JPH07272959A - Superconducting current limiter - Google Patents

Superconducting current limiter

Info

Publication number
JPH07272959A
JPH07272959A JP6059506A JP5950694A JPH07272959A JP H07272959 A JPH07272959 A JP H07272959A JP 6059506 A JP6059506 A JP 6059506A JP 5950694 A JP5950694 A JP 5950694A JP H07272959 A JPH07272959 A JP H07272959A
Authority
JP
Japan
Prior art keywords
superconductor
current limiter
superconducting
fault current
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6059506A
Other languages
Japanese (ja)
Inventor
Mayuko Awata
真由子 粟田
Shinji Yoshida
慎司 吉田
Shuichiro Motoyama
修一郎 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Chubu Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Chubu Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP6059506A priority Critical patent/JPH07272959A/en
Publication of JPH07272959A publication Critical patent/JPH07272959A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a superconducting current limiter in which a superconductor is not quenched in an ordinary power transmission operation, in which a superconducting state can be maintained and in which the superconductor can be returned to the super-conducting state in a short time after it has been quenched in an abnormality. CONSTITUTION:A superconducting current limiter S is provided with a superconductor 3 which is formed on the outer circumferential face of a cylindrical support 11 and with a coil 5 which is wound on the outer circumference of the superconductor 3 and which is connected to a power line. Uneven parts 4 are formed on the outer circumferential face of the superconductor 3. Then, the critical current value of the superconducting current limiter S can be increased by the uneven parts 4 on the superconductor 3, the cooling time of the superconductor 3 is shortened, and the return time to a superconducting state can be shortened. In addition, the density of the uneven parts 4 is made denser the closer they approach end parts of the superconductor 3, and the height of the uneven parts 4 is formed to be higher the closer they approach the end parts of the superconductor 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 この発明は、超電導磁気遮蔽体
の磁気遮蔽効果を利用した超電導限流器に関するもので
ある。
TECHNICAL FIELD The present invention relates to a superconducting fault current limiter utilizing the magnetic shielding effect of a superconducting magnetic shield.

【0002】[0002]

【従来の技術】 近年、電力需要の増加に伴って送配電
系統の大容量化、大規模化が進み、落雷等の事故時には
非常に大きな短絡電流が流れる傾向にある。この短絡電
流から送配電機器を守るために変圧器や遮断器の大容量
化を図らなければならなかった。そこで、送配電系統に
事故が起こった際に生じる短絡電流を抑制するために限
流器を設置し、その限流器のインピーダンスにより短絡
電流を所定レベル以下に抑制する方法が提案されてい
る。
2. Description of the Related Art In recent years, as the demand for electric power has increased, the transmission and distribution systems have become larger in capacity and larger in scale, and a very large short-circuit current tends to flow in the event of an accident such as a lightning strike. In order to protect power transmission and distribution equipment from this short-circuit current, it was necessary to increase the capacity of transformers and circuit breakers. Therefore, a method has been proposed in which a current limiting device is installed in order to suppress a short circuit current that occurs when an accident occurs in the power transmission and distribution system, and the short circuit current is suppressed to a predetermined level or less by the impedance of the current limiting device.

【0003】このような超電導限流器として図7に示す
ような構造のものが知られている。すなわち、超電導体
よりなる円筒体11は、鉄系材料により形成された円柱
状のコア12の外周に配置されている。コイル14はエ
ナメル線などの被覆線よりなり、円筒体11の外周に断
熱材13を介して巻回状態で配置され、送電線などの電
力線に接続されている。
As such a superconducting fault current limiter, one having a structure as shown in FIG. 7 is known. That is, the cylindrical body 11 made of a superconductor is arranged on the outer periphery of the cylindrical core 12 made of an iron-based material. The coil 14 is formed of a covered wire such as an enameled wire, is arranged in a wound state on the outer periphery of the cylindrical body 11 with a heat insulating material 13, and is connected to a power line such as a power transmission line.

【0004】そして、通常運転時はコイル14によって
発生する磁場が超電導磁気遮蔽体の磁気遮蔽効果(マイ
スナー効果)により排斥されるのでインダクタンスは極
めて小さくなると同時に、コイル14のインピーダンス
が小さくなる。そのため、コイル14を介して送電を行
う場合の送電損失は少なくなる。
During normal operation, the magnetic field generated by the coil 14 is rejected by the magnetic shielding effect (Meissner effect) of the superconducting magnetic shield, so that the inductance becomes extremely small and the impedance of the coil 14 becomes small at the same time. Therefore, power transmission loss when power is transmitted through the coil 14 is reduced.

【0005】しかし、一旦事故が発生し、短絡電流が流
れると超電導磁気遮蔽体が常電導体に転移(クエンチ)
し、コイル14にインダクタンスが生じて、インピーダ
ンスが大きくなり、短絡電流を抑制する。この超電導磁
気遮蔽体を超電導状態にするには極低温にする必要があ
る。そのため、少なくとも超電導磁気遮蔽体を液体窒素
等の冷却液に浸漬している。
However, once an accident occurs and a short-circuit current flows, the superconducting magnetic shield is transferred to the normal conductor (quenching).
However, an inductance is generated in the coil 14 to increase the impedance and suppress a short circuit current. To bring this superconducting magnetic shield into a superconducting state, it is necessary to bring it to an extremely low temperature. Therefore, at least the superconducting magnetic shield is immersed in a cooling liquid such as liquid nitrogen.

【0006】[0006]

【発明が解決しようとする課題】 ところで、このよう
な超電導限流器には次のような事項が要求される。第1
の要求項目は通常送電時には超電導体がクエンチせず、
コイルにより作られる磁場を遮蔽することである。第2
の要求項目は異常時に超電導体はクエンチして温度上昇
するが、その後の超電導状態への復帰は所定の短時間、
例えば500kV用で0.5〜1秒以内であることであ
る。
By the way, the following matters are required for such a superconducting fault current limiter. First
The requirement is that the superconductor does not quench during normal power transmission.
It is to shield the magnetic field created by the coil. Second
The requirement is that when an abnormality occurs, the superconductor is quenched and its temperature rises, but the subsequent return to the superconducting state takes a predetermined short time.
For example, it is within 0.5 to 1 second for 500 kV.

【0007】第1の要求項目を満たすために、臨界電流
又は臨界磁束などの超電導体の性能を向上させる方法と
超電導体の厚さを厚くする方法が考えられる。ここで、
超電導体の性質と超電導限流器の臨界電流との間には次
のような(1)式の関係がある。
In order to satisfy the first requirement, a method of improving the performance of the superconductor such as a critical current or a critical magnetic flux and a method of increasing the thickness of the superconductor can be considered. here,
The following relation (1) exists between the property of the superconductor and the critical current of the superconducting fault current limiter.

【0008】Jc×δ×L=Ic×N ……(1) 但し、Jcは超電導体の臨界電流密度、δは超電導体の
厚さ、Lは超電導体の長さ、Icは超電導限流器の臨界
電流値すなわち動作開始電流値、Nはコイルの全ターン
数を表す。
Jc × δ × L = Ic × N (1) where Jc is the critical current density of the superconductor, δ is the thickness of the superconductor, L is the length of the superconductor, and Ic is the superconducting fault current limiter. Critical current value, that is, the operation start current value, and N represents the total number of turns of the coil.

【0009】上式より、Lが一定の場合Jc又はδを大
きくする必要があるが、現状では超電導体の性能は十分
ではないためJcを大きくすることはできず、従ってδ
つまり超電導体の厚さを厚くする必要がある。
From the above equation, it is necessary to increase Jc or δ when L is constant, but at present, Jc cannot be increased because the performance of the superconductor is not sufficient.
That is, it is necessary to increase the thickness of the superconductor.

【0010】ところで、図8に示すように、超電導体が
クエンチした後に再び超電導状態へ復帰する時間と超電
導体の温度差との間には、厚さが1mmから10μmまで
薄くなるほど復帰時間が短縮されるという関係がある。
従って、上記第2の要求項目を満たすためには、超電導
体の厚さを薄くする必要がある。このように第1と第2
の両方の要求項目がある結果、超電導体の厚さについて
相反する条件が要求され、設計上困難を来しているとい
う問題があった。
By the way, as shown in FIG. 8, between the time for the superconductor to return to the superconducting state again after it is quenched and the temperature difference between the superconductors, the thinner the thickness is from 1 mm to 10 μm, the shorter the recovery time is. There is a relationship of being done.
Therefore, in order to satisfy the second requirement, it is necessary to reduce the thickness of the superconductor. Thus the first and second
As a result, there is a problem in that contradictory conditions regarding the thickness of the superconductor are required, which causes difficulty in design.

【0011】この発明はこのような従来技術に存在する
問題に着目してなされたものである。その目的とすると
ころは、通常送電時には超電導体がクエンチせず、超電
導状態を維持することができるとともに、異常時に超電
導体がクエンチした後超電導状態への復帰を短時間で行
うことができる超電導限流器を提供することにある。
The present invention has been made by paying attention to the problems existing in the prior art. Its purpose is to prevent the superconductor from being quenched during normal power transmission, to maintain the superconducting state, and to return to the superconducting state in a short time after the superconductor is quenched during an abnormal condition. It is to provide a sink.

【0012】[0012]

【課題を解決するための手段】 上記目的を達成するた
めに、請求項1に記載の発明の超電導限流器では、筒状
の超電導体と、その超電導体の内周又は外周に巻回され
て電力線に接続されるコイルとを備え、低温雰囲気中で
超電導状態が発現される超電導限流器において、前記超
電導体の少なくとも外表面を凹凸状に形成したことを特
徴とするものである。
In order to achieve the above object, in the superconducting fault current limiter of the invention described in claim 1, a cylindrical superconductor and an inner circumference or an outer circumference of the superconductor. In a superconducting fault current limiter that has a coil connected to a power line and exhibits a superconducting state in a low temperature atmosphere, at least the outer surface of the superconductor is formed in an uneven shape.

【0013】また、請求項2に記載の発明では、請求項
1に記載の発明において、さらに超電導体の端部ほど凹
凸の密度を密にしたことを特徴とするものである。さら
に、請求項3に記載の発明では、請求項1に記載の発明
において、さらに超電導体の端部ほど凹凸の高さを高く
形成したことを特徴とするものである。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the density of the unevenness is further increased toward the end of the superconductor. Further, the invention according to claim 3 is characterized in that, in the invention according to claim 1, the height of the unevenness is further increased toward the end of the superconductor.

【0014】[0014]

【作用】 この発明の超電導限流器では、筒状の超電導
体の少なくとも外表面が凹凸状に形成されている。この
ため、超電導体の表面積が大きくなって液体窒素等の冷
却液に対する接触面積が増えて冷却効果が大きくなり、
超電導体が効果的に冷却される。この超電導体の温度と
臨界電流値との間には逆比例する関係があることから、
超電導限流器の臨界電流値が大きくなる。しかも、超電
導体の表面に沿う長さが長くなって超電導限流器の臨界
電流値が大きくなる。従って、通常送電時には超電導体
がよりクエンチしにくくなり、超電導状態を維持するこ
とができる。
In the superconducting fault current limiter of the present invention, at least the outer surface of the cylindrical superconductor is formed in an uneven shape. For this reason, the surface area of the superconductor increases, the contact area with the cooling liquid such as liquid nitrogen increases, and the cooling effect increases,
The superconductor is cooled effectively. Since there is an inversely proportional relationship between the temperature of this superconductor and the critical current value,
The critical current value of the superconducting fault current limiter becomes large. Moreover, the length along the surface of the superconductor becomes long, and the critical current value of the superconducting fault current limiter becomes large. Therefore, during normal power transmission, the superconductor is less likely to be quenched, and the superconducting state can be maintained.

【0015】加えて、超電導体の表面積の増加に伴う冷
却効果の向上により、異常時に超電導体がクエンチして
温度上昇した後、超電導状態まで冷却される時間が短縮
される。その結果、超電導状態への復帰が短時間で行わ
れる。
In addition, the improvement of the cooling effect with the increase of the surface area of the superconductor shortens the time for cooling to the superconducting state after the superconductor is quenched and the temperature rises at the time of an abnormality. As a result, the return to the superconducting state is performed in a short time.

【0016】[0016]

【実施例】 以下に、この発明を具体化した実施例につ
いて図面に従って説明する。図1に示すように、円筒状
をなす支持体1はその外周面が凹凸状に形成され、円柱
状のコア2の外周に配置されている。超電導体3はこの
支持体1の外周に、約100μmの厚さの薄膜状に被覆
形成されている。この支持体1はマグネシアなどの絶縁
材料により形成され、その表面に超電導体3が被覆形成
されている。超電導体3はビスマス(Bi):ストロンチ
ウム(Sr):カルシウム(Ca):銅(Cu)=2:2:
1:2の組成物などが用いられるが、所定の低温で超電
導性を有する材料であればよい。
Embodiments Embodiments embodying the present invention will be described below with reference to the drawings. As shown in FIG. 1, a cylindrical support 1 has an outer peripheral surface formed in an uneven shape and is arranged on the outer periphery of a cylindrical core 2. The superconductor 3 is formed on the outer periphery of the support 1 so as to form a thin film having a thickness of about 100 μm. The support 1 is made of an insulating material such as magnesia, and the surface thereof is covered with a superconductor 3. The superconductor 3 is bismuth (Bi): strontium (Sr): calcium (Ca): copper (Cu) = 2: 2:
A 1: 2 composition or the like is used, but any material having superconductivity at a predetermined low temperature may be used.

【0017】この超電導体3は粉砕されてアルコールな
どの有機溶剤に分散され、超電導体3のスラリーが形成
される。このスラリーを支持体1にスプレーにて塗布
し、1日程度室温で乾燥した後、890℃で30分から
2時間焼成する。このようにして支持体1表面に超電導
体3の薄膜が形成される。この超電導体3は支持体1の
凹凸面に沿って凹凸部4が形成され、液体窒素などの冷
却液に対する接触面積の増加が図られ、冷却効率が良好
となるようになっている。なお、図1における超電導体
3の厚さとその凹凸部4は大きく誇張して描かれてい
る。また、コア2は軟鉄や珪素鋼板などの鉄系材料によ
り形成され、磁束についての閉回路が構成されている。
The superconductor 3 is crushed and dispersed in an organic solvent such as alcohol to form a slurry of the superconductor 3. This slurry is applied to the support 1 by spraying, dried at room temperature for about one day, and then baked at 890 ° C. for 30 minutes to 2 hours. In this way, a thin film of the superconductor 3 is formed on the surface of the support 1. In the superconductor 3, the uneven portion 4 is formed along the uneven surface of the support 1, the contact area with a cooling liquid such as liquid nitrogen is increased, and the cooling efficiency is improved. Note that the thickness of the superconductor 3 and the uneven portion 4 thereof in FIG. 1 are greatly exaggerated in the drawing. Further, the core 2 is formed of an iron-based material such as soft iron or a silicon steel plate, and forms a closed circuit for magnetic flux.

【0018】コイル5はエナメル線などの被覆電線より
なり、超電導体3の外周に巻回されている。このコイル
5は一定の線径で所定回数巻回されて、1層に形成され
ている。上記超電導体3の長さは巻回されたコイル5の
超電導体3に沿う長さよりも長く形成され、コイル5に
発生する磁束が超電導体3より外方へ漏れないようにし
て、超電導限流器Sの送電効率を向上させるようにして
いる。そして、この超電導限流器Sは液体窒素や液体ヘ
リウムなどの冷却液中に浸漬され、所定の極低温に冷却
保持されている。
The coil 5 is made of a covered electric wire such as an enameled wire, and is wound around the outer circumference of the superconductor 3. The coil 5 is wound a predetermined number of times with a constant wire diameter to form a single layer. The length of the superconductor 3 is formed longer than the length of the wound coil 5 along the superconductor 3, so that the magnetic flux generated in the coil 5 does not leak to the outside of the superconductor 3 and the superconducting current limit The power transmission efficiency of the container S is improved. The superconducting fault current limiter S is immersed in a cooling liquid such as liquid nitrogen or liquid helium, and is cooled and maintained at a predetermined cryogenic temperature.

【0019】さて、この実施例の超電導限流器Sは、そ
の超電導体3がその外周面に凹凸部4を有している。こ
のため、超電導体3の外周面の表面積が大きくなって液
体窒素等の冷却液に対する接触面積が増えて冷却効果が
大きくなる。一般に、超電導限流器Sの臨界電流値は温
度に対して逆比例し、温度が低下すると大きくなること
から、迅速に冷却された超電導限流器Sの臨界電流値は
大きくなる。しかも、超電導体3の表面に沿う長さが長
くなることにより、超電導限流器Sの臨界電流値が大き
くなる。従って、通常送電時には超電導体3が一層クエ
ンチしにくくなり、超電導状態を確実に維持することが
できる。
In the superconducting fault current limiter S of this embodiment, the superconductor 3 has the uneven portion 4 on its outer peripheral surface. For this reason, the surface area of the outer peripheral surface of the superconductor 3 is increased, the contact area with the cooling liquid such as liquid nitrogen is increased, and the cooling effect is increased. Generally, the critical current value of the superconducting fault current limiter S is inversely proportional to the temperature and increases as the temperature decreases, so that the critical current value of the rapidly cooled superconducting fault current limiter S increases. Moreover, since the length along the surface of the superconductor 3 becomes long, the critical current value of the superconducting fault current limiter S becomes large. Therefore, during normal power transmission, the superconductor 3 is less likely to be quenched, and the superconducting state can be reliably maintained.

【0020】ちなみに、前述した(1)式、すなわち Jc×δ×L=Ic1 ×N ……(1) に対して、超電導体3の深さをa、凹凸部4の数をbと
すると、次の(2)式の関係が成立する。
By the way, assuming that the above equation (1), that is, Jc × δ × L = Ic 1 × N (1), is assumed that the depth of the superconductor 3 is a and the number of the uneven portions 4 is b. , The following equation (2) holds.

【0021】 Jc×δ×(L+2ab)=Ic2 ×N ……(2) 従って、(2)/(1)より、 Ic2 /Ic1 =(L+2ab)/L ……(3) となる。そこで、超電導体3の長さLが1m、超電導体
3の凹凸部4の深さaが5mm、凹凸部4の数bが20の
場合、この(3)式より1.2となり、2割だけ超電導
限流器Sの臨界電流値が大きくなる。
Jc × δ × (L + 2ab) = Ic 2 × N (2) Therefore, from (2) / (1), Ic 2 / Ic 1 = (L + 2ab) / L (3) Therefore, when the length L of the superconductor 3 is 1 m, the depth a of the concave-convex portion 4 of the superconductor 3 is 5 mm, and the number b of the concave-convex portions 4 is 20, it becomes 1.2 from the formula (3), and 20%. Therefore, the critical current value of the superconducting fault current limiter S increases.

【0022】加えて、超電導体3の表面積の増加に伴う
冷却効果の向上により、異常時に超電導体3がクエンチ
して温度上昇した後、超電導状態まで冷却される時間が
短縮される。このため、異常時にクエンチした状態から
超電導状態への復帰が極めて短時間で行われる。
In addition, due to the improvement of the cooling effect with the increase of the surface area of the superconductor 3, the time for cooling the superconductor 3 to the superconducting state after the quenching of the superconductor 3 in an abnormal condition and the temperature rise is shortened. Therefore, the return from the quenched state at the time of abnormality to the superconducting state is performed in an extremely short time.

【0023】さらに、超電導体3の外周面に凹凸部4を
有し、剛性が向上して耐応力性能が向上することから、
温度変化に伴う収縮や膨張に対する耐性が良好となる。
また、超電導体3の外周面にコイル5を巻回する場合、
超電導体3の外周面に形成された凹凸部4の表面抵抗に
より、コイル5の巻回操作を容易に行うことができる。
そして、コイル5の巻回後の使用時においては、超電導
限流器Sに振動が加わってもコイル5は超電導体3表面
の凹凸部4に係止されているので、移動しにくく、初期
の状態が保持される。
Further, since the outer peripheral surface of the superconductor 3 has the uneven portion 4 to improve the rigidity and the stress resistance performance,
Good resistance to shrinkage and expansion due to temperature change.
When the coil 5 is wound around the outer peripheral surface of the superconductor 3,
Due to the surface resistance of the uneven portion 4 formed on the outer peripheral surface of the superconductor 3, the coil 5 can be easily wound.
When the coil 5 is used after being wound, even if vibration is applied to the superconducting fault current limiter S, the coil 5 is locked to the uneven portion 4 on the surface of the superconductor 3, so that it is difficult to move, and the initial State is retained.

【0024】なお、この発明は前記実施例に限定される
ものではなく、発明の趣旨を逸脱しない範囲で構成を例
えば次のように任意に変更して具体化してもよい。 (1)図2に示すように、超電導体3の両端部3aにお
ける凹凸部4の数を中間部よりも多くすること。このよ
うに構成することにより、両端部3aにおける超電導体
3の臨界電流値を大きくすることができて、超電導限流
器Sの臨界電流値を大きくすることができる。 (2)図3に示すように、超電導体3の両端部3aにお
ける凹凸部4の高さを高くするとともに、超電導体3の
中間部外周にコイル5を巻回すること。このように構成
することにより、コイル5と超電導体3との間の磁束が
遮断されてコイル5の自己インダクタンスを小さくする
ことができる。 (3)コイル5を超電導体3により構成して超電導限流
器Sの性能を向上させること。 (4)超電導体3として、イットリウム系(Y系)のも
の、テルル系(Tl系)のもの、ビスマス(Bi)−スト
ロンチウム(Sr)−カルシウム(Ca)−銅(Cu)−酸素
(O)よりなるビスマス系酸化物やニオブ(Nb)−チ
タン(Ti)、ニオブ(Nb)−スズ(Sn)よりなる
ニオブ合金化合物を用いること。 (5)支持体1を楕円筒状や多角筒状などに構成して、
超電導体3をその外周面に形成すること。また、図4に
示すように、支持体1を波状に形成すること。 (6)コイル5を多層に形成すること。 (7)超電導体3とコイル5との間に断熱材を介装する
こと。 (8)超電導体3の内周にコイル5を巻回すること。 (9)前記実施例において、コア2を省略すること。 (10)図5に示すように、超電導体3を直径の大きい
リング状の超電導体片3bと直径の小さいリング状の超
電導体片3cとを交互に積層して、外周面に凹凸部4を
形成すること。 (11)図6に示すように、超電導体3を円筒状に形成
し、その外周面に凹凸部4を設けること。
The present invention is not limited to the above-described embodiments, but may be embodied by arbitrarily changing the configuration as follows without departing from the spirit of the invention. (1) As shown in FIG. 2, the number of the concave-convex portions 4 on both end portions 3a of the superconductor 3 is set to be larger than that of the intermediate portion. With such a configuration, the critical current value of the superconductor 3 at both ends 3a can be increased, and the critical current value of the superconducting fault current limiter S can be increased. (2) As shown in FIG. 3, the height of the uneven portions 4 at both ends 3a of the superconductor 3 is increased, and the coil 5 is wound around the outer periphery of the intermediate portion of the superconductor 3. With this configuration, the magnetic flux between the coil 5 and the superconductor 3 is blocked, and the self-inductance of the coil 5 can be reduced. (3) To improve the performance of the superconducting fault current limiter S by configuring the coil 5 with the superconductor 3. (4) As the superconductor 3, yttrium-based (Y-based), tellurium-based (Tl-based), bismuth (Bi) -strontium (Sr) -calcium (Ca) -copper (Cu) -oxygen (O). And a niobium alloy compound made of niobium (Nb) -titanium (Ti) or niobium (Nb) -tin (Sn). (5) The support 1 is formed in an elliptic cylinder shape, a polygonal cylinder shape, or the like,
Form the superconductor 3 on the outer peripheral surface thereof. Further, as shown in FIG. 4, the support 1 should be formed in a wavy shape. (6) Forming the coil 5 in multiple layers. (7) A heat insulating material is interposed between the superconductor 3 and the coil 5. (8) Winding the coil 5 around the inner circumference of the superconductor 3. (9) Omitting the core 2 in the above embodiment. (10) As shown in FIG. 5, the superconductor 3 is formed by alternately stacking a ring-shaped superconductor piece 3b having a large diameter and a ring-shaped superconductor piece 3c having a small diameter to form an uneven portion 4 on the outer peripheral surface. To form. (11) As shown in FIG. 6, the superconductor 3 is formed in a cylindrical shape, and the uneven portion 4 is provided on the outer peripheral surface thereof.

【0025】[0025]

【発明の効果】 以上詳述したように、この発明によれ
ば、通常送電時には超電導体がクエンチせず、超電導状
態を確実に維持することができるとともに、異常時に超
電導体がクエンチした後超電導状態への復帰を短時間で
行うことができるという優れた効果を奏する。
As described above in detail, according to the present invention, the superconductor is not quenched during normal power transmission, and the superconducting state can be surely maintained, and at the same time, the superconductor is quenched after an abnormal condition. It has an excellent effect that it is possible to return to the system in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明を具体化した実施例の超電導限流器
を示す要部断面図である。
FIG. 1 is a cross-sectional view of essential parts showing a superconducting fault current limiter of an embodiment embodying the present invention.

【図2】 この発明の別例を示す超電導限流器の要部断
面図である。
FIG. 2 is a sectional view of a main part of a superconducting fault current limiter showing another example of the present invention.

【図3】 この発明のさらに別例を示す超電導限流器の
要部断面図である。
FIG. 3 is a cross-sectional view of a main part of a superconducting fault current limiter showing still another example of the present invention.

【図4】 この発明の別例を示す超電導限流器の部分断
面図である。
FIG. 4 is a partial cross-sectional view of a superconducting fault current limiter showing another example of the present invention.

【図5】 この発明のさらに別の例を示す超電導限流器
の断面図である。
FIG. 5 is a sectional view of a superconducting fault current limiter showing still another example of the present invention.

【図6】 この発明の別の例を示す超電導限流器の断面
図である。
FIG. 6 is a sectional view of a superconducting fault current limiter showing another example of the present invention.

【図7】 従来の超電導限流器を示す要部断面図であ
る。
FIG. 7 is a cross-sectional view of essential parts showing a conventional superconducting fault current limiter.

【図8】 超電導体の厚さに関し、温度と超電導状態へ
の復帰時間との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the temperature and the return time to the superconducting state regarding the thickness of the superconductor.

【符号の説明】[Explanation of symbols]

3…筒状の超電導体、3a…端部、3b,3c…超電導
体片、3d…表面が凹凸状の超電導体、4…凹凸部、5
…コイル、S…超電導限流器。
3 ... Cylindrical superconductor, 3a ... End part, 3b, 3c ... Superconductor piece, 3d ... Superconductor with uneven surface, 4 ... Uneven part, 5
… Coil, S… Superconducting fault current limiter.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02H 9/02 ZAA Z (72)発明者 本山 修一郎 名古屋市瑞穂区須田町2番56号 日本碍子 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical indication location H02H 9/02 ZAA Z (72) Inventor Shuichiro Motoyama 2-5, Sudamachi, Mizuho-ku, Nagoya-shi Insulator of Japan Within the corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 筒状の超電導体と、その超電導体の内周
又は外周に巻回されて電力線に接続されるコイルとを備
え、低温雰囲気中で超電導状態が発現される超電導限流
器において、 前記超電導体の少なくとも外表面を凹凸状に形成したこ
とを特徴とする超電導限流器。
1. A superconducting fault current limiter comprising a cylindrical superconductor and a coil wound around the inner or outer periphery of the superconductor and connected to a power line, wherein a superconducting state is exhibited in a low temperature atmosphere. A superconducting fault current limiter in which at least an outer surface of the superconductor is formed in an uneven shape.
【請求項2】 請求項1の超電導限流器において、さら
に超電導体の端部ほど凹凸の密度を密にしたことを特徴
とする超電導限流器。
2. The superconducting fault current limiter according to claim 1, wherein the density of the irregularities is further increased toward the end of the superconductor.
【請求項3】 請求項1の超電導限流器において、さら
に超電導体の端部ほど凹凸の高さを高く形成したことを
特徴とする超電導限流器。
3. The superconducting fault current limiter according to claim 1, wherein the height of the unevenness is further increased toward the end of the superconductor.
JP6059506A 1994-03-29 1994-03-29 Superconducting current limiter Pending JPH07272959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6059506A JPH07272959A (en) 1994-03-29 1994-03-29 Superconducting current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6059506A JPH07272959A (en) 1994-03-29 1994-03-29 Superconducting current limiter

Publications (1)

Publication Number Publication Date
JPH07272959A true JPH07272959A (en) 1995-10-20

Family

ID=13115223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6059506A Pending JPH07272959A (en) 1994-03-29 1994-03-29 Superconducting current limiter

Country Status (1)

Country Link
JP (1) JPH07272959A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19803277C2 (en) * 1997-01-31 2000-01-20 Kioritz Corp Mufflers for internal combustion engines
WO2012157494A1 (en) * 2011-05-18 2012-11-22 住友電気工業株式会社 Fault current limiter
KR20150036878A (en) * 2013-09-30 2015-04-08 한국전력공사 Critical current measuring devices of superconductor wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19803277C2 (en) * 1997-01-31 2000-01-20 Kioritz Corp Mufflers for internal combustion engines
WO2012157494A1 (en) * 2011-05-18 2012-11-22 住友電気工業株式会社 Fault current limiter
US9190838B2 (en) 2011-05-18 2015-11-17 Sumitomo Electric Industries, Ltd. Fault current limiter
KR20150036878A (en) * 2013-09-30 2015-04-08 한국전력공사 Critical current measuring devices of superconductor wire

Similar Documents

Publication Publication Date Title
US6275365B1 (en) Resistive fault current limiter
EP0877395B1 (en) Superconducting coil
KR101004203B1 (en) Super-conductive cable
US5689223A (en) Superconducting coil
US5379020A (en) High-temperature superconductor and its use
US5694279A (en) Superconductive fault current limiters
CN110299228A (en) A kind of cold insulation direct-current high-temperature superconducting current limliting cable
US3306972A (en) Superconducting cable
JPH07272959A (en) Superconducting current limiter
KR100742499B1 (en) Core of magentic shield type superconducting cable and superconducting cable having the same
US4218668A (en) Superconductive magnet device
EP3553839B1 (en) Superconducting fault current limiter
KR20010032358A (en) Magnetic energy storage
US4458106A (en) Super conductive wire
JPH0714493A (en) Superconductivity current limiter
JP2607822B2 (en) Superconducting current limiter
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
Escamez et al. Towards the development of new DC railway system architectures with the use of superconducting devices
JP2778040B2 (en) Superconducting transformer
JPH06314625A (en) Superconducting current limiter
JPH0779020A (en) Superconducting current limiter
JPH076683A (en) Superconducting current limiter
KR100722367B1 (en) Superconducting power cable and a manufacturing method thereof
JPH01190217A (en) Superconducting current limiter
Bogner et al. Superconducting magnet coil