JPH03144408A - Method for connecting optical fibers and connection sleeve - Google Patents

Method for connecting optical fibers and connection sleeve

Info

Publication number
JPH03144408A
JPH03144408A JP28171389A JP28171389A JPH03144408A JP H03144408 A JPH03144408 A JP H03144408A JP 28171389 A JP28171389 A JP 28171389A JP 28171389 A JP28171389 A JP 28171389A JP H03144408 A JPH03144408 A JP H03144408A
Authority
JP
Japan
Prior art keywords
sleeve
optical fiber
diameter
temperature
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28171389A
Other languages
Japanese (ja)
Other versions
JP2713478B2 (en
Inventor
Akira Matsuda
晃 松田
Akitomo Shirakawa
白川 亮偕
Hirohisa Iwai
岩井 博久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1281713A priority Critical patent/JP2713478B2/en
Publication of JPH03144408A publication Critical patent/JPH03144408A/en
Application granted granted Critical
Publication of JP2713478B2 publication Critical patent/JP2713478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To exactly align the axial centers of optical fibers and to obviate the generation of axis misalignment by inserting the optical fibers to be connected to the sleeve consisting of a shape memory alloy, butting the end faces and heating the sleeve to the temp. above the reverse transformation temp. or above, thereby reducing its diameter. CONSTITUTION:A straight pipe shape smaller than the outside diameter of the optical fibers 2A, 2B is stored into the sleeve 1. The martensite transformation temp. of this sleeve 1 is -30 deg.C and the reverse transformation temp. is -3 deg.C if an Ni-Ti alloy having 50.9at.% Ni content and 750 deg.C shape memory temp. is used for the sleeve. The sleeve 1 is cooled to <=-30 deg.C to expand its diameter 3; thereafter, the optical fibers 2A, 2B are inserted therein and the end faces are butted against each other. The sleeve 1 restores ordinary temp. thereafter and reduces its diameter by restoring the memorized shape, thereby tightening the optical fibers 2A, 2B to a connected state. The fibers are tightened by the hard sleeve 1 which tends to restore the memorized shape in this way and, therefore, the axial centers are exactly aligned and the optical fiber connection free from the axial misalignment if executed.

Description

【発明の詳細な説明】 r窯素I−、小壬11田ム■) 本発明は、光ファイバの接続方法およびそれに用いるス
リーブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber connection method and a sleeve used therein.

〔従来技術とその課題〕[Conventional technology and its issues]

光ファイバの接続方法には、端面を融着する方法と端面
を突き合わせた状態で固定する方法とがある。前者は高
価な融着接続機が必要であり、簡便性に欠ける。また後
者にはV?a接続方法やスリーブ接続法などがあるが、
接続作業の容易さからいえばスリーブ接続法の方が優れ
ている。
There are two methods for connecting optical fibers: a method of fusing the end faces, and a method of fixing the end faces in abutted state. The former requires an expensive fusion splicer and lacks simplicity. Also, V for the latter? There are a connection method, sleeve connection method, etc.
In terms of ease of connection work, the sleeve connection method is superior.

スリーブ接続法は、ガラスまたはセラミック製のスリー
ブ内に両端から光ファイバを挿入して軸合わせし、接着
剤で固定するという方法である。
The sleeve connection method is a method in which an optical fiber is inserted from both ends into a glass or ceramic sleeve, their axes aligned, and fixed with adhesive.

しかしこの方法は、光ファイバを挿入可能にするため、
スリーブの内径を光ファイバの外径より若干大きくして
おく必要があり、このため光ファイバの軸ズレが生しや
すく、接続損失が大きくなる欠点がある。
However, this method allows insertion of optical fibers, so
It is necessary to make the inner diameter of the sleeve slightly larger than the outer diameter of the optical fiber, which has the disadvantage that the axis of the optical fiber is likely to be misaligned and the splice loss increases.

またこれを改良したものとしては、スリーブを熱膨張さ
せて拡径した状態で、両端から光ファイバを挿入し、端
面を突き合わせた後、スリーブを冷却して元の径に戻す
ことにより、光ファイバとスリーブの間に隙間のない状
態で接続する方法も提案されている〈特開昭55−10
8611号公報〉。しかしこの方法は、スリーブの材料
にガラスやセラ旦フタを使用した場合、熱膨張係数が小
さいため、光ファイバが容易に挿入できる程度まで拡径
するには、かなり高い温度(例えば500℃程度)に加
熱する必要があり、実用上問題がある。
In addition, as an improvement on this, the optical fiber is inserted from both ends with the sleeve expanded in diameter by thermal expansion, and after the end faces are brought together, the sleeve is cooled and returned to its original diameter. A method of connecting the sleeve and sleeve without any gap has also been proposed.
Publication No. 8611〉. However, this method requires a considerably high temperature (for example, around 500°C) to expand the diameter to the extent that the optical fiber can be easily inserted, since the thermal expansion coefficient is small when glass or ceramic lid is used as the sleeve material. This poses a practical problem.

また前記公報には、スリーブとしてゴムまたはプラスチ
ック製の熱収縮チューブを用い、その中に両端から光フ
ァイバを挿入し、端面を突き合わせた後、熱収縮チュー
ブを加熱して縮径させて光ファイバを接続する方法も開
示されている。しかしこの方法では、熱収縮チューブが
熱収縮する際に材料の軟化や移動が起きるため、光ファ
イバの軸心を一致させる作用が小さく、光ファイバの軸
ズレが生じやすいという難点がある。
In addition, the above publication describes that a rubber or plastic heat-shrinkable tube is used as a sleeve, an optical fiber is inserted from both ends into the sleeve, the end faces are butted together, and then the heat-shrinkable tube is heated to reduce its diameter. A method of connecting is also disclosed. However, this method has the disadvantage that the material softens and moves when the heat-shrinkable tube heat-shrinks, so the effect of aligning the axes of the optical fibers is small and the axes of the optical fibers are likely to be misaligned.

また熱収縮チューブの径方向の収縮力を大きくするため
、熱収縮チューブを金属スリーブ内に収納した複合スリ
ーブを用いる接続方法も提案されている(特開昭54−
113349号公報)が、これも上記と同じ理由により
光ファイバの軸ズレが生じやすいという難点がある。
Furthermore, in order to increase the radial shrinkage force of the heat-shrinkable tube, a connection method using a composite sleeve in which the heat-shrinkable tube is housed within a metal sleeve has also been proposed (Japanese Patent Application Laid-Open No. 1983-1999-1).
113349), but this also has the disadvantage that the axis of the optical fiber is likely to be misaligned for the same reason as mentioned above.

〔課題の解決手段とその作用〕[Means for solving problems and their effects]

本発明は、上記のような課題を解決した光ファイバの接
続方法を提供するもので、その最も基本的な方法は、直
管形状を記憶した形状記憶合金よりなり、記憶形状にお
ける内径(内面に被膜を有する場合はその被膜を含めた
内径)が接続すべき光ファイバの外径より小さいスリー
ブを用い、このスリーブをマルテンサイト変態温度また
はR相変態温度以下の温度で光ファイバの外径より大き
い内径に拡径した後、スリーブ内に接続すべき光ファイ
バを挿入して端面を突き合わせ、その後、スリーブを逆
変態温度以上の温度に加熱して縮径することを特徴とす
るものである。
The present invention provides an optical fiber connection method that solves the above-mentioned problems.The most basic method is to use a shape memory alloy that memorizes the shape of a straight tube, and Use a sleeve whose inner diameter (if it has a coating, including the coating) is smaller than the outer diameter of the optical fiber to be connected, and then connect this sleeve to a sleeve that is larger than the outer diameter of the optical fiber at a temperature below the martensitic transformation temperature or the R-phase transformation temperature. After the inner diameter is expanded, the optical fiber to be connected is inserted into the sleeve and the end faces are butted together, and then the sleeve is heated to a temperature equal to or higher than the reverse transformation temperature to reduce the diameter.

形状記憶合金は、高温ではオーステナイト相状態にあり
、硬くて変形しにくいが、マルテンサイト変態温度また
はR相変態温度より低い温度にならかくて変形しやすく
なる性質がある。なお形状記憶合金には、Ni−Ti系
合金、Cu−Zn−Al系合金、Cu−AlNi系合金
等があり、これらのうちNi−Tl系合金は高温相(オ
ーステナイト相)と低温相(マルテンサイト相)の中間
に“R相”を生じる場合があり、”R相”を生しるか否
かは、合金組成、形状記憶処理温度等によって左右され
る。
Shape memory alloys are in an austenite state at high temperatures and are hard and difficult to deform, but they tend to deform at temperatures lower than the martensitic transformation temperature or R-phase transformation temperature. Shape memory alloys include Ni-Ti alloys, Cu-Zn-Al alloys, Cu-AlNi alloys, etc. Among these, Ni-Tl alloys have a high temperature phase (austenite phase) and a low temperature phase (martenite phase). In some cases, an "R phase" is generated in the middle of the "site phase", and whether or not the "R phase" is generated depends on the alloy composition, shape memory treatment temperature, etc.

また形状記憶合金は、オーステナイト相状態で所望の形
状に底形して形状記憶熱処理を施しておくと、これをマ
ルテンサイト変態温度またはR相変態温度以下の温度で
変形させても、その後、逆変態温度以上の温度に加熱す
ると記憶形状に復元する性質を有している。
In addition, if a shape memory alloy is shaped into a desired shape in the austenite state and subjected to shape memory heat treatment, even if it is deformed at a temperature below the martensitic transformation temperature or R phase transformation temperature, the It has the property of restoring its memorized shape when heated to a temperature above its transformation temperature.

したがって前記のような形状記憶合金製のスリーブを用
いた接続方法では、スリーブを拡径するときはマルテン
サイト変態温度またはR相変態温度以下の温度で行うた
め容易に拡径でき、光ファイバを挿入した後は逆変態温
度以上の温度に加熱する大きな力を発生し、これがグリ
ップ力となって硬い金属表面で光ファイバを締め付ける
ため、光ファイバの軸心を正確に一致させることができ
る。このため軸ズレのない光ファイバの接続を行えるこ
とになる。
Therefore, in the connection method using a sleeve made of shape memory alloy as described above, the diameter of the sleeve is expanded at a temperature below the martensitic transformation temperature or R-phase transformation temperature, so the diameter can be expanded easily and the optical fiber can be inserted. After this, a large force is generated to heat the fiber to a temperature above the reverse transformation temperature, which acts as a gripping force that tightens the optical fiber against the hard metal surface, allowing the optical fiber's axes to align accurately. Therefore, it is possible to connect optical fibers without axis misalignment.

形状記憶合金のマルテンサイト変態温度またはR相変態
温度、並びに逆変態温度は合金組成と形状記憶処理温度
により任意の温度に設定可能である。光ファイバの接続
では、この逆変態温度は、接続後の光ファイバの周囲温
度より低い温度に設定しておくことが好ましい。例えば
接続後の光ファイバの周囲温度が常温とすれば、スリー
ブの逆変態温度はそれより低い温度例えば0℃以下に設
定しておくとよい。このようにすれば接続部の光ファイ
バには常にスリーブのグリップ力が作用することになり
、安定した接続状態を維持できる。
The martensitic transformation temperature or R-phase transformation temperature and reverse transformation temperature of the shape memory alloy can be set to arbitrary temperatures depending on the alloy composition and the shape memory treatment temperature. When connecting optical fibers, the reverse transformation temperature is preferably set to a temperature lower than the ambient temperature of the optical fibers after being connected. For example, if the ambient temperature of the optical fiber after connection is room temperature, the reverse transformation temperature of the sleeve is preferably set to a lower temperature, for example, 0° C. or lower. In this way, the gripping force of the sleeve will always act on the optical fiber at the connection portion, making it possible to maintain a stable connection state.

このような逆変態温度の低いスリーブを用いる場合には
、スリーブを一旦マルチンサイト変態温度またはR相変
態温度以下の温度に冷却して、拡径した後、光ファイバ
を挿入し、常温に放置すればよいことになる。
When using such a sleeve with a low reverse transformation temperature, it is necessary to first cool the sleeve to a temperature below the multisite transformation temperature or R-phase transformation temperature, expand the diameter, insert the optical fiber, and leave it at room temperature. It's a good thing.

また本発明では、スリーブの逆変態温度を、接続後の光
ファイバの周囲温度より高い温度に設定しておくことも
可能である。例えば接続後の光ファイバの周囲温度が常
温とすれば、スリーブの逆変態温度を常温以上例えば数
10℃の温度に設定しておくことができる。このような
スリーブを用いる場合には、常温でスリーブを拡径し、
光ファイバを挿入した後、逆変態温度以上の温度に加熱
すればよいわけである。加熱後、常温に戻るとスリーブ
のグリップ力は弱くなるが、外周に他の補強材(熱収縮
スリーブ等)を被せて補強すれば接続状態を保持するこ
とができる。またスリーブの内面に予めホントメルト接
着剤の被膜を設けておき、スリーブ加熱時にそのホット
メルト接着剤を溶融させてスリーブと光ファイバとを接
着するのも一つの方法である。
Further, in the present invention, it is also possible to set the reverse transformation temperature of the sleeve to a temperature higher than the ambient temperature of the optical fiber after connection. For example, if the ambient temperature of the optical fiber after connection is room temperature, the reverse transformation temperature of the sleeve can be set at a temperature higher than room temperature, for example, several tens of degrees Celsius. When using such a sleeve, expand the diameter of the sleeve at room temperature,
After inserting the optical fiber, it is sufficient to heat it to a temperature equal to or higher than the reverse transformation temperature. When the temperature returns to room temperature after heating, the grip of the sleeve becomes weaker, but if the outer periphery is covered with another reinforcing material (such as a heat-shrinkable sleeve) for reinforcement, the connected state can be maintained. Another method is to previously provide a coating of hot-melt adhesive on the inner surface of the sleeve and melt the hot-melt adhesive when the sleeve is heated to bond the sleeve and the optical fiber.

本発明はまた、金属被覆光ファイバの接続に好適な接続
方法を提供するもので、その方法は、少なくとも内面に
半田被膜を有する直管形状を記憶した形状記憶合金より
なり、記憶形状における前記被膜を含めた内径が接続す
べき金属被覆光ファイバの外径より小さいスリーブを用
い、このスリーブをマルテンサイト変態温度またはR相
変B温度以下の温度で金属被覆光ファイバの外径より大
きい内径に拡径した後、スリーブ内に接続すべき金属被
覆光ファイバを挿入して端面を突き合わせ、その後、ス
リーブを逆変態温度以上でかつ前記被膜の融点以上の温
度に加熱してスリーブを縮径すると共にスリーブと光フ
ァイバの金属被覆とを半田付けすることを特徴とするも
のである。
The present invention also provides a connection method suitable for connecting metal-coated optical fibers, which method comprises a shape memory alloy having a solder coating on at least the inner surface and memorizing the shape of a straight tube, Using a sleeve whose inner diameter including After coating, the metal-coated optical fiber to be connected is inserted into the sleeve, and the end faces are butted together.Then, the sleeve is heated to a temperature higher than the reverse transformation temperature and higher than the melting point of the coating to reduce the diameter of the sleeve, and to remove the sleeve. The optical fiber is soldered to the metal coating of the optical fiber.

この方法によると、金属被覆光ファイバを軸ズレを生し
させることなく半田付けで強固に接続することが可能と
なる。半田被膜としては半田合金または錫などを使用す
ることができる。
According to this method, it is possible to firmly connect metal-coated optical fibers by soldering without causing axis misalignment. A solder alloy, tin, or the like can be used as the solder coating.

なお以上のような各接続方法において、スリーブの拡径
を容易にするためには、スリーブに縦方向にスリ・ノド
を入れておくとよい。このようにすれば、そのスリット
を広げることによって拡径をいスリーブでも、マルテン
サイト変態温度またはR相変態温度以下では変形容易で
あるから、その温度領域で、光ファイバより太い心金を
圧入すること等により拡径することができる。
In each of the connection methods described above, in order to facilitate expansion of the diameter of the sleeve, it is preferable to insert slots in the sleeve in the vertical direction. In this way, even if the sleeve is expanded in diameter by widening the slit, it is easily deformed below the martensitic transformation temperature or R-phase transformation temperature, so a core metal thicker than the optical fiber can be press-fitted in that temperature range. The diameter can be expanded by, for example,

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図−エないし図−4は本発明の一実施例に係る光ファイ
バの接続方法を示す。符号1は形状記憶合金製のスリー
ブ、2人・2Bは接続すべき光ファイバである。光ファ
イバ2A・2Bは通常の石英ガラス光ファイバであって
も、あるいはその上に金属被覆を施した金属被覆光ファ
イバであってもよい。
FIGS. 1-A to 4-4 show a method for connecting optical fibers according to an embodiment of the present invention. Reference numeral 1 is a sleeve made of shape memory alloy, and reference numeral 2 and 2B are optical fibers to be connected. The optical fibers 2A and 2B may be ordinary silica glass optical fibers, or may be metal-coated optical fibers coated with metal thereon.

スリーブ1は図−1に示すように光ファイバ2A・2B
の外径より小さい内径の直管形状を記憶させ、縦方向に
スリット3を入れたものである。
The sleeve 1 connects the optical fibers 2A and 2B as shown in Figure 1.
A straight tube shape with an inner diameter smaller than the outer diameter is memorized, and a slit 3 is cut in the vertical direction.

このスリーブlは例えばNi含有量50.9at%、形
状記憶処理温度750℃のN i −T i合金よりな
り、−3℃である。
This sleeve 1 is made of, for example, a Ni-Ti alloy with a Ni content of 50.9 at% and a shape memory treatment temperature of 750°C, which is -3°C.

このスリーブ1を一30℃以下の温度に冷却し、図−2
に示すようにスリット3を広げて拡径した後、その中に
光ファイバ2人・2Bを挿入し、図3に示すように端面
を突き合わせる。その後、常温で放置すると、スリーブ
1は常温に戻り、記憶形状に回復して縮径し、図−4に
示すように光ファイバ2A・2Bを締付は接続した状態
となる。
This sleeve 1 was cooled to a temperature of -30°C or less, and
After widening the slit 3 to increase its diameter as shown in FIG. 3, two optical fibers 2B are inserted into the slit 3, and the end faces are butted together as shown in FIG. Thereafter, when left at room temperature, the sleeve 1 returns to room temperature, recovers its memorized shape, and contracts in diameter, resulting in a state in which the optical fibers 2A and 2B are tightened and connected as shown in FIG.

光ファイバ2A・2Bは硬い直管状のスリーブ1によっ
て締め付けられるため、軸心が正確に一敗することにな
る。
Since the optical fibers 2A and 2B are tightened by the hard straight sleeve 1, the axes of the optical fibers 2A and 2B are precisely bent.

図−5および図−6は金属被覆光ファイバの接続に好適
な本発明の他の実施例を示す。
5 and 6 show other embodiments of the present invention suitable for splicing metal-coated optical fibers.

図−5は金属被覆光ファイバ接続用の複合スリーブを示
す。この複合スリーブ4は、スリット3の入った形状記
憶合金製のスリーブIの全表面に電気メツキで共晶半田
被膜5を設けたものである。
Figure 5 shows a composite sleeve for connecting metal coated optical fibers. This composite sleeve 4 is obtained by providing a eutectic solder coating 5 on the entire surface of a shape memory alloy sleeve I having slits 3 by electroplating.

スリーブlは例えばN1含有ff150.2at%、形
状記憶処理温度440℃のN1−Ti合金よりなり、接
続すべき金属被覆光ファイバの外径より小さい内径の直
管形状を記憶させてあり、R相変態温度は38℃、逆変
態温度は64℃である。
The sleeve l is made of, for example, an N1-Ti alloy with an N1 content of 150.2 at% and a shape memory treatment temperature of 440°C, and is memorized in the shape of a straight tube with an inner diameter smaller than the outer diameter of the metal-coated optical fiber to be connected. The transformation temperature is 38°C, and the reverse transformation temperature is 64°C.

図−6は接続後の状態を示している。接続すべき金属被
覆光ファイハロA・6Bはそれぞれ外径125μmの石
英ガラス光ファイバ7の外周に厚さ100μmの金属被
覆8を設けたものである。この実施例では金属被覆8に
銅を用いたが、金属被覆8は表面が半田付けできるもの
であればよい。
Figure 6 shows the state after connection. The metal-coated optical fiber harrows A and 6B to be connected are each provided with a metal coating 8 having a thickness of 100 μm around the outer periphery of a quartz glass optical fiber 7 having an outer diameter of 125 μm. In this embodiment, copper is used for the metal coating 8, but any metal coating 8 may be used as long as its surface can be soldered.

図−5の複合スリーブ4を常温においてスリット3を広
げて拡径した後、その中に金属被覆光ファイバ6A・6
Bを挿入し、端面を突き合わせる。
After expanding the diameter of the composite sleeve 4 shown in Figure 5 by widening the slit 3 at room temperature, the metal-coated optical fibers 6A and 6 are inserted into the composite sleeve 4.
Insert B and butt the ends together.

そのe 230℃で10分間加熱する。これによりスリ
ーブlが記憶形状に回復しようとして縮径し、金属被覆
光ファイバ6A・6Bを締め付けると共に、半田被膜5
が溶融する。加熱後、常温まで冷却すると、図−6に示
すように金属被覆光ファイバの金属被718と形状記憶
合金スリーブ1とが半田付けされた接続部が得られる。
Heat at 230°C for 10 minutes. As a result, the sleeve l tries to recover its memorized shape and contracts in diameter, tightening the metal-coated optical fibers 6A and 6B, and at the same time tightening the solder coating 5.
melts. After heating, when it is cooled to room temperature, a connection part in which the metal sheath 718 of the metal-coated optical fiber and the shape memory alloy sleeve 1 are soldered is obtained as shown in FIG.

スリーブlは常温では記憶形状回復力はないが、金属被
覆8と半田付けされているため、金属被覆光ファイバ6
A・6Bの接続状態を維持できる。
Although the sleeve l does not have memory shape recovery ability at room temperature, since it is soldered to the metal coating 8, the metal coating optical fiber 6
The connection status of A and 6B can be maintained.

以上の実施例では形状記憶合金としてNi−Ti合金を
使用したが、他の形状記憶合金例えばCu−Zn−Al
合金等を使用することもできる。
In the above examples, Ni-Ti alloy was used as the shape memory alloy, but other shape memory alloys such as Cu-Zn-Al
Alloys etc. can also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、接続すべき光ファ
イバはスリーブに挿入されて端面を突き合わされた後、
記憶形状に回復しようとする硬いスリーブによって締め
付けられるため、軸心が正確に一致し、軸ズレのない光
ファイバ接続を行うことができる。
As explained above, according to the present invention, after the optical fibers to be connected are inserted into the sleeve and their end faces are butted together,
Since it is tightened by a hard sleeve that attempts to recover its memorized shape, the axes can be aligned accurately and optical fiber connections can be made without axis misalignment.

また内面に半田被膜を有する形状記憶合金スリーブを使
用すれば、金属被覆光ファイバを半田付けにより強固に
接続することができる。
Further, by using a shape memory alloy sleeve having a solder coating on the inner surface, metal-coated optical fibers can be firmly connected by soldering.

【図面の簡単な説明】[Brief explanation of the drawing]

図−lないし図−4は本発明の一実施例に係る光ファイ
バの接続方法を工程順に示す斜視図、図−5は本発明の
他の実施例で使用する複合スリーブの横断面図、図−6
はそれを用いた金属被覆光1:形状記憶合金製のスリー
ブ 2A・2B=光ファイバ 3ニスリット4:複合スリー
ブ 5:半田被膜 6A・6日二金属被覆光ファイバ
Figures 1 to 4 are perspective views showing the optical fiber connection method according to an embodiment of the present invention in the order of steps, and Figure 5 is a cross-sectional view of a composite sleeve used in another embodiment of the present invention. -6
Metal-coated light using the same 1: Shape memory alloy sleeves 2A and 2B = optical fiber 3 Nislit 4: Composite sleeve 5: Solder coating 6A and 6-day metal-coated optical fiber

Claims (1)

【特許請求の範囲】 1、直管形状を記憶した形状記憶合金よりなり、記憶形
状における内径(内面に被膜を有する場合はその被膜を
含めた内径)が接続すべき光ファイバの外径より小さい
スリーブを用い、このスリーブをマルテンサイト変態温
度またはR相変態温度以下の温度で光ファイバの外径よ
り大きい内径に拡径した後、スリーブ内に接続すべき光
ファイバを挿入して端面を突き合わせ、その後、スリー
ブを逆変態温度以上の温度に加熱して縮径することを特
徴とする光ファイバ接続方法。 2、請求項1記載の接続方法であって、スリーブの逆変
態温度が、接続後の光ファイバの周囲温度より低く設定
されていることを特徴とするもの。 3、少なくとも内面に半田被膜を有する直管形状を記憶
した形状記憶合金よりなり、記憶形状における前記被膜
を含めた内径が接続すべき金属被覆光ファイバの外径よ
り小さいスリーブを用い、このスリーブをスリーブをマ
ルテンサイト変態温度またはR相変態温度以下の温度で
金属被覆光ファイバの外径より大きい内径に拡径した後
、スリーブ内に接続すべき金属被覆光ファイバを挿入し
て端面を突き合わせ、その後、スリーブを逆変態温度以
上でかつ前記被膜の融点以上の温度に加熱してスリーブ
を縮径すると共にスリーブと光ファイバの金属被覆とを
半田付けすることを特徴とする金属被覆光ファイバ接続
方法。 4、請求項1ないし3のいずれかに記載の接続方法であ
って、スリーブとして縦にスリットを入れたものを使用
することを特徴とするもの。 5、直管形状を記憶した形状記憶合金よりなり、記憶形
状における内径(内面に被膜を有する場合はその被膜を
含めた内径)が接続すべき光ファイバの外径より小さい
ことを特徴とする光ファイバ接続用スリーブ。
[Claims] 1. Made of a shape memory alloy that memorizes the shape of a straight pipe, the inner diameter in the memorized shape (inner diameter including the coating if the inner surface has a coating) is smaller than the outer diameter of the optical fiber to be connected. Using a sleeve, expand the sleeve to an inner diameter larger than the outer diameter of the optical fiber at a temperature below the martensitic transformation temperature or the R-phase transformation temperature, then insert the optical fiber to be connected into the sleeve and butt the end faces, An optical fiber connecting method characterized in that the sleeve is then heated to a temperature equal to or higher than a reverse transformation temperature to reduce its diameter. 2. The splicing method according to claim 1, wherein the reverse transformation temperature of the sleeve is set lower than the ambient temperature of the optical fiber after splicing. 3. Using a sleeve made of a shape memory alloy that memorizes the shape of a straight tube with a solder coating on at least the inner surface, the inner diameter of the memorized shape including the coating is smaller than the outer diameter of the metal-coated optical fiber to be connected; After expanding the sleeve to an inner diameter larger than the outer diameter of the metal-coated optical fiber at a temperature below the martensitic transformation temperature or the R-phase transformation temperature, the metal-coated optical fiber to be connected is inserted into the sleeve and the end faces are butted, and then A method for connecting metal-coated optical fibers, characterized in that the sleeve is heated to a temperature higher than the reverse transformation temperature and higher than the melting point of the coating to reduce the diameter of the sleeve, and the sleeve and the metal coating of the optical fiber are soldered together. 4. The connection method according to any one of claims 1 to 3, characterized in that a sleeve having vertical slits is used. 5. A light made of a shape memory alloy that memorizes the shape of a straight pipe, and whose inner diameter in the memorized shape (inner diameter including the coating if it has a coating on the inner surface) is smaller than the outer diameter of the optical fiber to be connected. Fiber connection sleeve.
JP1281713A 1989-10-31 1989-10-31 Optical fiber connection method and connection sleeve Expired - Fee Related JP2713478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281713A JP2713478B2 (en) 1989-10-31 1989-10-31 Optical fiber connection method and connection sleeve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281713A JP2713478B2 (en) 1989-10-31 1989-10-31 Optical fiber connection method and connection sleeve

Publications (2)

Publication Number Publication Date
JPH03144408A true JPH03144408A (en) 1991-06-19
JP2713478B2 JP2713478B2 (en) 1998-02-16

Family

ID=17642949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281713A Expired - Fee Related JP2713478B2 (en) 1989-10-31 1989-10-31 Optical fiber connection method and connection sleeve

Country Status (1)

Country Link
JP (1) JP2713478B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256610A (en) * 2006-03-23 2007-10-04 Furukawa Electric Co Ltd:The Optical fiber connector and optical fiber connecting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474453A (en) * 1977-11-25 1979-06-14 Sumitomo Electric Ind Ltd Connection of metal coated optical fibers
JPS59104119U (en) * 1982-12-27 1984-07-13 オムロン株式会社 Coupling structure of optical conductor
JPS6243606A (en) * 1985-08-20 1987-02-25 Nippon Telegr & Teleph Corp <Ntt> Splicing method for optical fiber
JPS636409U (en) * 1986-06-30 1988-01-16
JPS63221307A (en) * 1987-03-11 1988-09-14 Mitsubishi Heavy Ind Ltd Method for connecting optical fibers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474453A (en) * 1977-11-25 1979-06-14 Sumitomo Electric Ind Ltd Connection of metal coated optical fibers
JPS59104119U (en) * 1982-12-27 1984-07-13 オムロン株式会社 Coupling structure of optical conductor
JPS6243606A (en) * 1985-08-20 1987-02-25 Nippon Telegr & Teleph Corp <Ntt> Splicing method for optical fiber
JPS636409U (en) * 1986-06-30 1988-01-16
JPS63221307A (en) * 1987-03-11 1988-09-14 Mitsubishi Heavy Ind Ltd Method for connecting optical fibers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256610A (en) * 2006-03-23 2007-10-04 Furukawa Electric Co Ltd:The Optical fiber connector and optical fiber connecting method
JP4728854B2 (en) * 2006-03-23 2011-07-20 古河電気工業株式会社 Optical fiber connecting member and optical fiber connecting method

Also Published As

Publication number Publication date
JP2713478B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US4078910A (en) Glass sleeve fiber joining
US4261644A (en) Method and article of manufacturing an optical fiber connector
EP0501297A1 (en) Optical-coupler reinforcing element and optical-coupler reinforcing method
JPS5921530B2 (en) Plastic clad type, optical fiber connection method
JPS6073506A (en) Method and apparatus for repairing or connecting optical fiber cable
JPS59200207A (en) Theath for protecting light waveguide
US5143531A (en) Hermetic fiber optic-to-metal connection technique
JPS6327805A (en) Member for connecting optical fiber and connecting method using same
US4087157A (en) Helical spring optical fiber connector and splice
JPH03144408A (en) Method for connecting optical fibers and connection sleeve
JPH07209542A (en) Reinforcing structure of heat resistant optical fiber juncture
JPH04315107A (en) Method for connecting optical fiber
JP2004038019A (en) Reinforcing member for optical fiber fusion splice part and method of manufacturing the same
JP3439635B2 (en) Reinforcing method and reinforcing member for optical fiber connection part
JPS61219010A (en) Connecting method for plastic clad optical fiber
JPS60247204A (en) Juncture of optical fibers
JPS5868709A (en) Connecting method for optical fiber
JPS59155813A (en) Reinforcing member of optical fiber connecting part and its reinforcing method
JPH07294770A (en) Method for connecting quartz waveguide to optical fiber and structure of juncture
JPS5928113A (en) Reinforcing method of connection part of optical fiber
GB2127170A (en) Fibre optic cables
JPH0225485B2 (en)
JPS6219819A (en) Lens fixing method
JPS6061706A (en) Reinforcing method of optical fiber connecting part and its reinforcing member
JP3076127B2 (en) Optical fiber terminal for hermetic sealing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees