JP2004038019A - Reinforcing member for optical fiber fusion splice part and method of manufacturing the same - Google Patents

Reinforcing member for optical fiber fusion splice part and method of manufacturing the same Download PDF

Info

Publication number
JP2004038019A
JP2004038019A JP2002197608A JP2002197608A JP2004038019A JP 2004038019 A JP2004038019 A JP 2004038019A JP 2002197608 A JP2002197608 A JP 2002197608A JP 2002197608 A JP2002197608 A JP 2002197608A JP 2004038019 A JP2004038019 A JP 2004038019A
Authority
JP
Japan
Prior art keywords
heat
tube
shrinkable tube
reinforcing member
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002197608A
Other languages
Japanese (ja)
Inventor
Eisuke Oki
沖 栄輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002197608A priority Critical patent/JP2004038019A/en
Publication of JP2004038019A publication Critical patent/JP2004038019A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing member for an optical fiber fusion splice part, which holds a hot-melt tube and a reinforcing bar in a heat shrinkable tube without performing work of temporary heat shrinking and is free from erroneous insertion of optical fibers and to provide a method of manufacturing the same. <P>SOLUTION: A reinforcing member 15 for an optical fiber fusion splice part has a reinforcing bar 18 and a hot-melt tube 17 stored in a heat shrinkable tube 16, and the reinforcing bar 18 and the hot-melt tube 17 are stored and held by elasticity of the heat shrinkable tube 16 before shrinking by heat. The heat shrinkable tube 16 has an oval or elliptic section. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一対の光ファイバ同士を融着により接続し、融着接続部を補強部材により保護・補強する光ファイバ融着接続部の補強部材およびその製造方法に関する。
【0002】
【従来の技術】
光ファイバの融着接続は、接続端のファイバ被覆部を除去して、露出されたガラスの裸ファイバ部の突合せ端部を加熱溶融して融着接続が行なわれる。ファイバ被覆部が除去され、融着接続された裸ファイバ部は、機械的な強度が弱いため、補強部材により補強される。この補強部材は、通常、加熱により径方向に収縮する熱収縮チューブ内に補強棒を添えて、熱溶融性の接着樹脂からなる熱溶融性チューブを収納して構成されている。
【0003】
図3は、従来の融着接続部の補強方法を示す図で、図3(A)は補強部材に融着接続部を挿通させた状態の側面方向断面図、図3(B)は補強された状態の側面方向断面図、図3(C)は図2(A)の軸方向断面図である。図中、1は光ファイバ心線、2は裸ファイバ部、3はファイバ被覆部、4は融着接続部、5は補強部材、6は熱収縮チューブ、7は熱溶融性チューブ、8は補強棒、9はスペース部分を示す。
【0004】
光ファイバ心線1は、接続端のファイバ被覆部3を除去して裸ファイバ部2を露出し、先端を突き合わせてアーク放電等により融着接続される。補強部材5は、裸ファイバ部2の両側のファイバ被覆部3を所定範囲覆う長さを有し、ポリエチレン樹脂系の熱収縮チューブ6内に、ホットメルト接着樹脂系の熱溶融性チューブ7とステンレスまたはガラス等の補強棒8を収納して構成される。融着接続された光ファイバ心線1は、熱溶融性チューブ7内に融着接続部4が中央に位置するように挿入され、適当な加熱手段(図示せず)により加熱される。この加熱により、熱溶融性チューブ7が軟化溶融されるとともに、熱収縮チューブ6が内径方向に収縮される。
【0005】
熱収縮チューブ6の収縮により、加熱溶融された熱溶融性チューブ7は、熱収縮チューブ6内のスペース部分9を埋めるようにして、裸ファイバ部2の周囲を補強棒8とともに覆う。熱収縮チューブ6および溶融された熱溶融性チューブ7が硬化すると、図3(B)に示すように、裸ファイバ部2の両側のファイバ被覆部3の一部を含めて、融着接続部4を所定の範囲にわたって保護・補強する。
【0006】
補強部材5は、ファイバ被覆部3の除去長等によって外形寸法に違いはあるが、熱収縮チューブ6には、通常、収縮前の外径が3.0mm〜4.0mm(厚み0.2mm程度)で、チューブ長さが32mm前後のものが用いられている。また、熱溶融性チューブ7には、外径1.6mm〜3.0mm(厚み0.3mm程度)で、補強棒8は外径1.0mm〜1.5mm程度のものが用いられている。
【0007】
一方、図4に示すように、ファイバ被覆外径が0.24mm〜0.4mmの光ファイバ心線1の融着接続において、裸ファイバ部2を把持せずにファイバ被覆部3を把持部材10で直接クランプして、裸ファイバ部2の長さを5.0mm〜16.0mm程度(ファイバ片側2.5mm〜8.0mm)にして高強度接続する技術が開発されている(例えば、特開平6−118251号公報参照)。この場合、融着接続部の引っ張り破断強度は、裸ファイバ部2をV溝に載せて行なう通常接続の場合と比べ1.5〜5.0倍程度大きくなる。
【0008】
したがって、高強度接続された光ファイバの融着接続部の補強では、裸ファイバ部の保護および曲げによる破断を防止する機能があれば十分である場合もある。そこで、高強度接続で融着接続した光ファイバでは、露出される裸ファイバ長、ファイバ被覆部の外径等の関係から、補強部材5の小型化を図ることが可能となる。この場合の補強部材5としては、外径が2mm以下、長さが20mm以下とすることが可能となっており、これに伴って熱溶融性チューブ7および補強棒8も当然に小径となる。
【0009】
【発明が解決しようとする課題】
上述した光ファイバの融着接続部の補強部材5は、予め熱収縮チューブ6内に熱溶融性チューブ7および補強棒8を収納して保持一体化しておく必要がある。このため、通常は、熱収縮チューブ6の中央部または両端部を加熱して仮熱収縮させ、熱溶融性チューブ7または補強棒8が熱収縮チューブ6から脱落しないように圧縮保持している。しかし、この場合、加熱が過剰になると内部の熱溶融性チューブ7が溶融して光ファイバの挿入ができなくなる。また、加熱が不足すると、熱溶融性チューブ7と補強棒8の把持力が不十分となって、熱収縮チューブ6に熱溶融性チューブ7、補強棒8への接触度合いが弱くなる方向への側圧(例えば、図2(A)の白矢印のように)が加わった状態で補強部材が傾けられたりすると補強棒8が脱落してしまう。
【0010】
また、高強度接続で補強部材5の小型・小径化を図った場合、熱溶融性チューブ7の孔に光ファイバ1を通す際に、全体が小径であることからスペース部分9に光ファイバを誤挿入してしまう恐れがある。補強部材5が小径の場合、スペース部分9に光ファイバ1を誤挿入すると、気がつかずに次の加熱収縮作業に進んでしまいやすい。スペース部分9に挿入された状態で熱溶融性チューブ7が溶融され接着一体化すると、光ファイバが補強棒8に接触する状態も発生し、側圧等を受けて損失増加の原因となる。
【0011】
本発明は、上述した実情に鑑みてなされたもので、仮熱収縮という作業を行なうことなく熱溶融性チューブと補強棒を熱収縮チューブ内に保持することができ、また光ファイバの誤挿入が生じない光ファイバ融着接続部の補強部材およびその製造方法の提供を目的とする。
【0012】
【課題を解決するための手段】
本発明による光ファイバ融着接続部の補強部材は、熱収縮チューブ内に補強棒と熱溶融性チューブとを収納した光ファイバ融着接続部の補強部材であって、加熱収縮前の熱収縮チューブの弾性により補強棒と熱溶融性チューブを収納保持したことを特徴とする。
【0013】
また、本発明による光ファイバ融着接続部の補強部材の製造方法は、光ファイバ同士の融着接続部を補強するために熱収縮チューブ内に補強棒と熱溶融性チューブとを収納した補強部材の製造方法であって、加熱収縮前の熱収縮チューブの内径を補強棒外径と熱溶融性チューブ外径との和の1倍未満の内径を有する円形で形成しておき、この後、弾性変形により卵形または楕円形の断面形状にして、補強棒と熱溶融性チューブとを熱収縮チューブ内に収納することを特徴とする。
【0014】
【発明の実施の形態】
図1により、本発明の実施の形態を説明する。図中、11は光ファイバ心線、12は裸ファイバ部、13はファイバ被覆部、14は融着接続部、15は補強部材、16は熱収縮チューブ、17は熱溶融性チューブ、18は補強棒、19はスペース部分、20は加熱プレート、21は加熱ヒータを示す。
【0015】
光ファイバ心線11(光ファイバ素線という場合もある)は、公称外径0.125mmの裸ファイバ部12の外面に、ファイバ被覆部13を無色または着色して1層または2層で形成されたものである。一対の光ファイバ心線11を融着接続する場合、接続端のファイバ被覆部13を所定の長さで除去し、裸ファイバ部12を露出させ端部を切断する。露出された裸ファイバ部12は接続端を融着接続器(図示せず)に載置して先端を突き合わせ、放電加熱等により融着して接続する。
【0016】
融着接続に際して、露出された裸ファイバ部12をV溝台に載せクランプして接続する通常の融着接続方法と、裸ファイバ部を把持せずにファイバ被覆部13の先端部を直接クランプして接続する高強度接続と言われている融着接続方法がある。後者の高強度接続は、裸ファイバ部を把持しないのでファイバ被覆部の除去長を短くすることができ、また、裸ファイバに傷がつかないことから、接続部の引っ張り強度も大きくすることができる。
【0017】
補強部材15は、従来と同様に熱収縮チューブ16内に熱溶融性チューブ17と補強棒18を収納して構成される。また、熱収縮チューブ16は、ポリエチレン樹脂(略称:PE)等で形成され、加熱により径を収縮されるものが用いられる。熱溶融性チューブ17は、エチレン酢酸ビニル(略称:EVA)等のホットメルト接着樹脂で形成され、加熱により軟化溶融されるものが用いられる。補強棒18は、ステンレスまたはガラス材で、断面を円形ないし半円形にしたものが用いられる。
【0018】
以上のように補強部材15が組み付けられた後、先端部のファイバ被覆13が除去された状態または除去されない状態で、互いに接続される光ファイバ心線11の一方が熱溶融性チューブ17内に挿入される。光ファイバ心線11の裸ファイバ12の端部が融着接続された後、補強部材15は融着接続部14が中央に位置するようにスライド移動させる。この後、補強部材15は、加熱プレート20を介して加熱ヒータ21により加熱される。この加熱により、熱溶融性チューブ17が溶融されると共に熱収縮チューブ16が熱収縮され、スペース部分19を溶融した熱収縮チューブの樹脂で埋め、裸ファイバ部12の周囲を補強棒18とともに覆う。熱収縮チューブ16および溶融された熱溶融性チューブ17が硬化すると、裸ファイバ部12の両側のファイバ被覆部13を含めた所定の範囲を封着し保護・補強する。
【0019】
図2は、本発明による補強部材の特徴を示す図で、図2(A)は円形の熱収縮チューブを用いる例を示す図、図2(B)および図2(C)は楕円形の熱収縮チューブを用いる例を示す図である。図中の符号は、図1に用いたのと同じ符号を用いることにより説明を省略する。
【0020】
図2(A)に示すように、例えば、補強部材15の熱収縮チューブ16は、チューブ成形時は円形で形成しておき、側面を矢印のように押圧して弾性的に楕円形状に変形させて熱溶融性チューブ17と補強棒18を挿入する。熱収縮チューブ16の熱収縮前の内径D1は、(熱溶融性チューブ外径+補強棒外径)より小さく形成されており、弾性的に楕円形状に変形することにより熱溶融性チューブ17と補強棒18の挿入を可能とし、挿入後は圧縮力解除による弾性により収納保持する。
【0021】
図2(B)および図2(C)は、補強部材15の熱収縮チューブ16を、チューブ成形時に予め非円形の卵形または楕円形の断面形状となるように形成した例である。図2(B)のように、熱収縮前の熱収縮チューブ16の長軸内径D2が比較的大きく(熱溶融性チューブ外径+補強棒外径)の1倍を超え、1.25倍以下であり、熱収縮チューブ16の短軸内径D3が熱溶融性チューブ外径(補強棒外径より大きいものとしたとき)より小さい場合、長軸側を矢印のように押圧して弾性的に短軸方向を拡大変形させて熱溶融性チューブ17と補強棒18を挿入する。
【0022】
反対に、図2(C)のように、熱収縮前の熱収縮チューブ16の短軸内径D3が比較的大きく熱溶融性チューブ外径(補強部材外径より大きいものとしたとき)の1倍を超え、1.5倍以下であり、熱収縮チューブ16の長軸内径D3が、(熱溶融性チューブ外径+補強棒外径)より小さい場合、短軸側を矢印のように押圧して弾性的に長軸方向を拡大変形させて熱溶融性チューブ17と補強棒18を挿入する。
【0023】
図2のいずれの例においても、矢印方向の押圧を解除することにより、熱収縮チューブ16が元の円形または楕円形状には復帰しようとする弾性力により、熱溶融性チューブ17と補強棒18とを熱収縮チューブ16内に保持し、脱落を防止することができる。この結果、従来のように熱収縮チューブを仮熱収縮させる必要がなくなり、作業性を向上させると共に歩留まりの向上を図ることができる。特に高強度接続で補強部材15の外径を2.0mm以下の小径とするような場合は、仮熱収縮の熱量調整が微妙であるため、仮熱収縮を行なわずに保持できることは極めて有効である。
【0024】
熱収縮前の補強部材15において、(熱収縮チューブ内径断面積−補強棒断面積−熱溶融性チューブ断面積)/(熱収縮チューブ内径断面積)≦0.2とすることが望ましい。すなわち、熱溶融性チューブ17と補強棒18を挿入した後の、熱収縮チューブ16のスペース部分9を所定値以下にすることにより、スペース部分19に光ファイバ11の挿入を抑止することができ、誤挿入を防止することができる。
【0025】
特に、高強度接続で補強部材15の外径を2.0mm以下とした場合、光ファイバ心線11が挿入される熱溶融性チューブ17の外径は1.0mm以下、内径は0.5mm程度の細径となる。このため、光ファイバ心線11も誤挿入しやすくなるが、上記のようにスペース部分19の縮小化を図ることにより、スペース部分19への誤挿入を阻止することができ、歩留まり向上に極めて有効となる。
【0026】
【発明の効果】
以上の説明から明らかなように、本発明によれば、仮熱収縮という作業を行なうことなく熱溶融性チューブと補強棒を熱収縮チューブ内に保持することができ、作業性を向上させることができる。また、光ファイバの誤挿入を防止することができ、歩留まりの向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の概略を説明する図である。
【図2】本発明の特徴部分を説明する図である。
【図3】従来の技術を説明する図である。
【図4】融着接続の高強度接続を示す図である。
【符号の説明】
11…光ファイバ心線、12…裸ファイバ部、13…ファイバ被覆部、14…融着接続部、15…補強部材、16…熱収縮チューブ、17…熱溶融性チューブ、18…補強棒、19…スペース部分、20…加熱プレート、21…加熱ヒーター。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a reinforcing member for an optical fiber fusion spliced portion, in which a pair of optical fibers are spliced together, and the spliced portion is protected and reinforced by a reinforcing member, and a method for manufacturing the same.
[0002]
[Prior art]
In the fusion splicing of the optical fiber, the fiber coating portion at the connection end is removed, and the butt end of the exposed bare fiber portion of the glass is heated and melted to perform fusion splicing. The bare fiber portion from which the fiber coating has been removed and which has been fusion spliced is reinforced by a reinforcing member because of its low mechanical strength. The reinforcing member is usually constituted by accommodating a heat-fusible tube made of a heat-meltable adhesive resin with a reinforcing rod in a heat-shrinkable tube which shrinks in the radial direction by heating.
[0003]
3A and 3B are views showing a conventional method for reinforcing a fusion splicing portion. FIG. 3A is a side sectional view showing a state in which the fusion splicing portion is inserted through a reinforcing member, and FIG. 3B is reinforced. FIG. 3 (C) is an axial sectional view of FIG. 2 (A). In the figure, 1 is an optical fiber core, 2 is a bare fiber portion, 3 is a fiber coating portion, 4 is a fusion splicing portion, 5 is a reinforcing member, 6 is a heat-shrinkable tube, 7 is a heat-fusible tube, and 8 is reinforced. A bar 9 indicates a space portion.
[0004]
The optical fiber core 1 is removed by exposing the bare fiber portion 2 by removing the fiber coating portion 3 at the connection end, and the ends thereof are butted and fused by arc discharge or the like. The reinforcing member 5 has a length covering a predetermined range of the fiber coating portions 3 on both sides of the bare fiber portion 2, and a hot-melt adhesive resin-based heat-fusible tube 7 and a stainless steel Alternatively, it is configured to house a reinforcing rod 8 made of glass or the like. The fusion spliced optical fiber core wire 1 is inserted into the heat fusible tube 7 so that the fusion splicing portion 4 is located at the center, and is heated by a suitable heating means (not shown). By this heating, the heat-meltable tube 7 is softened and melted, and the heat-shrinkable tube 6 is shrunk in the inner diameter direction.
[0005]
Due to the shrinkage of the heat-shrinkable tube 6, the heat-fusible tube 7, which has been heated and melted, covers the periphery of the bare fiber portion 2 together with the reinforcing rod 8 so as to fill the space portion 9 in the heat-shrinkable tube 6. When the heat-shrinkable tube 6 and the melted heat-fusible tube 7 are hardened, as shown in FIG. 3B, the fusion spliced portion 4 including a part of the fiber coating portion 3 on both sides of the bare fiber portion 2 is formed. Is protected and reinforced over a predetermined range.
[0006]
Although the outer dimensions of the reinforcing member 5 vary depending on the removal length of the fiber coating 3 and the like, the outer diameter of the heat-shrinkable tube 6 before shrinkage is usually 3.0 mm to 4.0 mm (about 0.2 mm thick). ) Having a tube length of about 32 mm. The heat-fusible tube 7 has an outer diameter of 1.6 mm to 3.0 mm (about 0.3 mm in thickness), and the reinforcing rod 8 has an outer diameter of about 1.0 mm to 1.5 mm.
[0007]
On the other hand, as shown in FIG. 4, in the fusion splicing of the optical fiber core wire 1 having an outer diameter of the fiber coating of 0.24 mm to 0.4 mm, the fiber coating 3 is held by the holding member 10 without holding the bare fiber 2. A technique has been developed in which the bare fiber portion 2 is directly clamped to make the length of the bare fiber portion about 5.0 mm to 16.0 mm (2.5 mm to 8.0 mm on one side of the fiber) for high strength connection (for example, Japanese Unexamined Patent Publication No. 6-118251). In this case, the tensile rupture strength of the fusion spliced portion is about 1.5 to 5.0 times as large as that in the case of the normal connection in which the bare fiber portion 2 is placed on the V groove.
[0008]
Therefore, in reinforcing the fusion spliced part of the optical fiber connected with high strength, there is a case where the function of protecting the bare fiber part and preventing breakage due to bending may be sufficient. Therefore, in the optical fiber spliced by the high-strength connection, the size of the reinforcing member 5 can be reduced due to the relationship between the length of the bare fiber exposed, the outer diameter of the fiber coating, and the like. In this case, the reinforcing member 5 can have an outer diameter of 2 mm or less and a length of 20 mm or less, and accordingly, the heat-fusible tube 7 and the reinforcing rod 8 naturally have a small diameter.
[0009]
[Problems to be solved by the invention]
The above-mentioned reinforcing member 5 of the fusion splicing portion of the optical fiber needs to house the heat-fusible tube 7 and the reinforcing rod 8 in the heat-shrinkable tube 6 and hold and integrate them in advance. For this reason, usually, the central part or both ends of the heat-shrinkable tube 6 is heated and temporarily shrunk, and the heat-fusible tube 7 or the reinforcing rod 8 is compressed and held so as not to fall off the heat-shrinkable tube 6. However, in this case, if the heating is excessive, the heat-fusible tube 7 inside is melted and the optical fiber cannot be inserted. If the heating is insufficient, the gripping force between the heat-meltable tube 7 and the reinforcing rod 8 becomes insufficient, and the degree of contact of the heat-shrinkable tube 6 with the heat-meltable tube 7 and the reinforcing rod 8 decreases. If the reinforcing member is tilted in a state where a lateral pressure (for example, as indicated by a white arrow in FIG. 2A) is applied, the reinforcing rod 8 falls off.
[0010]
When the reinforcing member 5 is reduced in size and diameter by high-strength connection, when the optical fiber 1 is passed through the hole of the heat-fusible tube 7, the optical fiber is erroneously inserted into the space 9 because the entire diameter is small. There is a risk of insertion. When the reinforcing member 5 has a small diameter, if the optical fiber 1 is erroneously inserted into the space portion 9, it is easy to proceed to the next heat shrinking operation without noticing. When the heat-fusible tube 7 is melted and bonded and integrated while being inserted into the space portion 9, a state in which the optical fiber comes into contact with the reinforcing rod 8 also occurs, which causes an increase in loss due to a side pressure or the like.
[0011]
The present invention has been made in view of the above-described circumstances, and can hold a heat-fusible tube and a reinforcing rod in a heat-shrinkable tube without performing a work of temporary heat shrinkage, and can prevent erroneous insertion of an optical fiber. It is an object of the present invention to provide a reinforcing member for an optical fiber fusion spliced portion that does not occur and a method for manufacturing the same.
[0012]
[Means for Solving the Problems]
The reinforcing member of the optical fiber fusion splicing part according to the present invention is a reinforcing member of the optical fiber fusion splicing part in which the reinforcing rod and the heat fusible tube are accommodated in the heat shrinkable tube, and the heat shrinkable tube before the heat shrinkage. Characterized in that the reinforcing rod and the heat-meltable tube are housed and held by the elasticity of the tube.
[0013]
In addition, the method for manufacturing a reinforcing member for an optical fiber fusion spliced part according to the present invention includes a reinforcing member in which a reinforcing rod and a heat fusible tube are housed in a heat shrinkable tube to reinforce the fusion spliced part between optical fibers. Wherein the inner diameter of the heat-shrinkable tube before heat shrinking is formed into a circle having an inner diameter less than 1 times the sum of the outer diameter of the reinforcing rod and the outer diameter of the heat-fusible tube, and then the elasticity It is characterized in that the reinforcing rod and the heat-fusible tube are housed in a heat-shrinkable tube by deforming into an oval or elliptical cross-sectional shape.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIG. In the figure, 11 is an optical fiber core wire, 12 is a bare fiber portion, 13 is a fiber coating portion, 14 is a fusion spliced portion, 15 is a reinforcing member, 16 is a heat shrinkable tube, 17 is a heat-fusible tube, and 18 is reinforced. A bar, 19 is a space portion, 20 is a heating plate, and 21 is a heater.
[0015]
The optical fiber core 11 (which may be referred to as an optical fiber) is formed in one or two layers on the outer surface of a bare fiber portion 12 having a nominal outer diameter of 0.125 mm by coloring or covering the fiber coating portion 13. It is a thing. When a pair of optical fiber core wires 11 are fusion-spliced, the fiber coating portion 13 at the connection end is removed with a predetermined length, the bare fiber portion 12 is exposed, and the end portion is cut. The exposed bare fiber portion 12 is mounted on a fusion splicer (not shown) with its connection end abutted on its tip, and fused and connected by discharge heating or the like.
[0016]
At the time of fusion splicing, a normal fusion splicing method in which the exposed bare fiber portion 12 is placed on a V-groove and clamped to connect, or the tip portion of the fiber coating portion 13 is directly clamped without gripping the bare fiber portion. There is a fusion splicing method called a high strength connection. Since the latter high-strength connection does not grip the bare fiber portion, the removal length of the fiber coating can be shortened, and since the bare fiber is not damaged, the tensile strength of the connection portion can be increased. .
[0017]
The reinforcing member 15 is configured by housing a heat-fusible tube 17 and a reinforcing rod 18 in a heat-shrinkable tube 16 as in the related art. The heat-shrinkable tube 16 is made of polyethylene resin (abbreviation: PE) or the like, and is used whose diameter is shrunk by heating. The heat-meltable tube 17 is formed of a hot-melt adhesive resin such as ethylene vinyl acetate (abbreviation: EVA) and is softened and melted by heating. The reinforcing rod 18 is made of stainless steel or glass and has a circular or semicircular cross section.
[0018]
After the reinforcing member 15 is assembled as described above, one of the optical fiber core wires 11 connected to each other is inserted into the heat-meltable tube 17 with or without the fiber coating 13 at the distal end removed. Is done. After the end of the bare fiber 12 of the optical fiber 11 is fusion-spliced, the reinforcing member 15 is slid so that the fusion splicing portion 14 is located at the center. Thereafter, the reinforcing member 15 is heated by the heater 21 via the heating plate 20. By this heating, the heat-fusible tube 17 is melted and the heat-shrinkable tube 16 is heat-shrinked. The space portion 19 is filled with the melted heat-shrinkable tube resin, and the periphery of the bare fiber portion 12 is covered with the reinforcing rod 18. When the heat-shrinkable tube 16 and the melted heat-fusible tube 17 are hardened, a predetermined area including the fiber coating portions 13 on both sides of the bare fiber portion 12 is sealed, protected and reinforced.
[0019]
2A and 2B are diagrams showing characteristics of the reinforcing member according to the present invention. FIG. 2A is a diagram showing an example in which a circular heat-shrinkable tube is used, and FIGS. It is a figure showing the example using a contraction tube. The description of the reference numerals in the figure will be omitted by using the same reference numerals as those used in FIG.
[0020]
As shown in FIG. 2A, for example, the heat-shrinkable tube 16 of the reinforcing member 15 is formed in a circular shape at the time of forming the tube, and the side surface is pressed as shown by an arrow to be elastically deformed into an elliptical shape. Then, the heat-fusible tube 17 and the reinforcing rod 18 are inserted. The inner diameter D1 of the heat-shrinkable tube 16 before the heat-shrinkage is smaller than (the outer diameter of the heat-meltable tube + the outer diameter of the reinforcing rod), and is elastically deformed into an elliptical shape to reinforce the heat-meltable tube 17. The rod 18 can be inserted, and after the insertion, the rod 18 is stored and held by elasticity by releasing the compression force.
[0021]
FIGS. 2B and 2C are examples in which the heat-shrinkable tube 16 of the reinforcing member 15 is formed in advance into a non-circular oval or elliptical cross-sectional shape when the tube is formed. As shown in FIG. 2 (B), the long axis inner diameter D2 of the heat-shrinkable tube 16 before the heat shrinkage is relatively large, which is more than 1 time (the outer diameter of the heat-fusible tube + the outer diameter of the reinforcing rod) and is 1.25 times or less. If the short-axis inner diameter D3 of the heat-shrinkable tube 16 is smaller than the outer diameter of the heat-fusible tube (when the outer diameter of the reinforcing rod is larger than the outer diameter of the reinforcing rod), the long-axis side is pressed as shown by the arrow to shorten elastically. The heat-fusible tube 17 and the reinforcing rod 18 are inserted by expanding and deforming in the axial direction.
[0022]
Conversely, as shown in FIG. 2 (C), the short-axis inner diameter D3 of the heat-shrinkable tube 16 before the heat-shrinkage is relatively large, which is one time the outer diameter of the heat-fusible tube (when the outer diameter is larger than the outer diameter of the reinforcing member). When the major axis inner diameter D3 of the heat-shrinkable tube 16 is smaller than (the outer diameter of the heat-meltable tube + the outer diameter of the reinforcing rod), the short-axis side is pressed as shown by the arrow. The heat-fusible tube 17 and the reinforcing rod 18 are inserted by elastically expanding and deforming the longitudinal direction.
[0023]
In any of the examples in FIG. 2, by releasing the pressing in the direction of the arrow, the heat-shrinkable tube 17 and the reinforcing rod 18 are connected to each other by the elastic force of the heat-shrinkable tube 16 returning to the original circular or elliptical shape. Can be held in the heat-shrinkable tube 16 to prevent falling off. As a result, it is no longer necessary to temporarily heat-shrink the heat-shrinkable tube unlike the related art, so that the workability can be improved and the yield can be improved. In particular, when the outer diameter of the reinforcing member 15 is set to a small diameter of 2.0 mm or less in a high-strength connection, since it is delicate to adjust the amount of heat of the temporary heat shrinkage, it is extremely effective to be able to hold without performing the temporary heat shrinkage. is there.
[0024]
In the reinforcing member 15 before the heat shrinkage, it is preferable that (heat shrinkable tube cross-sectional area-reinforcing rod cross-sectional area-heat-fusible tube cross-sectional area) / (heat shrinkable tube inner cross-sectional area) ≦ 0.2. That is, the insertion of the optical fiber 11 into the space portion 19 can be suppressed by setting the space portion 9 of the heat-shrinkable tube 16 after inserting the heat-fusible tube 17 and the reinforcing rod 18 to a predetermined value or less, Erroneous insertion can be prevented.
[0025]
In particular, when the outer diameter of the reinforcing member 15 is set to 2.0 mm or less in the high-strength connection, the outer diameter of the heat-fusible tube 17 into which the optical fiber core 11 is inserted is 1.0 mm or less, and the inner diameter is about 0.5 mm. Of small diameter. For this reason, the optical fiber core wire 11 is also likely to be erroneously inserted. However, by reducing the space portion 19 as described above, erroneous insertion into the space portion 19 can be prevented, which is extremely effective in improving the yield. It becomes.
[0026]
【The invention's effect】
As is clear from the above description, according to the present invention, the heat-fusible tube and the reinforcing rod can be held in the heat-shrinkable tube without performing the operation of temporary heat shrinkage, and the workability can be improved. it can. Further, erroneous insertion of the optical fiber can be prevented, and the yield can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an outline of the present invention.
FIG. 2 is a diagram illustrating a characteristic portion of the present invention.
FIG. 3 is a diagram illustrating a conventional technique.
FIG. 4 is a view showing a high-strength splicing connection.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Optical fiber core wire, 12 ... Bare fiber part, 13 ... Fiber coating part, 14 ... Fusion connection part, 15 ... Reinforcement member, 16 ... Heat-shrinkable tube, 17 ... Heat-fusible tube, 18 ... Reinforcement rod, 19 ... space part, 20 ... heating plate, 21 ... heating heater.

Claims (6)

熱収縮チューブ内に補強棒と熱溶融性チューブとを収納した光ファイバ融着接続部の補強部材であって、加熱収縮前の前記熱収縮チューブの弾性により前記補強棒と前記熱溶融性チューブを収納保持したことを特徴とする光ファイバ融着接続部の補強部材。A reinforcing member of an optical fiber fusion splicing part in which a reinforcing rod and a heat-fusible tube are housed in a heat-shrinkable tube, wherein the heat-shrinkable tube is formed by the elasticity of the heat-shrinkable tube before heat shrinkage. A reinforcing member for an optical fiber fusion spliced part, which is housed and held. 前記熱収縮チューブを卵形または楕円形の断面形状としたことを特徴とする請求項1に記載の光ファイバ融着接続部の補強部材。The reinforcing member according to claim 1, wherein the heat-shrinkable tube has an oval or elliptical cross section. 熱収縮前の前記熱収縮チューブ長軸内径が、熱溶融性チューブ外径と補強棒外径の和の1倍を超え1.25倍以下であることを特徴とする請求項2に記載の光ファイバ融着接続部の補強部材。3. The light according to claim 2, wherein a major axis inner diameter of the heat-shrinkable tube before heat-shrinkage is more than 1 time and 1.25 times or less of a sum of an outer diameter of the heat-fusible tube and an outer diameter of the reinforcing rod. Reinforcing member for fiber fusion spliced part. 熱収縮前の前記熱収縮チューブ短軸内径が、熱溶融性チューブ外径または補強棒外径のいずれか大きい方の1倍を超え1.5倍以下であることを特徴とする請求項2に記載の光ファイバ融着接続部の補強部材。The heat-shrinkable tube short-axis inner diameter before heat-shrinkage is more than 1 time and 1.5 times or less of the larger of the heat-fusible tube outer diameter and the reinforcing rod outer diameter. A reinforcing member for an optical fiber fusion spliced part according to the above. 熱収縮前の状態で、(熱収縮チューブ内径断面積−補強棒断面積−熱溶融性チューブ断面積)/(熱収縮チューブ内径断面積)≦0.2であることを特徴とする請求項1〜4のいずれか1項に記載の光ファイバ融着接続部の補強部材。2. The heat-shrinkable tube inner diameter cross-sectional area-reinforcing rod cross-sectional area-heat-fusible tube cross-sectional area / (heat-shrinkable tube inner diameter cross-sectional area) ≦ 0.2 before heat shrinkage. The reinforcing member for an optical fiber fusion spliced part according to any one of claims 1 to 4. 光ファイバ同士の融着接続部を補強するために熱収縮チューブ内に補強棒と熱溶融性チューブとを収納した補強部材の製造方法であって、加熱収縮前の前記熱収縮チューブの内径を補強棒外径と熱溶融性チューブ外径との和の1倍未満の内径を有する円形で形成しておき、この後、弾性変形により卵形または楕円形の断面形状にして、前記補強棒と前記熱溶融性チューブとを前記熱収縮チューブ内に収納することを特徴とする光ファイバ融着接続部の補強部材の製造方法。A method of manufacturing a reinforcing member in which a reinforcing rod and a heat-fusible tube are housed in a heat-shrinkable tube for reinforcing a fusion spliced portion between optical fibers, wherein the inner diameter of the heat-shrinkable tube before heat shrinkage is reinforced. A circular shape having an inner diameter of less than 1 times the sum of the outer diameter of the rod and the outer diameter of the heat-fusible tube is formed in a circle, and thereafter, the reinforcing rod is formed into an oval or elliptical cross-sectional shape by elastic deformation. A method for manufacturing a reinforcing member for an optical fiber fusion spliced part, wherein a heat fusible tube and a heat fusible tube are housed in the heat shrinkable tube.
JP2002197608A 2002-07-05 2002-07-05 Reinforcing member for optical fiber fusion splice part and method of manufacturing the same Withdrawn JP2004038019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197608A JP2004038019A (en) 2002-07-05 2002-07-05 Reinforcing member for optical fiber fusion splice part and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197608A JP2004038019A (en) 2002-07-05 2002-07-05 Reinforcing member for optical fiber fusion splice part and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004038019A true JP2004038019A (en) 2004-02-05

Family

ID=31705332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197608A Withdrawn JP2004038019A (en) 2002-07-05 2002-07-05 Reinforcing member for optical fiber fusion splice part and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004038019A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040624A (en) * 2004-07-23 2006-02-09 Sumitomo Wiring Syst Ltd Connection structure between different kinds of electric cables
JP2008033266A (en) * 2006-06-28 2008-02-14 Chubu Electric Power Co Inc Reinforced sleeve structure body and method of the reinforcing fusion spliced part
JP2009080472A (en) * 2007-09-07 2009-04-16 Sumitomo Electric Ind Ltd Protection sleeve, and apparatus and method for producing protection sleeve
WO2010104132A1 (en) 2009-03-11 2010-09-16 住友電気工業株式会社 Method for reinforcing connection part and reinforcing structure
WO2011065397A1 (en) * 2009-11-25 2011-06-03 住友電気工業株式会社 Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
JP2015026088A (en) * 2014-11-04 2015-02-05 古河電気工業株式会社 Reinforcement sleeve and method for reinforcing connection part of coated optical fiber
CN106019481A (en) * 2016-08-03 2016-10-12 叶穗芳 Optical cable fusion splice alloy protector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040624A (en) * 2004-07-23 2006-02-09 Sumitomo Wiring Syst Ltd Connection structure between different kinds of electric cables
JP2008033266A (en) * 2006-06-28 2008-02-14 Chubu Electric Power Co Inc Reinforced sleeve structure body and method of the reinforcing fusion spliced part
JP2009080472A (en) * 2007-09-07 2009-04-16 Sumitomo Electric Ind Ltd Protection sleeve, and apparatus and method for producing protection sleeve
WO2010104132A1 (en) 2009-03-11 2010-09-16 住友電気工業株式会社 Method for reinforcing connection part and reinforcing structure
KR20110124769A (en) 2009-03-11 2011-11-17 스미토모 덴키 고교 가부시키가이샤 Method for reinforcing connection part and reinforcing structure
US9004781B2 (en) 2009-03-11 2015-04-14 Sumitomo Electric Industries, Ltd. Method for reinforcing a splice part and reinforcing structure
WO2011065397A1 (en) * 2009-11-25 2011-06-03 住友電気工業株式会社 Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
JP2011133838A (en) * 2009-11-25 2011-07-07 Sumitomo Electric Ind Ltd Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
CN102667557A (en) * 2009-11-25 2012-09-12 住友电气工业株式会社 Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
JP2015026088A (en) * 2014-11-04 2015-02-05 古河電気工業株式会社 Reinforcement sleeve and method for reinforcing connection part of coated optical fiber
CN106019481A (en) * 2016-08-03 2016-10-12 叶穗芳 Optical cable fusion splice alloy protector

Similar Documents

Publication Publication Date Title
US20100158452A1 (en) Method connecting optical fiber of optical connector with optical transmission element, connector-attached optical transmission element, optical connector, and assembling method of optical connector
JPS59200207A (en) Theath for protecting light waveguide
WO2011065397A1 (en) Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
WO2008059842A1 (en) Optical connector
JP2013529798A (en) Optical fiber connector and assembly method thereof
JP2002082257A (en) Optical connector and optical connector parts
US20080193089A1 (en) Optical connector connecting method and structure
JP2004038019A (en) Reinforcing member for optical fiber fusion splice part and method of manufacturing the same
US11163117B2 (en) Optical fiber cable and method for manufacturing the same
JP2003315596A (en) Method for splicing optical fibers
JP2003232953A (en) Method and member for reinforcing fusion spliced part of optical fiber
KR20150027762A (en) Protective sleeve
EP1175634B1 (en) Bulbous configured fiber optic splice closure and associated methods
JP3439635B2 (en) Reinforcing method and reinforcing member for optical fiber connection part
JP4444270B2 (en) Reinforcing structure, reinforcing method and reinforcing sleeve for optical fiber connection part
JPH08327849A (en) Method for reinforcing optical fiber
JPS60185907A (en) Optical fiber protecting member
WO2021171706A1 (en) Optical receptacle and method for manufacturing same
JP4257836B2 (en) Structure and method for reinforcing fusion splice of optical fiber cord
JP2618362B2 (en) Optical fiber permanent connector
JP4120957B2 (en) Structure and method for reinforcing fusion splice of optical fiber cord
JP2526488B2 (en) Reinforcement structure and reinforcement method of optical fiber fusion splicing portion
JP5679407B2 (en) Fusion reinforcement sleeve
JPH0766097B2 (en) Optical fiber core wire bending correction method and its sleeve
JPH01235908A (en) Structure for reinforcing fusion spliced part of optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061109