JPH03145014A - Optical fiber complex aerial earth wire - Google Patents

Optical fiber complex aerial earth wire

Info

Publication number
JPH03145014A
JPH03145014A JP1280763A JP28076389A JPH03145014A JP H03145014 A JPH03145014 A JP H03145014A JP 1280763 A JP1280763 A JP 1280763A JP 28076389 A JP28076389 A JP 28076389A JP H03145014 A JPH03145014 A JP H03145014A
Authority
JP
Japan
Prior art keywords
optical fiber
aluminum
ground wire
overhead ground
coverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1280763A
Other languages
Japanese (ja)
Inventor
Junichi Ota
順一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1280763A priority Critical patent/JPH03145014A/en
Publication of JPH03145014A publication Critical patent/JPH03145014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an optical fiber from the influence of a short-circuit current, by applying a carbon membrane with a specific scope of axial resistance value to the optical fiber as the primary coverage. CONSTITUTION:A single mode optical fiber 6 is covered with a carbon membrane 7 having the axial resistance less than 5-40KOMEGA/cm as the primary coverage, and a heat curing silicone resin 8 is used as the secondary coverage. Such an element wires 9 are collected around a a linear FRP 10 in a spiral form, and pressure-winding it with a polyimide tape 11 to form an optical fiber unit 1. The optical fiber units 1 are housed in an aluminum spacer 2 furnishing grooves 3, an aluminum tape is welded and sunk to form an aluminum pipe, and 12 aluminum-covered steel wires 5 are collected around the aluminum pipe in a spiral form. Consequently, an increase of transmission loss caused by hydrogen and a breakdown by the extension strain can be reduced, and no coverage breakdown owing to a short-circuit current is generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバを内部に収容した架空地線である
光ファイバ複合架空地線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical fiber composite overhead ground wire, which is an overhead ground wire containing an optical fiber therein.

(従来の技術) 架空地線に、光ファイバを収容して光ファイバにより光
通信システムを構築することが行なわれている。
(Prior Art) Optical fibers are housed in an overhead ground wire to construct an optical communication system using the optical fibers.

例えば、実開昭60−156617号公報に記載された
光ファイバ複合架空地線は、外周に螺旋状の溝を有する
スペーサと、該金属スペーサの外周を被覆する金属被覆
とによって、光ファイバ収容部を構成し、前記溝内に光
ファイバを収容し、これを導体撚線の中心部に配置して
なる光ファイバ複合架空地線が記載されている。
For example, the optical fiber composite overhead ground wire described in Japanese Utility Model Application Publication No. 60-156617 uses a spacer having a spiral groove on the outer periphery and a metal coating covering the outer periphery of the metal spacer to provide an optical fiber accommodating portion. An optical fiber composite overhead ground wire is described, which is constructed by accommodating an optical fiber in the groove and arranging the optical fiber at the center of a stranded conductor.

このような光ファイバ複合架空地線に収納されている光
ファイバは、架線中に常時的0.2%の伸び歪にさらさ
れており、温度に変動や風などの影響による伸び歪がさ
らに加わり、光ファイバ複合架空地線における光ファイ
バは、きびしい条件におかれている。これらの伸び歪は
、光ファイバの強度を低下させ、光ファイバを破断させ
ることもあり、光ファイバ複合架空地線の寿命を制限し
ている。
The optical fibers housed in such optical fiber composite overhead ground wires are constantly exposed to 0.2% elongation strain during the overhead line, and elongation strain is further added due to temperature fluctuations, wind, etc. The optical fibers in the optical fiber composite overhead ground wire are subjected to severe conditions. These elongational strains reduce the strength of the optical fiber and may even break the optical fiber, limiting the life of the optical fiber composite overhead ground wire.

また、光ファイバを金属管中に収納している光ファイバ
複合架空地線においては、金属と大気中の水分との反応
によって水素が発生し、伝送損失の増加の原因となって
いる。International  Wire  &
  Cable  Symposium  Proce
edings   1987゜第241〜244頁には
、光ファイバにハーメチックコーティングを施すことが
記載されているが、強度と化学的な保護の面からみると
、コーティングの材料としてカーボン薄膜を施すことが
考えられる。
Furthermore, in an optical fiber composite overhead ground wire in which an optical fiber is housed in a metal tube, hydrogen is generated due to the reaction between the metal and moisture in the atmosphere, causing an increase in transmission loss. International Wire &
Cable Symposium Process
edings 1987, pp. 241-244, describes applying a hermetic coating to an optical fiber, but from the standpoint of strength and chemical protection, applying a carbon thin film as the coating material is considered. .

しかしながら、カーボン薄膜は導電性を有するため、短
絡事故などにより光ファイバ複合架空地線の金属導体部
分に大電流が流れると、金属導体間に流れた電流が、光
ファイバの一次被覆であるカーボン薄膜に分流し、それ
により光ファイバの被覆が破壊されるという問題があっ
た。
However, since the carbon thin film is electrically conductive, if a large current flows through the metal conductor part of the optical fiber composite overhead ground wire due to a short circuit accident, the current flowing between the metal conductors will be transferred to the carbon thin film, which is the primary coating of the optical fiber. There was a problem in that the optical fiber's coating was destroyed as a result.

(発明が解決しようとする課題) 本発明は、上述した事情に鑑みてなされたもので、短絡
電流による影響を受けないカーボン薄膜を施した光ファ
イバを用いた光ファイバ複合架空地線を提供することを
目的とするものである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned circumstances, and provides an optical fiber composite overhead ground wire using an optical fiber coated with a carbon thin film that is not affected by short circuit current. The purpose is to

(課題を解決するための手段) 本発明は、導体撚線の中心部に光ファイバを収容した光
ファイバ収容部を設けた光ファイバ複合架空地線におい
て、前記光ファイバが、軸方向の抵抗値が5乃至40に
Ω/ c m以下のカーボン薄膜を一次被覆した光ファ
イバであることを特徴とするものである。
(Means for Solving the Problems) The present invention provides an optical fiber composite overhead ground wire in which an optical fiber accommodating portion that accommodates an optical fiber is provided in the center of a twisted conductor wire, in which the optical fiber has an axial resistance value The optical fiber is characterized in that it is primarily coated with a carbon thin film having a resistance of 5 to 40 Ω/cm or less.

(作 用) 第2図は、本発明の詳細な説明するために実験に用いた
光ファイバ複合架空地線の断面図である。
(Function) FIG. 2 is a sectional view of an optical fiber composite overhead ground wire used in an experiment to explain the present invention in detail.

図中、21は光ファイバ、22はアルミスペーサ、23
は溝、24は金属被覆、25はアルミ被覆鋼線である。
In the figure, 21 is an optical fiber, 22 is an aluminum spacer, 23
24 is a groove, 24 is a metal coating, and 25 is an aluminum coated steel wire.

これに第3図の装置を用いて、分流電流を測定した。3
1は電源、32は第2図に示した光ファイバ複合架空地
線、33は電流測定部分の2次被覆を除去し、カーボン
薄膜を露出させた光ファイバ、34は電流計である。
The shunt current was measured using the apparatus shown in FIG. 3
1 is a power supply, 32 is the optical fiber composite overhead ground wire shown in FIG. 2, 33 is an optical fiber whose secondary coating at the current measurement part is removed to expose a thin carbon film, and 34 is an ammeter.

分流電流の測定は、アルミスペーサ22の溝23に、軸
方向の抵抗値の異なるカーボン薄膜の被覆を施した光フ
ァイバを収納した光ファイバ複合架空地線のアルミ被覆
鋼線25に、電源31から電流を流して光ファイバのカ
ーボン被覆に流れる電流を電流計34で測定した。Q 
[KA]の電流を光ファイバ複合架空地線に通電したと
きのカーボン薄膜への分流電流を測定した結果を第4図
に示す。第4図から、カーボン薄膜の軸方向の電気抵抗
が5 [KΩ/cml以下になると分流電流が生じない
こと分かる。実験後に光ファイバ複合架空地線を解体し
、光ファイバの外観を調査したところ、軸方向の電気抵
抗が5[KΩ/cm]以下のカーボン薄膜が施された光
ファイバを光ファイバ複合架空地線に収納した場合は、
光ファイバ複合架空地線の金属導体に電流が流れると、
分流電流による被覆の破壊が生じることが明かとなった
The measurement of the shunt current is performed by connecting a power source 31 to an aluminum-coated steel wire 25 of an optical fiber composite overhead ground wire in which optical fibers coated with carbon thin films having different axial resistance values are housed in grooves 23 of an aluminum spacer 22. A current was applied and the current flowing through the carbon coating of the optical fiber was measured with an ammeter 34. Q
FIG. 4 shows the results of measuring the shunt current to the carbon thin film when a current of [KA] was passed through the optical fiber composite overhead ground wire. From FIG. 4, it can be seen that no shunt current occurs when the axial electrical resistance of the carbon thin film is less than 5 KΩ/cml. After the experiment, the optical fiber composite overhead ground wire was disassembled and the appearance of the optical fiber was investigated.The optical fiber composite overhead ground wire was coated with a carbon thin film with an axial electrical resistance of 5 [KΩ/cm] or less. If you store it in
When a current flows through the metal conductor of the optical fiber composite overhead ground wire,
It has become clear that the shunt current causes damage to the coating.

また、上述したと同様な光ファイバの引張試験を行なっ
たところ軸方向の電気抵抗が40[KΩ/cm]以上の
光ファイバでは、強度の低下がみられた。このことから
、光ファイバの一次被覆としては、軸方向の抵抗値が5
にΩ/ c m以上、40にΩ/ c m以下であるこ
とが望ましいことが分かった。
Further, when a tensile test of optical fibers similar to those described above was conducted, a decrease in strength was observed in optical fibers having an axial electrical resistance of 40 [KΩ/cm] or more. From this, it can be seen that the primary coating of an optical fiber should have an axial resistance value of 5.
It was found that it is desirable that the resistance is 40 Ω/cm or more and 40 Ω/cm or less.

(実施例) 第1図(A)は、本発明の一実施例を説明するための光
ファイバ複合架空地線の断面を示すものである。図中、
1は光ファイバユニット、2はアルミスペーサ、3は溝
、4は金属被覆、5はアルミ被覆鋼線である。
(Embodiment) FIG. 1(A) shows a cross section of an optical fiber composite overhead ground wire for explaining an embodiment of the present invention. In the figure,
1 is an optical fiber unit, 2 is an aluminum spacer, 3 is a groove, 4 is a metal coating, and 5 is an aluminum coated steel wire.

第1図(C)に光ファイバ素線の断面を示す。FIG. 1(C) shows a cross section of the optical fiber.

コア径9μm、屈折率差0.3%クラツド径125μm
のシングルモード光ファイバ6に、カーボン薄膜7を5
00人の厚みに施し、軸方向の電気抵抗を約10[KΩ
/ c m ]とし、2次被覆として熱硬化シリコン樹
脂8を施し、外径0.4μmとしたものである。
Core diameter 9μm, refractive index difference 0.3% Cladding diameter 125μm
A carbon thin film 7 is attached to the single mode optical fiber 6 of
The electrical resistance in the axial direction is approximately 10 [KΩ].
/cm], a thermosetting silicone resin 8 was applied as a secondary coating, and the outer diameter was 0.4 μm.

第1図(B)は、上述した素線9を、外径0゜4μmの
線状のFRPIOの周囲に螺旋状に集合し、厚さ2.5
μm1幅6μmのポリイミドテープ11により抑え巻き
した光ファイバユニットである。
FIG. 1(B) shows the above-mentioned strands 9 gathered in a spiral around a linear FRPIO with an outer diameter of 0°4 μm and a thickness of 2.5 μm.
This is an optical fiber unit that is tightly wound with a polyimide tape 11 having a width of 6 μm.

これを、第1図(A)に示すように、溝径l。As shown in FIG. 1(A), the groove diameter is l.

38mmの溝3を3溝有する最大外径3.8mmのアル
ミスペーサ2に収納し、それにアルミテープを溶接・シ
ンキングして外径5.05mmのアルミバイブを施した
。アルミ被覆鋼線5は、外径1.75mmのものを用い
、12本を螺旋状に集合した。
It was housed in an aluminum spacer 2 having three 38 mm grooves and a maximum outer diameter of 3.8 mm, and aluminum tape was welded and sinked thereto to provide an aluminum vibe with an outer diameter of 5.05 mm. Twelve aluminum-coated steel wires 5 having an outer diameter of 1.75 mm were collected in a spiral shape.

この実施例による光ファイバ複合架空地線を、200℃
のオーブンに入れ、水素による損失の増加を評価する加
速試験を行なったが、損失の増加は、測定されなかった
。素線の疲労指数であるn値を測定した結果は、n=2
00であり、これは、カーボン被覆が施されていない光
ファイバの約10倍の値である。このことから、カーボ
ン被覆を施した光ファイバが、伸び歪にさらされても十
分な破断寿命を有していることが明かとなった。
The optical fiber composite overhead ground wire according to this example was heated at 200°C.
An accelerated test was conducted to evaluate the increase in loss due to hydrogen, but no increase in loss was measured. The result of measuring the n value, which is the fatigue index of the wire, is n=2
00, which is about 10 times the value of an optical fiber without carbon coating. This revealed that the carbon-coated optical fiber has a sufficient rupture life even when exposed to elongation strain.

(発明の効果) 以上の説明から明らかなように、本発明によれば、水素
による伝送損失の増加や、伸び歪による破断を大幅に減
少させることができ、短絡電流による被覆破壊も生じな
い光ファイバ複合架空地線を提供できる効果がある。
(Effects of the Invention) As is clear from the above description, according to the present invention, increases in transmission loss due to hydrogen and breakage due to elongation strain can be significantly reduced, and optical fibers that do not cause coating breakdown due to short circuit current can be This has the effect of providing a fiber composite overhead ground wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を説明するための光ファイ
バ複合架空地線および素線の断面図、第2図乃至第4図
は、本発明の詳細な説明図するためのもので、第2図は
、測定に用いた光ファイバ複合架空地線の断面図、第3
図は、測定装置の概略図、第4図は、測定結果のグラフ
である。 1・・・光ファイバユニット、2・・・アルミスペーサ
、3・・・溝、4・・・金属被覆、5・・・アルミ被覆
鋼線。
FIG. 1 is a sectional view of an optical fiber composite overhead ground wire and a bare wire for explaining one embodiment of the present invention, and FIGS. 2 to 4 are for explaining the present invention in detail. , Figure 2 is a cross-sectional view of the optical fiber composite overhead ground wire used in the measurement, and Figure 3 is a cross-sectional view of the optical fiber composite overhead ground wire used in the measurement.
The figure is a schematic diagram of the measuring device, and FIG. 4 is a graph of the measurement results. DESCRIPTION OF SYMBOLS 1... Optical fiber unit, 2... Aluminum spacer, 3... Groove, 4... Metal coating, 5... Aluminum coated steel wire.

Claims (1)

【特許請求の範囲】[Claims] 導体撚線の中心部に光ファイバを収容した光ファイバ収
容部を設けた光ファイバ複合架空地線において、前記光
ファイバが、軸方向の抵抗値が5乃至40KΩ/cmの
カーボン薄膜を一次被覆した光ファイバであることを特
徴とする光ファイバ複合架空地線。
In an optical fiber composite overhead ground wire in which an optical fiber housing part containing an optical fiber is provided in the center of a twisted conductor wire, the optical fiber is primarily coated with a carbon thin film having an axial resistance value of 5 to 40 KΩ/cm. An optical fiber composite overhead ground wire characterized by being an optical fiber.
JP1280763A 1989-10-27 1989-10-27 Optical fiber complex aerial earth wire Pending JPH03145014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1280763A JPH03145014A (en) 1989-10-27 1989-10-27 Optical fiber complex aerial earth wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1280763A JPH03145014A (en) 1989-10-27 1989-10-27 Optical fiber complex aerial earth wire

Publications (1)

Publication Number Publication Date
JPH03145014A true JPH03145014A (en) 1991-06-20

Family

ID=17629617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1280763A Pending JPH03145014A (en) 1989-10-27 1989-10-27 Optical fiber complex aerial earth wire

Country Status (1)

Country Link
JP (1) JPH03145014A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114285A1 (en) * 2004-05-19 2005-12-01 Schlumberger Canada Ltd. Optical fiber cables for wellbore applications
GB2444362A (en) * 2006-11-30 2008-06-04 Schlumberger Holdings Preventing galvanic action and consequential optical fiber darkening caused by hydrogen ions
US10062476B2 (en) 2012-06-28 2018-08-28 Schlumberger Technology Corporation High power opto-electrical cable with multiple power and telemetry paths
US10087717B2 (en) 2011-10-17 2018-10-02 Schlumberger Technology Corporation Dual use cable with fiber optics for use in wellbore operations
US10522271B2 (en) 2016-06-09 2019-12-31 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications
US11725468B2 (en) 2015-01-26 2023-08-15 Schlumberger Technology Corporation Electrically conductive fiber optic slickline for coiled tubing operations

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114285A1 (en) * 2004-05-19 2005-12-01 Schlumberger Canada Ltd. Optical fiber cables for wellbore applications
GB2444362A (en) * 2006-11-30 2008-06-04 Schlumberger Holdings Preventing galvanic action and consequential optical fiber darkening caused by hydrogen ions
US7548681B2 (en) 2006-11-30 2009-06-16 Schlumberger Technology Corporation Prevention of optical fiber darkening
GB2444362B (en) * 2006-11-30 2011-03-16 Schlumberger Holdings Preventing galvanic action and consequential optical fiber darkening caused by hydrogen ions
US10087717B2 (en) 2011-10-17 2018-10-02 Schlumberger Technology Corporation Dual use cable with fiber optics for use in wellbore operations
US10062476B2 (en) 2012-06-28 2018-08-28 Schlumberger Technology Corporation High power opto-electrical cable with multiple power and telemetry paths
US11725468B2 (en) 2015-01-26 2023-08-15 Schlumberger Technology Corporation Electrically conductive fiber optic slickline for coiled tubing operations
US10522271B2 (en) 2016-06-09 2019-12-31 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications
US11776712B2 (en) 2016-06-09 2023-10-03 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications

Similar Documents

Publication Publication Date Title
US4392714A (en) Overhead power cable having light conducting fibers arranged in its interior
US3676576A (en) Multiconductor stranded remote-control cable
US4490009A (en) Optical fiber submarine cable
GB2088584A (en) Overhead electric cable
ATE151889T1 (en) FIBER OPTICAL OVERHEAD CABLE
JPH03145014A (en) Optical fiber complex aerial earth wire
US4350046A (en) Cable strain monitoring
JPS63170809A (en) Highly flexible cable or electric conductor having malleable cover of insulating material arranged in cable or conductor and manufacture thereof
US20040124001A1 (en) Overhead electrical cable with temperature sensing means
CN114171250B (en) Special control cable for intelligent control power distribution device of strong intelligent power grid extra-high voltage system
GB838494A (en) Improvements relating to electric conductors
GB1562676A (en) Optical fibre cable
CN111161909A (en) Photoelectric hybrid cable
CN112086232A (en) Photoelectric hybrid cable with high tensile resistance and capability of monitoring water seepage
WO1989006039A1 (en) Overhead cable with guard-wire
EP3304155B1 (en) Aerial optical and electric cable assembly
CN212136057U (en) Optical cable end protection prosthesis of optical fiber composite cable
JPH05298943A (en) Composite cable
FR2399102A1 (en) Protective sheathing for screened electric cables - with integral suspension support wires to maintain electrical continuity outside the core insulation
CN211455330U (en) Energy cable
CN219435578U (en) Monofilament connecting structure in flexible cable
CN212847730U (en) Double-layer co-extrusion fire-resistant cable
CN212209027U (en) Bending-resistant outdoor length measuring cable
JPS595842Y2 (en) optical fiber submarine cable
JPS6034205B2 (en) watertight wire or cable