JP2526488B2 - Reinforcement structure and reinforcement method of optical fiber fusion splicing portion - Google Patents

Reinforcement structure and reinforcement method of optical fiber fusion splicing portion

Info

Publication number
JP2526488B2
JP2526488B2 JP5149840A JP14984093A JP2526488B2 JP 2526488 B2 JP2526488 B2 JP 2526488B2 JP 5149840 A JP5149840 A JP 5149840A JP 14984093 A JP14984093 A JP 14984093A JP 2526488 B2 JP2526488 B2 JP 2526488B2
Authority
JP
Japan
Prior art keywords
optical fiber
fusion splicing
fiber fusion
reinforcing
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5149840A
Other languages
Japanese (ja)
Other versions
JPH06337323A (en
Inventor
雅之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5149840A priority Critical patent/JP2526488B2/en
Publication of JPH06337323A publication Critical patent/JPH06337323A/en
Application granted granted Critical
Publication of JP2526488B2 publication Critical patent/JP2526488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバ融着接続部の
補強構造及び補強方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforcing structure and a reinforcing method for an optical fiber fusion splicing portion.

【0002】[0002]

【従来の技術】一般に被覆光ファイバの接続には、被覆
層を除去した被覆除去部、所謂心線の端部を突き合わ
せ、放電加熱やレーザ加熱等により融着する方法が取ら
れている。そして、この融着接続部を補強するために、
種々の補強構造や補強方法が提案されている。例えば、
図4は従来の補強構造の一例を示す図であり、光ファイ
バ1A,1Bは被覆層2A,2B内の心線3A,3Bの
先端を突き合わせた上で融着して融着接続部4を形成し
ている。そして、抗張力体としての一対の真直なガラス
セラミックス板12A,12Bの内面にホットメルトフ
ィルム13A,13Bを貼り付け、これらのホットメル
トフィルム13A,13Bが内側となるようにガラスセ
ラミックス板12A,12Bによって光ファイバ融着接
続部をサンドイッチ状に挟持し、かつホットメルトフィ
ルム13A,13Bを加熱溶融させて接着剤層14とす
ることで、光ファイバ1A,1Bと両ガラスセラミック
ス板12A,12Bとを接着し、光ファイバ融着接続部
4が2枚の補強基板のガラスセラミックス板12A,1
2Bによって補強するものである。
2. Description of the Related Art Generally, for coating optical fiber connection, a coating removal portion from which a coating layer has been removed, that is, a so-called end portion of a core is abutted, and fusion is performed by discharge heating or laser heating. And in order to reinforce this fusion splicing part,
Various reinforcing structures and methods have been proposed. For example,
FIG. 4 is a diagram showing an example of a conventional reinforcing structure. In the optical fibers 1A and 1B, the ends of the cores 3A and 3B in the coating layers 2A and 2B are abutted and then fused to form the fusion spliced portion 4. Is forming. Then, the hot-melt films 13A and 13B are attached to the inner surfaces of the pair of straight glass-ceramic plates 12A and 12B as tensile members, and the glass-ceramic plates 12A and 12B are used so that these hot-melt films 13A and 13B are inside. The optical fiber fusion splicing part is sandwiched and the hot melt films 13A and 13B are heated and melted to form the adhesive layer 14, whereby the optical fibers 1A and 1B and the glass ceramic plates 12A and 12B are bonded to each other. Then, the optical fiber fusion splicing part 4 has two reinforcing glass ceramic plates 12A, 1
It is reinforced by 2B.

【0003】また、他の補強構造として、図5に示すよ
うに、熱収縮チューブ15の中に抗張力体としての真直
な鋼線ロッド16と、加熱すると溶融して接着剤となる
EVAチューブ17を並べて挿入しており、光ファイバ
の融着接続部4をEVAチューブ17内に挿入した上で
加熱溶融させて接着剤層18とし、かつ熱収縮チューブ
15を加熱して収縮させることによって光ファイバ融着
接続部4を鋼線ロッド16と共に接着剤層17及び熱収
縮チューブ15により一体化させ、融着接続部4の周辺
を補強する。なお、その他の補強技術として、例えば特
開昭57−190915号公報、特開昭59−3871
4号公報、特開平2−291508号公報、等種々のも
のが挙げられる。
As another reinforcing structure, as shown in FIG. 5, a straight steel wire rod 16 as a tensile strength member in a heat-shrinkable tube 15 and an EVA tube 17 which melts when heated to form an adhesive. They are inserted side by side, and the fusion splicing part 4 of the optical fiber is inserted into the EVA tube 17 and then heated and melted to form the adhesive layer 18, and the heat shrinkable tube 15 is heated to shrink the optical fiber. The fusion splicing portion 4 is integrated with the steel wire rod 16 by the adhesive layer 17 and the heat shrinkable tube 15 to reinforce the periphery of the fusion splicing portion 4. Incidentally, as other reinforcing techniques, for example, JP-A-57-190915 and JP-A-59-3871.
No. 4, Japanese Unexamined Patent Publication No. 2-291508, and the like.

【0004】[0004]

【発明が解決しようとする課題】このように前記した2
つの例、及び各公報に記載された従来の光ファイバ融着
接続部の補強構造では、いずれも光ファイバ融着接続部
を抗張力体と共に接着剤等により一体化した構成が取ら
れているが、いずれも外部からの曲げ力が加えられたと
きにも光ファイバ融着接続部を真直な状態に保持するこ
とができるように抗張力体は真直な形状に形成されてい
る。このため、このような補強が施された光ファイバを
余長収容体に収納する際には、光ファイバの信頼性上の
要求から、図6に示すように、抗張力体の長さL0と、
光ファイバの最小曲げ半径R(約30mm)の2倍の長
さ(60mm)とを合わせた長さL2が必要とされるこ
とになり、この結果余長収容体における光ファイバの収
容スペースが大きくなり、光ファイバの配設に広大なス
ペースが必要とされるという問題が生じる。本発明の目
的は、余長収容体における光ファイバの収容スペースを
削減して光ファイバの配設スペースの低減を可能にした
光ファイバ融着接続部の補強構造及び補強方法を提供す
ることにある。
As described above, the above-mentioned 2
In one example, and in the conventional reinforcing structure of the optical fiber fusion splicing portion described in each publication, both of the optical fiber fusion splicing portion and the strength member are integrated with an adhesive or the like. In either case, the tensile strength member is formed in a straight shape so that the optical fiber fusion splicing portion can be held in a straight state even when an external bending force is applied. For this reason, when the optical fiber thus reinforced is stored in the extra length container, the length L0 of the tensile strength member is set as shown in FIG.
A length L2, which is a length (60 mm) that is twice the minimum bending radius R (about 30 mm) of the optical fiber, is required. As a result, the accommodation space for the optical fiber in the extra length container is large. Therefore, there arises a problem that a large space is required for disposing the optical fiber. It is an object of the present invention to provide a reinforcing structure and a reinforcing method for an optical fiber fusion splicing part, which can reduce the accommodation space of the optical fiber in the extra length accommodation body and reduce the arrangement space of the optical fiber. .

【0005】[0005]

【課題を解決するための手段】本発明の光ファイバ融着
接続部の補強構造は、熱融着によって接続した光ファイ
バ融着接続部を両側面方向から挟持する屈曲形成された
一対の補強基板と、これら屈曲補強基板の内面に配設さ
れて光ファイバ融着接続部を抱持する接着剤層とで構成
され、この接着剤層で光ファイバ融着接続部と屈曲補強
基板とを接着し、前記補強基板の屈曲半径は前記光ファ
イバが最小曲げ半径となる曲率半径に設定された構成と
する。また、光ファイバ融着接続部に沿って延設される
屈曲形成された抗張力体と、光ファイバ融着接続部を抱
持する熱溶融樹脂と、抗張力体と熱溶融樹脂とを被覆す
る熱収縮チューブとを備え、前記抗張力体の屈曲半径は
前記光ファイバが最小曲げ半径となる曲率半径に設定さ
れている。また、本発明の光ファイバ融着接続部の補強
方法は、その屈曲半径が前記光ファイバが最小曲げ半径
となるように屈曲形成された一対の補強基板の内面にそ
れぞれホットメルトフィルムを貼り付け、光ファイバ融
着接続部をホットメルトフィルムで挟み込むように両屈
曲補強基板で光ファイバ融着接続部を挟持させ、かつこ
れら両屈曲補強基板を保持しながら加熱してホットメル
トフィルムを溶融させて接着剤層を形成し、この接着剤
層で光ファイバ融着接続部と両屈曲補強基板とを接着し
てこれらを一体化する。また、その屈曲半径が前記光フ
ァイバが最小曲げ半径となるように屈曲形成された抗張
力体と、光ファイバ融着接続部を抱持する筒状の熱溶融
樹脂とを熱収縮チューブ内に配設し、熱溶融樹脂内に光
ファイバ融着接続部を挿通させ、加熱して熱溶融樹脂を
溶融させて接着剤層を形成し、この接着剤層で光ファイ
バ融着接続部と屈曲抗張力体とを接着し、かつ熱収縮さ
れた熱収縮チューブによりこれら光ファイバ融着接続部
と屈曲抗張力体とを被覆させる。
SUMMARY OF THE INVENTION A reinforcing structure for an optical fiber fusion splicing portion of the present invention is a pair of bent reinforcing substrates for sandwiching the optical fiber fusion splicing portion connected by heat fusion from both sides. And an adhesive layer disposed on the inner surface of these bending-strengthening substrate to hold the optical fiber fusion splicing portion, and the optical fiber fusion-splicing portion and the bending reinforcement substrate are bonded by this adhesive layer. The bending radius of the reinforcing substrate is the optical fiber.
The radius of curvature is set to the minimum bending radius . Further, a flexurally formed tensile strength member extending along the optical fiber fusion splicing portion, a heat-melting resin that holds the optical fiber fusion splicing portion, and a heat shrinkage that coats the tensile strength body and the thermal melting resin A tube, and the bending radius of the strength member is
The radius of curvature is set so that the optical fiber has the minimum bending radius.
Has been. Further, the reinforcing method of the optical fiber fusion splicing part of the present invention is such that the bending radius of the optical fiber is the minimum bending radius.
A hot melt film is attached to the inner surface of each of the pair of reinforcing substrates that are bent so that the optical fiber fusion splicing part is sandwiched between the two bending reinforcement substrates so that the optical fiber fusion splicing part is sandwiched between the hot melt films. And, while holding both of these bending reinforcement substrates, the hot melt film is melted to form an adhesive layer, and the optical fiber fusion splicing portion and both bending reinforcement substrates are bonded by this adhesive layer. Integrate these. Also, the bending radius is
A tensile strength member bent and formed so that the fiber has a minimum bending radius, and a tubular heat-melting resin that holds the optical fiber fusion splicing part are placed inside the heat-shrinkable tube, and the Insert the fiber fusion splicing part, heat to melt the hot melt resin to form an adhesive layer, and bond the optical fiber fusion splicing part and the bending strength member with this adhesive layer, and heat shrink The heat-shrinkable tube covers the fusion spliced portion of the optical fiber and the bending strength member.

【0006】[0006]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の第1実施例の補強構造を示す斜視図
であり、同図(a)は補強前の状態、同図(b)は補強
後の状態をそれぞれ示している。同図(a)において、
融着接続される一対の被覆光ファイバ1A,1Bはそれ
ぞれコーティング層や一次被覆等を含めた被覆層2A,
2Bを有しており、これらにはその端部から被覆層2
A,2Bが除去された被覆除去部3A,3B(心線)が
突出され、更に各心線3A,3Bの先端側が切断された
後、各心線3A,3Bが突き合わされて放電加熱、また
はレーザ加熱等により融着接続され、融着接続部4が形
成される。また、5A,5Bは、予めファイバの余長収
容体に合わせフォーミングされた一対の屈曲されたガラ
スセラミックス板であり、これらの屈曲ガラスセラミッ
クス板5A,5Bの各内面には加熱すると溶融して接着
剤となるホットメルトフィルム6A,6Bが貼り付けら
れている。
Next, the present invention will be described with reference to the drawings. 1A and 1B are perspective views showing a reinforcing structure according to a first embodiment of the present invention. FIG. 1A shows a state before reinforcement and FIG. 1B shows a state after reinforcement. In FIG.
The pair of coated optical fibers 1A and 1B to be fusion-spliced are respectively covered with a coating layer 2A including a coating layer and a primary coating.
2B from which the coating layer 2
The coating removal portions 3A and 3B (core wires) from which A and 2B have been removed are projected, and further, the distal ends of the respective core wires 3A and 3B are cut, and then the respective core wires 3A and 3B are butted to each other for discharge heating or The fusion splicing is performed by laser heating or the like to form the fusion splicing portion 4. Further, 5A and 5B are a pair of bent glass-ceramic plates that have been formed in advance according to the extra length container of the fiber, and the inner surfaces of these bent glass-ceramic plates 5A and 5B are melted and bonded when heated. Hot melt films 6A and 6B as agents are attached.

【0007】その上で、同図(b)のように、光ファイ
バの融着接続部4の両側方からホットメルトフィルム6
A,6Bが内側となるように各屈曲ガラスセラミックス
板5A,5Bを押し当ててこれらで融着接続部4を含む
光ファイバ1A,1Bの部分をサンドイッチ状に挟持
し、更にガラスセラミックス板5A,5Bを押圧しなが
ら加熱することにより、両ホットメルトフィルム6A,
6Bを溶融させる。この結果、両ホットメルトフィルム
6A,6Bは溶融されて一体化された接着剤層7とな
り、この接着剤層7によって光ファイバ融着接続部4を
両屈曲ガラスセラミックス板5A,5Bに接着する。こ
れにより、光ファイバ融着接続部4は2枚の屈曲ガラス
セラミックス板5A,5Bに挟持された状態でこれらと
一体化され、外力によっても融着接続部4が破損される
ことがないように補強される。
Then, as shown in FIG. 2B, the hot melt film 6 is applied from both sides of the fusion splicing portion 4 of the optical fiber.
The bent glass-ceramic plates 5A and 5B are pressed so that A and 6B are inside, and the portions of the optical fibers 1A and 1B including the fusion splicing part 4 are sandwiched between them, and the glass-ceramic plates 5A and 5A By heating while pressing 5B, both hot melt films 6A,
Melt 6B. As a result, both hot melt films 6A and 6B are melted to form an integrated adhesive layer 7, and the adhesive layer 7 adheres the optical fiber fusion splicing portion 4 to both bent glass ceramic plates 5A and 5B. As a result, the optical fiber fusion splicing portion 4 is integrated with the two bent glass-ceramic plates 5A and 5B in a state of being sandwiched between them, so that the fusion splicing portion 4 is not damaged even by an external force. Reinforced.

【0008】そして、このように屈曲ガラスセラミック
ス板5A,5Bによって屈曲状態に補強された光ファイ
バ1A,1Bを余長収容体に収容する場合には、図2に
示すように、例えば屈曲ガラスセラミックス板5A,5
Bの厚さ方向の中間位置における曲率を光ファイバの最
小曲げ半径R(約30mm)に略等しく設定しておけ
ば、曲げ半径Rの直径に相当する長さL1(約60m
m)での収容が可能となる。これにより、図6に示した
従来構造に比較すると、丁度補強構造の長さL0分だけ
その寸法を低減でき、余長収容体における光ファイバの
収容スペースを削減し、光ファイバの配設スペースの低
減が実現できる。
When the optical fibers 1A and 1B thus reinforced in a bent state by the bent glass ceramic plates 5A and 5B are housed in the extra length housing, as shown in FIG. 2, for example, the bent glass ceramics are used. Board 5A, 5
If the curvature at the intermediate position in the thickness direction of B is set to be approximately equal to the minimum bending radius R (about 30 mm) of the optical fiber, the length L1 (about 60 m) corresponding to the diameter of the bending radius R is set.
It will be possible to store in m). As a result, compared with the conventional structure shown in FIG. 6, the size can be reduced by exactly the length L0 of the reinforcing structure, the accommodation space of the optical fiber in the extra length accommodation body can be reduced, and the arrangement space of the optical fiber can be reduced. Reduction can be realized.

【0009】図3は本発明の第2実施例を示す図であ
り、同図(a)は補強前、同図(b)は補強後のそれぞ
れの状態を示す図である。この実施例では本発明を補強
スリーブに適用した例である。同図(a)に示すよう
に、若干曲げ形成された熱収縮ボリエチレンチューブ8
の中に、所定の曲率で屈曲されている抗張力体としての
屈曲鋼線ロッド9と、加熱すると溶融して接着剤となる
EVAチューブ10とが並べて挿入されている。そし
て、同図(b)に示すように、光ファイバ1A,1Bの
融着接続部4をEVAチューブ10内に挿入し、更に熱
収縮ポリエチレンチューブ8内に挿通させた上で、加熱
することにより、EVAチューブ10が加熱溶融されて
接着剤層11となり、熱収縮ポリエチレンチューブ8内
に充填されて融着接続部4を含む光ファイバ1A,1B
の部分と屈曲鋼線ロッド9を一体化させる。更に、これ
と同時に加熱によって熱収縮ポリエチレンチューブ8が
収縮され、光ファイバ融着接続部4と屈曲鋼線ロッド9
を接着剤層7と共に抱持し、結果として光ファイバ融着
接続部4を補強する。
FIGS. 3A and 3B are views showing a second embodiment of the present invention. FIG. 3A shows the state before reinforcement and FIG. 3B shows the state after reinforcement. In this embodiment, the present invention is applied to a reinforcing sleeve. As shown in FIG. 3A, the heat-shrinkable polyethylene tube 8 is slightly bent.
A bent steel wire rod 9 serving as a tensile strength member that is bent with a predetermined curvature and an EVA tube 10 that melts when heated to serve as an adhesive are inserted side by side. Then, as shown in FIG. 3B, the fusion splicing part 4 of the optical fibers 1A and 1B is inserted into the EVA tube 10, and further inserted into the heat-shrinkable polyethylene tube 8 and then heated. , The EVA tube 10 is heated and melted to form the adhesive layer 11, and the heat-shrinkable polyethylene tube 8 is filled with the optical fibers 1A and 1B including the fusion splicing portion 4.
And the bent steel wire rod 9 are integrated. Further, at the same time, the heat-shrinkable polyethylene tube 8 is shrunk by heating, and the optical fiber fusion splicing part 4 and the bent steel wire rod 9 are
Are held together with the adhesive layer 7, and as a result, the optical fiber fusion splicing portion 4 is reinforced.

【0010】この実施例においても、抗張力体としての
屈曲鋼線ロッド9が予め所定の曲率で曲げ形成されてい
るため、光ファイバの融着接続部4もこの屈曲鋼線ロッ
ド9の曲率に沿って曲げられた状態で補強されることに
なる。したがって、この屈曲状態に補強された光ファイ
バ1A,1Bを余長収容体に収容する場合に、屈曲鋼線
ロッド9の曲率を光ファイバの最小曲げ半径Rに設定し
ておけば、図2に示したように、光ファイバを曲げ半径
Rの直径に相当する長さL1(約60mm)での収容が
可能となる。これにより、余長収容体における光ファイ
バの収容スペースを削減し、光ファイバの配設スペース
の低減が実現できる。なお、前記した各実施例における
屈曲ガラスセラミックス板や屈曲鋼線ロッドの曲率は一
例を示したものであり、余長収容体の大きさや光ファイ
バの配設スペース等に応じてその曲率を任意の値に設定
できることは言うまでもない。
Also in this embodiment, since the bent steel wire rod 9 as the tensile strength member is bent and formed in advance with a predetermined curvature, the fusion splicing portion 4 of the optical fiber also follows the curvature of the bent steel wire rod 9. It will be reinforced in a bent state. Therefore, when the optical fibers 1A and 1B reinforced in the bent state are housed in the extra length container, if the curvature of the bent steel wire rod 9 is set to the minimum bending radius R of the optical fiber, FIG. As shown, the optical fiber can be accommodated in the length L1 (about 60 mm) corresponding to the diameter of the bending radius R. As a result, the space for accommodating the optical fiber in the extra length container can be reduced, and the space for disposing the optical fiber can be reduced. The curvature of the bent glass-ceramic plate or the bent steel wire rod in each of the above-described examples is an example, and the curvature can be set to an arbitrary value depending on the size of the extra length container and the installation space of the optical fiber. It goes without saying that it can be set to a value.

【0011】[0011]

【発明の効果】以上説明したように本発明の補強構造
は、光ファイバ融着接続部を一対の屈曲補強基板で両側
面方向から挟持し、これらを接着剤層で接着し、かつ補
強基板の屈曲半径を光ファイバが最小曲げ半径となる曲
率半径に設定した構成としているので、光ファイバ融着
接続部は最小曲げ半径で屈曲された状態で補強されるこ
とになり、この光ファイバを余長収容体に収容する際に
光ファイバを最小の曲げ半径で曲げることができ、収容
スペースを低減でき、光ファイバの配設スペースを低減
することができる効果がある。また、光ファイバ融着接
続部を屈曲抗張力体と共に熱溶融樹脂で抱持し、これら
を熱収縮チューブで被覆しているので、光ファイバ融着
接続部はその最小曲げ半径で屈曲された状態で補強され
ることになり、この光ファイバを余長収容体に収容する
際に光ファイバを最小の曲げ半径で曲げることができ、
収容スペースを低減でき、光ファイバの配設スペースを
低減することができる効果がある。
As described above, in the reinforcing structure of the present invention, the optical fiber fusion splicing part is sandwiched between the pair of bending reinforcing substrates from both sides, and these are bonded by the adhesive layer , and supplemented.
The bending radius of the strong substrate is the bending radius of the optical fiber that is the minimum bending radius.
Since a structure in which set the rate radius, the optical fiber fusion spliced portion is to be reinforced in a state of being bent at the minimum bending radius, at the time of accommodating the optical fiber excess length accommodating body
The optical fiber can be bent with a minimum bending radius, the housing space can be reduced, and the arrangement space of the optical fiber can be reduced. Further, since the optical fiber fusion splicing part is held together with the bending strength member with the hot-melt resin and these are covered with the heat shrinkable tube, the optical fiber fusion splicing part is bent in the minimum bending radius. It will be reinforced, and this optical fiber is stored in the extra length container.
In this case, the optical fiber can be bent with the minimum bending radius,
There is an effect that the accommodation space can be reduced and the installation space of the optical fiber can be reduced.

【0012】また、本発明の補強方法は、その屈曲半径
が光ファイバが最小曲げ半径となる曲率半径で屈曲形成
された一対の補強基板の内面にそれぞれホットメルトフ
ィルムを貼り付け、光ファイバ融着接続部をホットメル
トフィルムで挟み込むように両屈曲補強基板で光ファイ
バ融着接続部を挟持させ、かつこれら両屈曲補強基板を
保持しながら加熱してホットメルトフィルムを溶融させ
て接着剤層を形成することで、光ファイバ融着接続部と
両屈曲補強基板とを接着し、これらを屈曲状態に一体化
した補強構造を得ることができる。或いは、屈曲形成さ
れた抗張力体と筒状の熱溶融樹脂とを熱収縮チューブ内
に配設し、熱溶融樹脂内に光ファイバ融着接続部を挿通
させ、加熱して熱溶融樹脂を溶融させて接着剤層を形成
し、この接着剤層で光ファイバ融着接続部と屈曲抗張力
体とを接着し、かつ熱収縮された熱収縮チューブにより
これら光ファイバ融着接続部と屈曲抗張力体とを被覆さ
せることで、屈曲状態に一体化した補強構造を得ること
ができる。
Further, the reinforcing method of the present invention has a bending radius
Is attached to the inner surface of each of a pair of reinforcing substrates formed by bending the optical fiber with a radius of curvature that is the minimum bending radius, and the optical fiber fusion splicing part is sandwiched between the hot-melt films with both bending reinforcing substrates. By sandwiching the optical fiber fusion splicing part and heating while holding both of these bending and reinforcing substrates to melt the hot melt film to form an adhesive layer, the optical fiber fusion splicing part and the both bending and reinforcing substrate are formed. It is possible to obtain a reinforcing structure in which and are adhered and these are integrated in a bent state. Alternatively, a bent tensile strength member and a tubular heat-melting resin are arranged in a heat-shrinkable tube, the optical fiber fusion splicing part is inserted into the heat-melting resin, and the heat-melting resin is melted by heating. To form an adhesive layer, bond the optical fiber fusion splicing portion and the bending strength member with this adhesive layer, and bond the optical fiber fusion splicing portion and the bending strength member with a heat-shrinkable heat-shrinkable tube. By covering, a reinforcing structure integrated in a bent state can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す斜視図であり、
(a)は補強前の状態、(b)は補強後の状態をそれぞ
れ示す図である。
FIG. 1 is a perspective view showing a first embodiment of the present invention,
(A) is a figure which shows the state before reinforcement, (b) is a figure which shows the state after reinforcement, respectively.

【図2】余長収容体に光ファイバを収容する際のスペー
スを示す図である。
FIG. 2 is a diagram showing a space for accommodating an optical fiber in an extra length container.

【図3】本発明の第2実施例を示す斜視図であり、
(a)は補強前の状態、(b)は補強後の状態をそれぞ
れ示す図である。
FIG. 3 is a perspective view showing a second embodiment of the present invention,
(A) is a figure which shows the state before reinforcement, (b) is a figure which shows the state after reinforcement, respectively.

【図4】従来の補強構造の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of a conventional reinforcing structure.

【図5】従来の補強構造の他の例を示す斜視図である。FIG. 5 is a perspective view showing another example of a conventional reinforcing structure.

【図6】従来の補強構造の光ファイバ融着接続部を余長
収容体に収容する際のスペースを示す図である。
FIG. 6 is a view showing a space for accommodating an optical fiber fusion splicing portion having a conventional reinforcing structure in an extra length accommodating body.

【符号の説明】[Explanation of symbols]

1A,1B 光ファイバ 3A,3B 心線 4 融着接続部 5A,5B 屈曲ガラスセラミックス板 6A,6B ホットメルトフィルム 7 接着剤層 8 熱収縮ポリエチレンチューブ 9 屈曲鋼線ロッド 10 EVAチューブ 11 接着剤層 1A, 1B Optical fiber 3A, 3B Core wire 4 Fusion splicing part 5A, 5B Bending glass ceramic plate 6A, 6B Hot melt film 7 Adhesive layer 8 Heat shrinkable polyethylene tube 9 Bending steel wire rod 10 EVA tube 11 Adhesive layer

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱融着によって接続した光ファイバ融着
接続部を補強する構造において、前記光ファイバ融着接
続部を両側面方向から挟持する屈曲形成された一対の補
強基板と、これら屈曲補強基板の内面に配設されて前記
光ファイバ融着接続部を抱持する接着剤層とで構成さ
れ、この接着剤層で前記光ファイバ融着接続部と屈曲補
強基板とを接着し、前記補強基板の屈曲半径は前記光フ
ァイバが最小曲げ半径となる曲率半径に設定されている
ことを特徴とする光ファイバ融着接続部の補強構造。
1. A structure for reinforcing an optical fiber fusion splicing portion connected by heat fusion, and a pair of bending substrates that are bent to sandwich the optical fiber fusion splicing portion from both side surfaces, and these bending reinforcements. The adhesive layer is disposed on the inner surface of the substrate and holds the optical fiber fusion splicing portion, and the optical fiber fusion splicing portion and the bending reinforcing substrate are bonded by this adhesive layer, and the reinforcement is provided. The bending radius of the substrate is
A reinforcing structure for an optical fiber fusion splicing part, wherein the fiber is set to a radius of curvature which is a minimum bending radius .
【請求項2】 熱融着によって接続した光ファイバ融着
接続部を補強する構造において、前記光ファイバ融着接
続部に沿って延設される屈曲形成された抗張力体と、前
記光ファイバ融着接続部を抱持する熱溶融樹脂と、前記
抗張力体と熱溶融樹脂とを被覆する熱収縮チューブとを
備え、前記抗張力体の屈曲半径は前記光ファイバが最小
曲げ半径となる曲率半径に設定されていることを特徴と
する光ファイバ融着接続部の補強構造。
2. In a structure for reinforcing an optical fiber fusion splicing portion connected by heat fusion, a bent tensile strength member extending along the optical fiber fusion splicing portion, and the optical fiber fusion splicing. A heat-melting resin that holds the connection portion, and a heat-shrinkable tube that covers the strength member and the heat-melting resin are provided, and the bending radius of the strength member is the smallest in the optical fiber.
It is characterized in that it is set to a radius of curvature that is the bending radius
Reinforcing structure of the optical fiber fusion splicing part of.
【請求項3】 熱融着によって接続した光ファイバ融着
接続部を補強するに際し、その屈曲半径が前記光ファイ
バが最小曲げ半径となるように屈曲形成された一対の補
強基板の内面にそれぞれホットメルトフィルムを貼り付
け、前記光ファイバ融着接続部を前記ホットメルトフィ
ルムで挟み込むように前記両屈曲補強基板で光ファイバ
融着接続部を挟持させ、かつこれら両屈曲補強基板を保
持しながら加熱して前記ホットメルトフィルムを溶融さ
せて接着剤層を形成し、この接着剤層で光ファイバ融着
接続部と両屈曲補強基板とを接着してこれらを一体化す
ることを特徴とする光ファイバ融着接続部の補強方法。
3. When reinforcing an optical fiber fusion spliced portion connected by heat fusion, the bending radius of the optical fiber fusion splicing portion is the optical fiber.
A hot-melt film is attached to each of the inner surfaces of a pair of reinforcing substrates that are bent to have a minimum bending radius, and the optical fiber fusion splicing part is sandwiched between the hot-melt films in the both bending reinforcing substrates. An optical fiber fusion splicing part is formed by sandwiching the optical fiber fusion splicing part, and heating while holding both of these bending and reinforcing substrates to melt the hot melt film to form an adhesive layer. A method for reinforcing an optical fiber fusion splicing part, characterized by adhering both bending reinforcing substrates and integrating them.
【請求項4】 熱融着によって接続した光ファイバ融着
接続部を補強するに際し、その屈曲半径が前記光ファイ
バが最小曲げ半径となるように屈曲形成された抗張力体
と、前記光ファイバ融着接続部を抱持する筒状の熱溶融
樹脂とを熱収縮チューブ内に配設し、前記熱溶融樹脂内
に光ファイバ融着接続部を挿通させ、加熱して前記熱溶
融樹脂を溶融させ、この熱溶融樹脂で前記光ファイバ融
着接続部と屈曲抗張力体とを接着し、かつ熱収縮された
熱収縮チューブによりこれら光ファイバ融着接続部と屈
曲抗張力体とを被覆させることを特徴とする光ファイバ
融着接続部の補強方法。
4. When reinforcing an optical fiber fusion spliced portion connected by thermal fusion, the bending radius of the optical fiber fusion splicing portion is the optical fiber.
A tensile strength member bent to have a minimum bending radius and a tubular heat-melting resin that holds the optical fiber fusion splicing portion are arranged in a heat-shrinkable tube. Insert the optical fiber fusion splicing part into the, and heat to melt the hot-melt resin, to bond the optical fiber fusion splicing part and the bending strength member with the hot-melt resin, and heat-shrink heat shrink A method for reinforcing an optical fiber fusion splicing portion, which comprises coating the optical fiber fusion splicing portion and a bending strength member with a tube.
JP5149840A 1993-05-31 1993-05-31 Reinforcement structure and reinforcement method of optical fiber fusion splicing portion Expired - Lifetime JP2526488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5149840A JP2526488B2 (en) 1993-05-31 1993-05-31 Reinforcement structure and reinforcement method of optical fiber fusion splicing portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5149840A JP2526488B2 (en) 1993-05-31 1993-05-31 Reinforcement structure and reinforcement method of optical fiber fusion splicing portion

Publications (2)

Publication Number Publication Date
JPH06337323A JPH06337323A (en) 1994-12-06
JP2526488B2 true JP2526488B2 (en) 1996-08-21

Family

ID=15483809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5149840A Expired - Lifetime JP2526488B2 (en) 1993-05-31 1993-05-31 Reinforcement structure and reinforcement method of optical fiber fusion splicing portion

Country Status (1)

Country Link
JP (1) JP2526488B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400820B1 (en) * 2017-11-27 2018-10-03 株式会社石原産業 Optical fiber cable and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143284A (en) * 1982-02-22 1983-08-25 Toshiba Corp Two-dimensional radiation detector
JPS60235747A (en) * 1984-05-07 1985-11-22 Nippon Telegr & Teleph Corp <Ntt> Reinforcement of connecting part of optical fiber

Also Published As

Publication number Publication date
JPH06337323A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
US4196965A (en) Connecting method of optical fiber with plastic clad
KR20120101405A (en) Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
JPS59200207A (en) Theath for protecting light waveguide
JPH11326677A (en) Method for reinforcing optical fiber junction
JP2526488B2 (en) Reinforcement structure and reinforcement method of optical fiber fusion splicing portion
JP3450104B2 (en) Optical coupler
JP2003315596A (en) Method for splicing optical fibers
JP2004347801A (en) Optical fiber reinforcing sleeve and method for reinforcing optical fiber
JPH07209542A (en) Reinforcing structure of heat resistant optical fiber juncture
JP2004038019A (en) Reinforcing member for optical fiber fusion splice part and method of manufacturing the same
JPH0756046A (en) Optical fiber reinforcing structure
JPH08327849A (en) Method for reinforcing optical fiber
JPS61219010A (en) Connecting method for plastic clad optical fiber
JP3439635B2 (en) Reinforcing method and reinforcing member for optical fiber connection part
JPH07318741A (en) Reinforcing and fixing method of fusion spliced part of optical fiber
JP4444270B2 (en) Reinforcing structure, reinforcing method and reinforcing sleeve for optical fiber connection part
JP3014250B2 (en) Reinforced optical fiber coupler
JPS6322282B2 (en)
JPS6061706A (en) Reinforcing method of optical fiber connecting part and its reinforcing member
JP2605850Y2 (en) Drum for optical fiber
JPH0125923Y2 (en)
JP2568690Y2 (en) Reinforcement substrate for optical fiber fusion splicing part
JPS5893016A (en) Reinforcing member for connected part of optical fiber
JPH10142442A (en) Structure and method for fixing optical fiber connection reinforcement part
JPS5888712A (en) Reinforcing member for optical fiber core connection part