることが
重要である。そこで、短絡電流を低減するために各種限
流装置が考案されてきた。
That is, the current system is required to have a current capacity corresponding to the peak current at the time of a short circuit accident. Such an increase in current capacity requires changes to the equipment of the current system, resulting in a large economic burden. Therefore, it is important to reduce the abnormal current caused by the short circuit (hereinafter referred to as short circuit current) as much as possible. Therefore, various current limiting devices have been devised to reduce the short circuit current.

短絡事故は、極めて稀に起こる。このため、限流素子の
材料には、常時には電気ロスがないものが好ましい。こ
のようなものとして、安価な液体窒素を使用できる酸化
物超電導体物質が挙げられる。また、酸化物超電導体物
質は、大きな常電導抵抗を有する。このため、この特性
に着目して、限流素子の材料に酸化物超電導体物質を用
いた限流装置が考案されてい、る(特開平1−4085
号)。
Short circuit accidents occur extremely rarely. For this reason, it is preferable that the current limiting element be made of a material that has no electrical loss under normal conditions. These include oxide superconductor materials that can use inexpensive liquid nitrogen. Oxide superconductor materials also have large normal conductivity resistance. Therefore, focusing on this characteristic, a current limiting device using an oxide superconductor material as the material of the current limiting element has been devised (Japanese Patent Application Laid-Open No. 1-4085
issue).

[発明が解決しようとする課題] しかしながら、このような限流装置は、限流素子を構成
する酸化物超電導体物質がクエンチ現象を起し易い。こ
れは、酸化物超電導体物質の臨界電流(I、)が磁場の
影響を受は易いからである。
[Problems to be Solved by the Invention] However, in such a current limiting device, the oxide superconductor material constituting the current limiting element is likely to cause a quench phenomenon. This is because the critical current (I,) of the oxide superconductor material is easily influenced by the magnetic field.

酸化物超電導体物質の臨界電流が磁場の影響を受は易い
のは、酸化物超電導体物質の結晶粒界での結晶の結合性
の弱さや結晶粒子内でのピンニング力の弱さに起因する
。限流素子に用いた酸化物超電導体物質の臨界電流また
は臨界電流密度(Jc)が不安定であると、限流装置の
信頼性の高い動作に悪影響を与える。また、限流装置の
設計にも悪影響を及ぼす。
The reason why the critical current of an oxide superconductor material is easily affected by the magnetic field is due to the weak crystal cohesion at the grain boundaries of the oxide superconductor material and the weak pinning force within the crystal grains. . If the critical current or critical current density (Jc) of the oxide superconductor material used in the current limiting element is unstable, it will adversely affect reliable operation of the current limiting device. It also has an adverse effect on the design of the current limiting device.

一般に、限流装置に作用する磁場は、外部の電iWIm
力機器から与えられるものと、自己発生によるものと2
FJ類ある。
Generally, the magnetic field acting on the current limiting device is
One is given by force equipment, the other is self-generated.2
There are FJ types.

外部の電源電力機器から作用する磁場は、限流装置とm
s電力機器との間の距離のべき乗に反比例する。このた
め、外部の電源電力機器から作用する磁場に対しては、
限流装置を1!i源電力機器から隔離して設置すればよ
い。ところが、サージ等によるパルス的に発生する大き
な磁場の限流装置への影響は、どの程度であるか予期で
きない。また、この大きな磁場の影響を受けないような
距離をmsすることはできない。
Magnetic fields acting from external power supply equipment are
sIt is inversely proportional to the power of the distance between it and the power equipment. For this reason, for magnetic fields acting from external power supplies,
1 current limiting device! It is sufficient to install it separately from the i-source power equipment. However, it is impossible to predict the extent to which a large magnetic field generated in pulses due to a surge or the like will affect the current limiting device. Furthermore, it is not possible to set a distance in ms that will not be affected by this large magnetic field.

自己発生による磁場は、限流素子の臨界電流密度、臨界
電流を低下させる。この自己発生磁場の限流装置への影
響は、予想可能であり、電力系統の設計05にある程度
考慮することができる。しかしながら、自己発生磁場の
影響を充分になくすことはできない。
The self-generated magnetic field reduces the critical current density and critical current of the current limiting element. The effect of this self-generated magnetic field on the current limiting device is predictable and can be taken into account to some extent in power system design 05. However, the influence of self-generated magnetic fields cannot be sufficiently eliminated.

本発明はかかる点に鑑みてなされたものであり、外部お
よび自己発生磁場を遮断し、電力系統の短絡事故に対し
て信頼性高く限流効果を発揮することができる限流装置
を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a current limiting device that can block external and self-generated magnetic fields and exhibit a highly reliable current limiting effect against short-circuit accidents in power systems. With the goal.

[課題を解決するための手段] 本発明名らは、酸化物超電導体物質を用いた限流装置の
開発の経験に基づき、酸化物超電導体物質の本質的特性
である磁場依イj性を克服すべく鋭意検討を重ねた結果
、本発明をするに至った。
[Means for Solving the Problems] Based on the experience of developing current limiting devices using oxide superconductor materials, the present inventors have developed magnetic field dependence, which is an essential characteristic of oxide superconductor materials. As a result of intensive studies to overcome this problem, we have come up with the present invention.

本発明は、酸化物超電導体物質からなる限流素子と、該
限流索子を内包するように超電導磁気シールド部材を配
置したことを特徴とする限流装置である。
The present invention is a current limiting device characterized by comprising a current limiting element made of an oxide superconducting material and a superconducting magnetic shield member disposed to enclose the current limiting cord.

ここで、限流索子および超電導磁気シールド部材に使用
される酸化物超電導体物質は、液体窒素温度で大きい臨
界電流密度等の超電導特性を発揮し、かつ、臨界温度を
境にして常電導体から超電導体に急激に遷移し得るもの
が好ましい。このようなものとして、均質な組織を持つ
酸化物超電導体物質が挙げられる。酸化物超電導体物質
の常電導状態での固有抵抗値は、金属系超電導体物質に
比べて100倍以上大きい。このため、酸化物超電導体
物質を用いた限流索子は、短絡電流を抑制する限流効果
が大きい。例えば、臨界温度(Tc )が約90に以下
であるLnBa2Cu10y(Ln:レアアース元素)
  Tcが80ないし110にであるBi25r2Ca
Cu20sや(B i、Pb)2  S r2  Ca
’2  Cu30to等のBi系、並びにTcが80な
いし125にであるT、Q 、BaCaCu20.、、
やTJ? Ba2Ca。
Here, the oxide superconductor material used for the current limiting rope and the superconducting magnetic shield member exhibits superconducting properties such as a large critical current density at liquid nitrogen temperature, and becomes a normal conductor at the critical temperature. A material that can rapidly transition from a superconductor to a superconductor is preferable. An example of such a material is an oxide superconductor material having a homogeneous structure. The specific resistance value of an oxide superconductor material in a normal conducting state is more than 100 times larger than that of a metallic superconductor material. Therefore, a current limiting rope using an oxide superconductor material has a large current limiting effect of suppressing short circuit current. For example, LnBa2Cu10y (Ln: rare earth element) whose critical temperature (Tc) is about 90 or less
Bi25r2Ca with Tc between 80 and 110
Cu20s and (B i, Pb)2 S r2 Ca
'2 Bi type such as Cu30to, and T, Q, BaCaCu20. ,,
Or TJ? Ba2Ca.

Cu30a、s等のTjl系が挙げられる。Examples include Tjl-based materials such as Cu30a and s.

限流素子の形状は、自己発生磁場の影響を避けるために
無誘導配線型にすることが好ましい。第4図は、無誘導
配線型の限流素子の平面図である。
The shape of the current limiting element is preferably a non-inductive wiring type in order to avoid the influence of a self-generated magnetic field. FIG. 4 is a plan view of a non-inductive wiring type current limiting element.

図中40は、限流索子である。限流素子40は酸化物超
電導体物質41と、端子部42とで構成されている。自
己発生磁場は、臨界電流、臨界電流密度を低下させ、超
電導磁気シールド部材の磁気シールド作用に悪影響を及
ぼす。しかし、このような無誘導配線型の限流素子は、
ジグザグ形状により自己発生磁場を相互に打ち消す。ま
た、無誘導配線型にすることにより、限流素子の小型化
が図れる。
40 in the figure is a current limiting rope. The current limiting element 40 is composed of an oxide superconductor material 41 and a terminal portion 42 . The self-generated magnetic field reduces the critical current and critical current density, and has an adverse effect on the magnetic shielding effect of the superconducting magnetic shielding member. However, such a non-inductive wiring type current limiting element,
The zigzag shape allows self-generated magnetic fields to cancel each other out. Furthermore, by using a non-inductive wiring type, the current limiting element can be made smaller.

限流索子の1個当りの電流容量は、臨界電流未満に設定
するので、必要に応じて限流素子を複数個並列に設置し
て電流容量を調整する。
Since the current capacity of each current-limiting cable is set to be less than the critical current, the current capacity may be adjusted by installing a plurality of current-limiting elements in parallel as necessary.

限流素子を製造する方法は、例えば、溶融した酸化物超
電導体物質をスクリーン印刷、ドクターブレード、押出
被覆等の方法で基板上に形成してシート状体を視、それ
を所Y31形状に打ち抜くものや、金属管内に酸化物m
ホ導体物質を充填して金属管ごと加熱処理するもの等が
挙げられる。
A method for manufacturing a current limiting element is, for example, by forming a molten oxide superconductor material on a substrate by a method such as screen printing, doctor blade, extrusion coating, etc., forming a sheet-like material, and punching it into a Y31 shape. Oxide m inside objects or metal pipes
Examples include those in which the metal tube is filled with a conductor material and heat-treated together with the metal tube.

また、超電導磁気シールド部材としては、プラズマスプ
レー等の方法によって金属、セラミックス基体上に酸化
物超電導体物質層を成膜するものが挙げられる。さらに
、酸化物超電導体物質を用いて直接磁気シールド部材を
成型し・でもよい=すなわち、磁気シールド部材が、限
流素子を内包し、少なくとも限流索子と対向する部分に
酸化物超電導体物質層を有しており、外部からの磁場お
よび自己発生磁場を遮断するものであればよい。
Examples of superconducting magnetic shielding members include those in which an oxide superconducting material layer is formed on a metal or ceramic substrate by a method such as plasma spraying. Furthermore, the magnetic shield member may be directly molded using an oxide superconductor material. That is, the magnetic shield member includes a current limiting element, and at least the portion facing the current limiting cord is made of an oxide superconductor material. Any material may be used as long as it has a layer and blocks external magnetic fields and self-generated magnetic fields.

[作用] 本発明の限流装置は、酸化物超電導体物質からなる限流
素子と、該限流素子を内包するように超電導磁気シール
ド部材を配置したことを特徴とする。
[Function] The current limiting device of the present invention is characterized by having a current limiting element made of an oxide superconductor material and a superconducting magnetic shield member disposed to enclose the current limiting element.

酸化物超電導体物質は、臨界温度以下の温度で完全反磁
性、すなわち、マイスナー効果により外部からの磁束を
シールドする。このシールド効果は、以下の一般式によ
って算出することができる。
Oxide superconductor materials are completely diamagnetic at temperatures below their critical temperature, ie, they shield external magnetic flux due to the Meissner effect. This shielding effect can be calculated using the following general formula.

B、閤μ。・D◆Jc ここで、B’Aはシールド効果、μ。は真空透磁率、D
は酸化物超電導体物質の厚さ、Jcは臨界7rS流密度
をそれぞれ表わす。
B, 閤μ.・D◆Jc Here, B'A is the shielding effect, μ. is vacuum permeability, D
represents the thickness of the oxide superconductor material, and Jc represents the critical 7rS flow density, respectively.

上式で酸化物超電導体物質厚さDを変化させることによ
って、シールド効果を調節することができる。
By varying the oxide superconductor material thickness D in the above equation, the shielding effect can be adjusted.

したがって、酸化物超電導体物質層を有する超電導・磁
気シールド部材が磁気シールド効果を充分に発揮して外
部磁場から限流素子を保護することができる。
Therefore, the superconducting/magnetic shielding member having the oxide superconductor material layer can sufficiently exhibit the magnetic shielding effect and protect the current limiting element from the external magnetic field.

また、限流索子を無誘導配線型にすることにより、自己
発生磁場を抑制することができる。
Furthermore, by making the current limiting rope a non-inductive wiring type, self-generated magnetic fields can be suppressed.

この結果、限流素子が磁場の影響を受けず、安定して限
流効果を発押することができる。
As a result, the current limiting element is not affected by the magnetic field and can stably exert a current limiting effect.

〔実施例] 以下、本発明の限流装置を図面を参照して説明する。〔Example] Hereinafter, the current limiting device of the present invention will be explained with reference to the drawings.

第1図ないし第3図は、本発明の限流装置の断面図であ
る。なお、図中遮断器等の付加的回路は省略する。第1
図中10は、限流素子である。限流素子10は電力系統
を構成する母線ケーブル11に接続されている。限流素
子10は、母線ケーブル11と共にクライオスタット1
2内に載置されている。クライオスタット12は、酸化
物超電導体物質を臨界温度以下に冷却するための液体窒
素を充填している冷媒室13と:冷媒室13の外周面に
設けられ、内部を真空断熱する断熱層14とで構成され
ている。冷媒室13の内周面には酸化物超電導体物質層
15が形成されている。
1 to 3 are cross-sectional views of the current limiting device of the present invention. Note that additional circuits such as circuit breakers are omitted in the figure. 1st
10 in the figure is a current limiting element. The current limiting element 10 is connected to a bus cable 11 that constitutes a power system. The current limiting element 10 is connected to the cryostat 1 together with the bus cable 11.
It is placed in 2. The cryostat 12 consists of a refrigerant chamber 13 filled with liquid nitrogen for cooling the oxide superconductor material below a critical temperature, and a heat insulating layer 14 provided on the outer circumferential surface of the refrigerant chamber 13 to vacuum insulate the inside. It is configured. An oxide superconductor material layer 15 is formed on the inner peripheral surface of the refrigerant chamber 13 .

なお、酸化物超電導体物質層15は、冷媒室13の西周
面全部に形成してもよいし、磁気シールド効果を発揮す
る程度で冷媒室13の内周面の一部に形成してもよい。
Note that the oxide superconductor material layer 15 may be formed on the entire west peripheral surface of the refrigerant chamber 13, or may be formed on a part of the inner peripheral surface of the refrigerant chamber 13 to the extent that it exhibits a magnetic shielding effect. .

また、クライオスタットに酸化物超電導体物質層15を
形成せず、限流素子に直接酸化物超電導体物質層15を
形成してもよい。
Alternatively, the oxide superconductor material layer 15 may be formed directly on the current limiting element without forming the oxide superconductor material layer 15 on the cryostat.

第2図、第3図中で第1図と重複する部分は、第1図と
同じ符号を付して、説明は省略する。
The parts in FIGS. 2 and 3 that overlap with those in FIG. 1 are designated by the same reference numerals as in FIG. 1, and the explanation thereof will be omitted.

f12図中20は、超電導磁気シールド筒である。20 in the f12 diagram is a superconducting magnetic shield tube.

超電導磁気シールド筒20の外周面には酸化物超電導体
物質層21が形成されている。また、超電導磁気シール
ドn20の内部には母線ケーブル11に接続されている
限流素子10が載置されている。この超電導磁気シール
ド筒20がクライオスタット22内に載置されている。
An oxide superconductor material layer 21 is formed on the outer peripheral surface of the superconducting magnetic shield tube 20 . Further, a current limiting element 10 connected to the bus cable 11 is placed inside the superconducting magnetic shield n20. This superconducting magnetic shield tube 20 is placed inside a cryostat 22.

第3図中30は、酸化物超電導体物質からなる平板であ
る。限流素子10は、2枚の対向した平板30の間に載
置されており、1枚の平板に対して2個で計4個の支持
体31により固定されている。2枚の・「板30に固定
された限流索子1oがクライオスタット32内に載置さ
れている。
In FIG. 3, 30 is a flat plate made of an oxide superconductor material. The current limiting element 10 is placed between two opposing flat plates 30, and is fixed by a total of four supports 31, two for each flat plate. Two current-limiting cables 1o fixed to a plate 30 are placed in a cryostat 32.

本発明の限流装置は、上記に示した例に限られない。The current limiting device of the present invention is not limited to the example shown above.

本発明の効果を明確にするために以下に実験例を示す。Experimental examples are shown below to clarify the effects of the present invention.

実験例 まず、粒径が約10μmYBa2 Cu、07の仮焼粉
と、セルロース系バインダーと、セロソルブ溶媒を混合
して充分に混和させた。この混和物を用いてドクターブ
レード法により厚さ約1 vlImのグリーンシートを
作製した。このグリーンシートを第4図に示す無誘導配
線型に打ち抜いた。このときの線幅は10mmとした。
Experimental Example First, YBa2 Cu, 07 calcined powder having a particle size of approximately 10 μm, a cellulose binder, and a cellosolve solvent were mixed and thoroughly mixed. Using this mixture, a green sheet with a thickness of about 1 vlIm was produced by a doctor blade method. This green sheet was punched out into the non-inductive wiring type shown in FIG. The line width at this time was 10 mm.

これに02気流中で400℃×12時間の熱処理を施し
、3℃/分の冷却速度で冷却した。このようにして限流
素子を作製した。このときの酸化物超電導体線長は、7
50 mmであった。
This was subjected to heat treatment at 400° C. for 12 hours in an 02 air flow, and cooled at a cooling rate of 3° C./min. A current limiting element was produced in this way. The oxide superconductor line length at this time is 7
It was 50 mm.

得られた限流素子の両端部にAgを蒸着して端子部を形
成した。その後、端子部にCu線を半田付けした。
Ag was vapor-deposited on both ends of the obtained current limiting element to form terminal parts. Thereafter, a Cu wire was soldered to the terminal portion.

次に、外径100IIIlφ、長さ300 amのSU
S製の円筒の外周面にAgをメタルスプレー法により被
着した。さらに、このAg上に粒径が約25t1mであ
るHoBa2 Cus 07粉末を低圧プラズマスプレ
ー法により約厚さ0.5i+mでスプレーしてHoBa
2CusOy層を形成した。その後、この円筒に02気
流中で700℃×6時間の熱処理を施した。さらに、A
g被着から熱処理までの工程をもう一度繰り返した。こ
のようにして、超電導磁気シールド筒を作製した。
Next, an SU with an outer diameter of 100IIIlφ and a length of 300 am
Ag was deposited on the outer peripheral surface of a cylinder made of S by a metal spray method. Furthermore, HoBa2 Cus 07 powder with a particle size of about 25t1m was sprayed onto this Ag to a thickness of about 0.5i+m using a low-pressure plasma spray method to form a HoBa
2CusOy layers were formed. Thereafter, this cylinder was subjected to heat treatment at 700° C. for 6 hours in an 02 air stream. Furthermore, A
g The steps from deposition to heat treatment were repeated once again. In this way, a superconducting magnetic shield cylinder was produced.

上記の限流素子を超電導磁気シールド筒内に載置して、
本発明の限流装置を得た。
The above current limiting element is placed inside a superconducting magnetic shield cylinder,
A current limiting device of the present invention was obtained.

得られた限流装置の臨界電流および短絡ピーク電流を調
べた。その結果を下記第1表に示す。なお、臨界電流は
、限流装置を液体窒素中に浸漬し、地球磁場以外の外部
磁場が無視できる状態、および電磁石により25.75
ガウスの磁場を印加した状態で測定した。また、短絡ピ
ーク電流は、第5図に示す回路を用いて、25ガウスの
磁場を印加した状態で以下のように行った。図中50は
直流定電圧電源である。直流定電圧電源5oに限流素子
51が接続されている。直流定電圧電源5゜と限流索子
51の間にスイッチ52および抵抗53が並列に接続さ
れている。まず、直流定電圧電源50から60Aの定常
電流を流す。次に、回路中のスイッチ52を開いて、短
絡を起こさせる。
The critical current and short circuit peak current of the obtained current limiting device were investigated. The results are shown in Table 1 below. Note that the critical current is 25.75 when the current limiting device is immersed in liquid nitrogen, where external magnetic fields other than the earth's magnetic field can be ignored, and when an electromagnet is used.
Measurements were made with a Gaussian magnetic field applied. Further, the short circuit peak current was measured as follows using the circuit shown in FIG. 5 while applying a magnetic field of 25 Gauss. In the figure, 50 is a DC constant voltage power supply. A current limiting element 51 is connected to the DC constant voltage power supply 5o. A switch 52 and a resistor 53 are connected in parallel between the DC constant voltage power source 5° and the current limiting cable 51. First, a steady current of 60 A is applied from the DC constant voltage power supply 50. Next, switch 52 in the circuit is opened to cause a short circuit.

このときの電流値をallJ定する。The current value at this time is determined as allJ.

比較として、超電導磁気シールド筒を使用せず、出液索
子のみの臨界電流および短絡ピーク電流を同様にして調
べた。その結果を下記第1表に併記する。
For comparison, the critical current and short-circuit peak current of only the draining cord were similarly investigated without using the superconducting magnetic shield tube. The results are also listed in Table 1 below.

ff51表 第1表から明らかなように、本発明の限流索子(実験例
)は、磁場の有無に関係なく大きい臨界電流値を示し、
しかも短絡ピーク電流値が小さいものであった。これに
対して、従来の限流装置(比較例)は、磁場の印加によ
り臨界電流値が低下し、しかも短絡ピーク電流値が大き
いものであった。
As is clear from Table 1 of ff51, the current limiting rope of the present invention (experimental example) shows a large critical current value regardless of the presence or absence of a magnetic field,
Moreover, the short circuit peak current value was small. On the other hand, in the conventional current limiting device (comparative example), the critical current value decreased due to the application of a magnetic field, and the short circuit peak current value was large.

〔発明の効果] 以上説明した如く、本発明の限流装置は、外部および自
己発生磁場を遮断し、電力系統の短絡事故に対して信頼
性高く限流効果を発揮することができ、しかも小型化が
可能なものである。
[Effects of the Invention] As explained above, the current limiting device of the present invention is capable of blocking external and self-generated magnetic fields, exhibiting a highly reliable current limiting effect against short-circuit accidents in power systems, and is small in size. It is possible to change the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の限流装置の断面図、第4
図は無誘導配線型の限流素子の平面図、第5図は短絡ピ
ーク電流測定回路図である。 10・・・限流索子、11・・・母線ケーブル、12゜
22.32・・・クライオスタット、13・・・冷媒室
、14・・・断熱層、15.21・・・酸化物超電導体
物質層、20・・・超電導磁気シールド筒、30・・・
平板、・・・支持体。
1 to 3 are cross-sectional views of the current limiting device of the present invention;
The figure is a plan view of a non-inductive wiring type current limiting element, and FIG. 5 is a short circuit peak current measurement circuit diagram. DESCRIPTION OF SYMBOLS 10... Current limiting cable, 11... Bus cable, 12°22.32... Cryostat, 13... Refrigerant chamber, 14... Heat insulation layer, 15.21... Oxide superconductor Material layer, 20... Superconducting magnetic shield tube, 30...
Flat plate... support.

Claims (1)

【特許請求の範囲】[Claims]  酸化物超電導体物質からなる限流素子と、該限流素子
を内包するように超電導磁気シールド部材を配置したこ
とを特徴とする限流装置。
1. A current limiting device comprising: a current limiting element made of an oxide superconductor; and a superconducting magnetic shield member disposed to enclose the current limiting element.
JP1283759A 1989-10-31 1989-10-31 Current limiting device Pending JPH03145169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283759A JPH03145169A (en) 1989-10-31 1989-10-31 Current limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283759A JPH03145169A (en) 1989-10-31 1989-10-31 Current limiting device

Publications (1)

Publication Number Publication Date
JPH03145169A true JPH03145169A (en) 1991-06-20

Family

ID=17669749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283759A Pending JPH03145169A (en) 1989-10-31 1989-10-31 Current limiting device

Country Status (1)

Country Link
JP (1) JPH03145169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115303A (en) * 2008-11-12 2010-05-27 You Co Ltd Pelvis correcting belt
EP3251821A1 (en) * 2016-06-03 2017-12-06 Airbus Operations GmbH Magnet press for pressing a component, in particular thermoplastic consolidation and/or forming press, and method for pressing such a component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115303A (en) * 2008-11-12 2010-05-27 You Co Ltd Pelvis correcting belt
EP3251821A1 (en) * 2016-06-03 2017-12-06 Airbus Operations GmbH Magnet press for pressing a component, in particular thermoplastic consolidation and/or forming press, and method for pressing such a component
US10518496B2 (en) 2016-06-03 2019-12-31 Airbus Operations Gmbh Press for pressing a thermoplastic composite component

Similar Documents

Publication Publication Date Title
US7586717B2 (en) Electrical device for current conditioning
WO2017039299A1 (en) High-temperature superconducting coil having smart insulation, high-temperature superconducting wire used therefor, and manufacturing method therefor
DE4418050A1 (en) Hollow cylindrical, high-temperature superconductor and its use
EP0315976A2 (en) Superconducting current limiting apparatus
JP3073993B2 (en) Fault current limiter
US7180396B2 (en) Superconducting current limiting device with magnetic field assisted quenching
EP0406862B2 (en) Apparatus for using superconductivity
US6344956B1 (en) Oxide bulk superconducting current limiting element current
US20180268975A1 (en) Electric Coil System For Inductive-Resistive Current Limitation
JP2002525790A (en) Protected superconducting component and its manufacturing method
US20140066315A1 (en) Superconductive device without an external shunt system, in particular with a ring shape
JP3977884B2 (en) Current limiting element, current limiter using oxide superconductor, and manufacturing method thereof
JPH03145169A (en) Current limiting device
US3158502A (en) Method of manufacturing electrically insulated devices
JPH06132571A (en) Current limiting element and current limiting device
Yamagata et al. Highly sensitive magnetic sensor made with a superconducting Y-Ba-Cu-O thick film
Vertelis et al. Superconducting protector against electromagnetic pulses based on YBCO film prepared on an Al2O3 substrate with a CeO2 sublayer
WO2016020715A1 (en) Current limiter arrangement and method for manufacturing a current limiter arrangement
JPH02281765A (en) Superconducting element using oxide superconductor thin-film
JP4119403B2 (en) Superconducting current limiting element
JPH03226228A (en) Current limit resistance device
JPH03123005A (en) Superconducting magnet device
JPH06295833A (en) Superconducting-normal conducting transition type current limiter
JPH05250932A (en) Oxide superconductive current limiting conductor and its manufacture
JPH07272959A (en) Superconducting current limiter