JPH03144292A - Hear accumulating device and use of the same - Google Patents
Hear accumulating device and use of the sameInfo
- Publication number
- JPH03144292A JPH03144292A JP2247478A JP24747890A JPH03144292A JP H03144292 A JPH03144292 A JP H03144292A JP 2247478 A JP2247478 A JP 2247478A JP 24747890 A JP24747890 A JP 24747890A JP H03144292 A JPH03144292 A JP H03144292A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- container
- liquid
- heat storage
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 158
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 6
- 238000005338 heat storage Methods 0.000 claims description 115
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000005507 spraying Methods 0.000 claims description 7
- 239000003595 mist Substances 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 6
- 238000001704 evaporation Methods 0.000 abstract description 5
- 230000008020 evaporation Effects 0.000 abstract description 5
- 239000007921 spray Substances 0.000 abstract description 5
- 239000006185 dispersion Substances 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 34
- 239000011148 porous material Substances 0.000 description 18
- 230000007423 decrease Effects 0.000 description 11
- 239000003507 refrigerant Substances 0.000 description 11
- 239000002250 absorbent Substances 0.000 description 10
- 230000002745 absorbent Effects 0.000 description 10
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000011232 storage material Substances 0.000 description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 229960002380 dibutyl phthalate Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000011850 water-based material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Sorption Type Refrigeration Machines (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は熱エネルギーを化学エネルギーに変換した状態
で貯蔵し、必要に応じてその熱エネルギーを取り出し得
る蓄熱装置とその装置の使用方法に係り、特に液状の蓄
熱剤を用いた蓄熱装置とその装置による蓄熱方法、冷熱
発生方法及び高温熱発生方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat storage device that stores thermal energy in a state of converting it into chemical energy and extracts the thermal energy as needed, and a method of using the device. In particular, the present invention relates to a heat storage device using a liquid heat storage agent, a heat storage method using the device, a cold heat generation method, and a high temperature heat generation method.
エネルギーの有効利用として太陽熱など自然のエネルギ
ーや各種工場排熱などの低コスト熱源があるが、それら
は供給が不安定であり、かつ限定されるため利用しにく
く、利用するためにはエネルギーの蓄熱が必要となって
くる。Low-cost heat sources such as natural energy such as solar heat and waste heat from various factories are effective ways to use energy, but their supply is unstable and limited, making them difficult to use. becomes necessary.
上記のような熱源を利用して冷房や暖房を行う装置では
、その熱を一時貯蔵し、必要に応じて取り出せる蓄熱機
能をもったものが望ましく、しかも取り出す熱エネルギ
ーは利用目的に応じて冷房の時はより低温が、暖房の時
はより高温が取り出せることが望ましい。For devices that perform air conditioning or heating using heat sources such as those mentioned above, it is desirable to have a heat storage function that temporarily stores the heat and extracts it as needed.Moreover, the extracted thermal energy can be used for cooling or heating depending on the purpose of use. It is desirable to be able to obtain a lower temperature when heating the room, and a higher temperature when heating the room.
熱エネルギー貯蔵方法には、そのまま熱運動形で貯える
方法として、(1)顕熱利用(温度差)と(2)潜熱利
用(固体から液体、又は液体から気体への相変化)があ
り、化学エネルギーに変換して貯える方法として、(3
)化学反応熱利用と(4)濃厚液の希釈熱による濃度差
利用、及びそれらの組合せによる方法がある。There are two ways to store thermal energy: (1) sensible heat utilization (temperature difference) and (2) latent heat utilization (phase change from solid to liquid or liquid to gas). As a method of converting and storing energy, (3
There are two methods: (4) utilizing the heat of a chemical reaction, (4) utilizing the concentration difference due to the heat of dilution of a concentrated liquid, and a combination thereof.
そのなかで、比熱の大きい水等を用いる顕熱利用の蓄熱
方式は、蓄熱密度(蓄熱液単位重量出たりの蓄熱量)が
小さいため蓄熱装置が大型化すると共に保温性の高い断
熱構造としなければならないという問題点がある。固体
の融解熱を利用した方式では、蓄熱密度は大きいが液体
から固体への相変化において、過冷却現象により、固化
しにくく、かつ過熱現象により液化しにくい等の操作上
の問題点があるとともに、固体であるため熱の伝わりが
悪く装置が大型化する欠点がある。Among these, heat storage methods that use sensible heat using water, etc., which have a high specific heat, have a small heat storage density (the amount of heat stored per unit weight of heat storage liquid), so the heat storage device becomes larger and must have an insulated structure with high heat retention. There is a problem that it must be done. Methods that use the heat of fusion of solids have a high heat storage density, but there are operational problems such as difficulty in solidifying due to supercooling phenomenon and difficulty in liquefying due to overheating during the phase change from liquid to solid. Since it is a solid, it has poor heat conduction and has the drawback of increasing the size of the device.
さらに熱運動形で貯える方式の共通の問題点としては、
熱の貯蔵時と出熱時の温度レベルは原理的には同じであ
るが、実際には放熱ロス、熱交換温度差等があるために
、出熱時の温度レベルが貯蔵時よりも低下する。さらに
熱利用時に目的に応じて取り出す温度を変えることがで
きず、蓄熱時は、放熱を防止するため保温性の高い断熱
構造にする必要がある。Furthermore, common problems with thermal kinetic storage methods include:
In principle, the temperature level during heat storage and heat release is the same, but in reality, due to heat radiation loss, heat exchange temperature difference, etc., the temperature level during heat release is lower than during storage. . Furthermore, when using heat, it is not possible to change the temperature taken out depending on the purpose, and when storing heat, it is necessary to use an insulating structure with high heat retention to prevent heat radiation.
これに対して、熱エネルギーを化学エネルギーへ変換し
た形で蓄熱する方式は、比較的低温状態での貯蔵ができ
るので、貯蔵時の放熱が大幅に防止でき、長期貯蔵が可
能になるなど、顕熱や潜熱を利用したシステムに比べ有
効利用がはかれる。On the other hand, methods that store heat by converting thermal energy into chemical energy can store heat at relatively low temperatures, which greatly prevents heat radiation during storage and enables long-term storage. It can be used more effectively than systems that use heat or latent heat.
熱エネルギーを化学エネルギーに変換して蓄熱する従来
技術としては、特開昭57−157995号公報に記載
されているように疎水性の多孔質材を用いた蓄熱装置が
ある。この蓄熱装置を、第2図に示す。これは化合物の
生成熱と分解熱を利用して熱エネルギーを化学エネルギ
ーに転換して貯蔵する装置で化合物の一生成と分解をす
る反応容器500の内部に、吸収剤と冷媒との反応によ
る生成熱または分解熱を熱交換する伝熱管610を備え
冷媒ガスは通過させ、吸収剤溶液(蓄熱液)20は撥水
作用によって通過させない性質をもつ撥水性多孔質材で
形成した壁1000で冷媒ガスの気室30と吸収剤貯溜
部770とを仕切っている。また冷媒(媒体液)10を
収容する貯留容器250は冷媒と吸収剤溶液20との間
で冷媒10の凝縮熱および蒸発熱の熱交換を行わせる伝
熱管210を収設し、貯蔵容器250のまわりに熱交換
コイル230を設け、冷媒を加熱できるような仕組みと
なっている。この方法によると、熱交換器と吸収剤貯留
容器が一体化できる長所があるが、多孔質材は下記の理
由で冷媒側には利用できないため、冷媒の均一蒸発が困
難であり、装置小型化にも限界がある。また、冷媒発生
時、水滴同伴離散が防止できない欠点があったことによ
り多孔質材を冷媒側に利用できない。その理由を水を疎
水性多孔性材料で保持した場合を例にとって第3図によ
って説明する。水は水蒸気が多孔性材料の孔を通ってく
る前に多孔性材料の表面で凝縮してしまう。As a conventional technique for storing heat by converting thermal energy into chemical energy, there is a heat storage device using a hydrophobic porous material as described in Japanese Patent Application Laid-Open No. 157995/1983. This heat storage device is shown in FIG. This is a device that converts thermal energy into chemical energy and stores it using the heat of formation and decomposition of a compound. It is equipped with a heat transfer tube 610 that exchanges heat or decomposition heat, and allows the refrigerant gas to pass therethrough.The absorbent solution (heat storage liquid) 20 is provided with a wall 1000 formed of a water-repellent porous material that has a water-repellent property that prevents the refrigerant gas from passing through. The air chamber 30 and the absorbent storage section 770 are separated from each other. Further, the storage container 250 that stores the refrigerant (liquid medium) 10 houses a heat transfer tube 210 that exchanges heat of condensation and heat of evaporation of the refrigerant 10 between the refrigerant and the absorbent solution 20. A heat exchange coil 230 is provided around the refrigerant to heat the refrigerant. This method has the advantage of integrating the heat exchanger and the absorbent storage container, but porous materials cannot be used on the refrigerant side for the following reasons, making it difficult to uniformly evaporate the refrigerant and reducing the size of the device. There are also limits. In addition, when the refrigerant is generated, the porous material cannot be used on the refrigerant side because it cannot prevent water droplets from being entrained and dispersed. The reason for this will be explained with reference to FIG. 3, taking as an example the case where water is retained in a hydrophobic porous material. Water condenses on the surface of the porous material before the water vapor passes through the pores of the porous material.
これは、水蒸気の水に対する凝縮(飽和)温度Tsが蓄
熱液である水の凝縮温度と等しいために起こるものであ
る。つまり、水より水蒸気が発生し、多孔性材料の孔を
通る時は問題はないが、逆に水蒸気が孔を通って水の界
面で凝縮する時には操作温度TLを凝縮温度Ts以下に
しなければならないが、そうすると水の疎水性の多孔性
材料の温度は等しくなるため、水蒸気が孔を通り抜ける
前に、多孔性材料の表面で凝縮(T L < T s
) シ、水まで達することはできない。This occurs because the condensation (saturation) temperature Ts of steam with respect to water is equal to the condensation temperature of water, which is a heat storage liquid. In other words, there is no problem when water vapor is generated more than water and passes through the pores of a porous material, but conversely, when water vapor passes through the pores and condenses at the water interface, the operating temperature TL must be lower than the condensation temperature Ts. However, since the temperature of water in the hydrophobic porous material is then equal, the water vapor condenses on the surface of the porous material before passing through the pores (T L < T s
) It cannot reach the water.
以上のことから多孔性材料の使用が限られ、その有効利
用がはかれなかった。For these reasons, the use of porous materials has been limited, and their effective use has not been achieved.
本発明の目的は、多孔性材料を用いることなしに蒸気の
発生、吸収を効率良く行うことができるようにした蓄熱
装置とそれを使用した蓄熱方法を提供することにある。An object of the present invention is to provide a heat storage device that can efficiently generate and absorb steam without using porous materials, and a heat storage method using the same.
本発明の蓄熱装置は、蒸気を吸収することによって発熱
する蓄熱液を収容する第1容器と、該第1容器と蒸気通
路を介して連通し該蓄熱液に吸収させるための媒体液を
収容する第2容器と、該第1容器に内蔵された第1の熱
交換器と、該第2容器に内蔵された第2の熱交換器と、
該第1容器内の該第1の熱交換器に前記蓄熱液を散布す
る蓄熱液散布手段と、該第2容器内の該第2の熱交換器
に前記媒体液を散布する媒体液散布手段と、該第1容器
と接続された蓄熱液貯蔵用の第1のタンクと、該第2容
器と接続された媒体液貯蔵用の第2のタンクと、該第1
のタンクの前記蓄熱液を前記蓄熱液散布手段に供給する
手段と、該第2のタンクの前記媒体液を前記媒体液散布
手段に供給する手段と、を具備したことを特徴とする。The heat storage device of the present invention includes a first container that stores a heat storage liquid that generates heat by absorbing steam, and a medium liquid that communicates with the first container via a steam passage and is made to be absorbed by the heat storage liquid. a second container, a first heat exchanger built in the first container, a second heat exchanger built in the second container,
a heat storage liquid dispersing means for dispersing the heat storage liquid to the first heat exchanger in the first container; and a medium liquid dispersing means for dispersing the medium liquid to the second heat exchanger in the second container. a first tank for storing a heat storage liquid connected to the first container; a second tank for storing a medium liquid connected to the second container;
It is characterized by comprising means for supplying the heat storage liquid in the second tank to the heat storage liquid dispersing means, and means for supplying the medium liquid in the second tank to the medium liquid dispersing means.
本発明の蓄熱装置において、第1容器と第2容器を結ぶ
蒸気通路の途中にミスト分離手段を設けることは望まし
い。In the heat storage device of the present invention, it is desirable to provide mist separation means in the middle of the steam passage connecting the first container and the second container.
媒体液を第2熱交換器に散布することによって発生した
蒸気、或いは蓄熱液を第1容器内に散布することによっ
て発生した蒸気には、液滴の同伴飛散がある。この液滴
の蒸気中への同伴飛散により、蓄熱液の濃度が次第に薄
くなる。蒸気通路の途中にミスト分離手段を設けて液滴
を分離することにより、蓄熱液の濃度低下を抑制するこ
とができる。The steam generated by dispersing the medium liquid into the second heat exchanger or the steam generated by dispersing the heat storage liquid into the first container includes entrainment and scattering of droplets. As the droplets entrain and scatter into the steam, the concentration of the heat storage liquid gradually becomes thinner. By providing a mist separation means in the middle of the steam passage to separate droplets, it is possible to suppress a decrease in the concentration of the heat storage liquid.
第1のタンクの蓄熱液を蓄熱液散布手段によって第1容
器内に散布して蒸気を発生させて第1タンク内の蓄熱液
の濃度を高め、発生した蒸気を第2容器内で凝縮させて
媒体液に吸収させることにより、蓄熱することができる
。The heat storage liquid in the first tank is sprayed into the first container by a heat storage liquid distribution means to generate steam to increase the concentration of the heat storage liquid in the first tank, and the generated steam is condensed in the second container. Heat can be stored by absorbing it into the medium liquid.
第2のタンクの媒体液を媒体液散布手段によって第2熱
交換器に散布して加熱し蒸気を発生させ、この際、第2
熱交換器の伝熱管に冷房のための流体を供給することに
よって冷熱を発生させることができる。The medium liquid in the second tank is sprayed and heated to the second heat exchanger by the medium liquid dispersion means to generate steam, and at this time, the second
Cold heat can be generated by supplying cooling fluid to the heat transfer tubes of the heat exchanger.
又、第2容器内で発生した蒸気を第1容器内で第1熱交
換器により凝縮し、この際、第1熱交換器の伝熱管に暖
房のための流体を供給することによって高温熱を発生さ
せることができる。Also, the steam generated in the second container is condensed in the first container by the first heat exchanger, and at this time, high-temperature heat is generated by supplying heating fluid to the heat exchanger tubes of the first heat exchanger. can be generated.
以下、本発明を実施例を用いて説明する。第1図は1本
発明の蓄熱装置の一実施例を示す。The present invention will be explained below using examples. FIG. 1 shows an embodiment of the heat storage device of the present invention.
この装置は蓄熱液に吸収させる媒体液を貯蔵する第2の
タンク(媒体タンク)100と蓄熱液を貯蔵する第1の
タンク(蓄熱タンク)500と媒体液を収容する第2容
器200と蓄熱液を収容する第1容器600により構成
され、第1容器600の内部に第1熱交換器の伝熱管6
10が設置され、伝熱管610の上部に蓄熱液の散布手
段として散布ノズル620がある。蓄熱液20は、第1
熱交換器の伝熱管610内を流れる流体によって加熱又
は冷却している。また第1容器600内に空間を設け、
第1熱交換器の伝熱管610を設置し、蓄熱液20を第
1容器内の伝熱管610の表面に散布し、蒸発吸収面の
面積を大きくするためにポンプ510により蓄熱液を加
圧し、散布ノズル620により散布している。媒体液態
も同様に第2容器200内に第2熱交換器の伝熱管21
.0を設置し、媒体液1oをポンプ11.0によって加
圧し散布ノズル220によって散布している。This device consists of a second tank (medium tank) 100 for storing a medium liquid to be absorbed into the heat storage liquid, a first tank (thermal storage tank) 500 for storing the heat storage liquid, a second container 200 for storing the medium liquid, and a heat storage liquid. The heat exchanger tubes 6 of the first heat exchanger are arranged inside the first container 600.
10 is installed, and a spray nozzle 620 is provided above the heat transfer tube 610 as a means for spraying heat storage liquid. The heat storage liquid 20
Heating or cooling is performed by fluid flowing through the heat exchanger tubes 610 of the heat exchanger. Further, a space is provided in the first container 600,
The heat exchanger tube 610 of the first heat exchanger is installed, the heat storage liquid 20 is spread on the surface of the heat exchanger tube 610 in the first container, and the heat storage liquid is pressurized by the pump 510 in order to increase the area of the evaporation absorption surface. Spraying is performed by a spray nozzle 620. Similarly, the liquid medium is also contained in the heat exchanger tube 21 of the second heat exchanger in the second container 200.
.. 0 is installed, and the medium liquid 1o is pressurized by the pump 11.0 and sprayed by the spray nozzle 220.
この構造にすることによって、媒体液を効率よく伝熱管
表面で蒸発又は凝縮させたり、蓄熱液を効率良く伝熱管
表面で蒸気又は吸収させることが可能になる。With this structure, it becomes possible to efficiently evaporate or condense the medium liquid on the surface of the heat exchanger tube, and to efficiently vaporize or absorb the heat storage liquid on the surface of the heat exchanger tube.
この蓄熱装置では、散布ノズルにより微細な液滴を発生
させるために媒体蒸気流への液滴同伴飛散があるが、蒸
気通l&400にミストセパレータ(気水分離器)30
0を備えることによって、この液滴を分離することがで
きる。In this heat storage device, since fine droplets are generated by the spray nozzle, the droplets are entrained and scattered into the medium vapor flow.
By providing 0, this droplet can be separated.
第1のタンク500に収容される蓄熱剤(吸収剤)とし
ては、液状の吸収剤が適している。液状吸収剤は移動す
る蒸気の種類により異なるが、水系では臭化リチウム、
塩化リチウム、ヨウ化リチウム等の塩や水酸化ナトリウ
ムや硫酸等の水溶液がある。アンモニア系では移動蒸気
としてアンモニア、メチルアミン、エチルアミンなどが
あり。As the heat storage agent (absorbent) contained in the first tank 500, a liquid absorbent is suitable. The liquid absorbent varies depending on the type of vapor being moved, but for water-based materials, lithium bromide,
There are salts such as lithium chloride and lithium iodide, and aqueous solutions such as sodium hydroxide and sulfuric acid. In the ammonia system, mobile vapors include ammonia, methylamine, and ethylamine.
吸収剤として水、ヨウ化ナトリウム溶液などがある。フ
ロン系では移動蒸気としてR−21,R−22が主で、
吸収剤としてテトラエチレングリコール、ジメチルエー
テル(E181)、ジメチルフォルムアミド(D、M、
F) 、イソブチルアセテート(1,B、M)、ブチル
フタレート(D、B、P)などがある。Absorbents include water and sodium iodide solution. In the fluorocarbon system, R-21 and R-22 are the main moving vapors.
Tetraethylene glycol, dimethyl ether (E181), dimethyl formamide (D, M,
F), isobutyl acetate (1, B, M), butyl phthalate (D, B, P), etc.
吸収性媒体液としては前記した蓄熱剤が適用でき、その
沸点が蓄熱液よりも低いものであればよい。The above-mentioned heat storage agent can be used as the absorbent medium liquid, as long as its boiling point is lower than that of the heat storage liquid.
化学反応熱を利用する例として、蓄熱液に硫化ナトリウ
ム、水酸化カルシウム等の物質を用い。As an example of using chemical reaction heat, materials such as sodium sulfide and calcium hydroxide are used as heat storage liquid.
蓄熱液を分解するとき、生成するときに発生する熱によ
る可逆熱化学反応を利用して蓄熱する方法がある。その
際に用いる媒体としては、塩化マグネシウム等の水溶液
の媒体があげられるが蓄熱液に用いた硫化ナトリウム、
水酸化カルシウム等の薄い水溶液でもかまわない。When a heat storage liquid is decomposed, there is a method of storing heat by utilizing a reversible thermochemical reaction caused by the heat generated when the heat storage liquid is decomposed. Examples of the medium used in this case include an aqueous solution medium such as magnesium chloride, but sodium sulfide used as a heat storage liquid,
A dilute aqueous solution such as calcium hydroxide may also be used.
第4図は、臭化リチウム水溶液の水蒸気圧線図であり、
横軸が温度、縦軸が平衡水蒸気圧を示す。FIG. 4 is a water vapor pressure diagram of a lithium bromide aqueous solution,
The horizontal axis shows temperature and the vertical axis shows equilibrium water vapor pressure.
臭化リチウム水溶液は濃度が増すにつれ、水蒸気圧が下
がり、その値は水、希薄水溶液である吸収性媒体、濃厚
水溶液である蓄熱液の順に下がってくる。As the concentration of the lithium bromide aqueous solution increases, the water vapor pressure decreases, and the value decreases in the order of water, the absorbent medium which is a dilute aqueous solution, and the heat storage liquid which is a concentrated aqueous solution.
蓄熱操作は、まず第1のタンク(蓄熱液タンク)500
内の蓄熱液20が第1熱交換器の伝熱管610で加熱さ
れ、温度T昂で水分が蒸発し、濃度がC1からC7へ濃
縮される(第4図G点)。The heat storage operation begins with the first tank (heat storage liquid tank) 500
The heat storage liquid 20 inside is heated by the heat exchanger tube 610 of the first heat exchanger, and water evaporates at a temperature of T, concentrating the concentration from C1 to C7 (point G in Figure 4).
発生した蒸気30は蒸気通路400を通って第2容器2
00へ入る。第2容器200へ入った水蒸気30は、第
2熱交換器の伝熱管210に接し、そこで吸収凝縮する
。吸収時に凝縮潜熱により発熱するが、媒体液10は伝
熱管210で冷却され温度T−に保たれている(第4図
C点)。一方、水蒸気を吸収した媒体液10は希釈され
、濃度がC0′よりC、rへ下がる。蓄熱時の気室圧力
は濃度C7′ の媒体液10の温度T−での平衡水蒸
気圧に等しくp=どなる。以上の操作により、温度−r
5の熱エネルギーを水の蒸発潜熱として回収し、それを
蓄熱液の濃度エネルギーに変換(濃縮)して蓄熱したこ
とになる。The generated steam 30 passes through the steam passage 400 and enters the second container 2.
Enter 00. The water vapor 30 that has entered the second container 200 comes into contact with the heat exchanger tubes 210 of the second heat exchanger, where it is absorbed and condensed. Although heat is generated due to latent heat of condensation during absorption, the medium liquid 10 is cooled by the heat transfer tube 210 and maintained at a temperature T- (point C in FIG. 4). On the other hand, the medium liquid 10 that has absorbed water vapor is diluted and its concentration decreases from C0' to C and r. The pressure in the air chamber during heat storage is equal to the equilibrium water vapor pressure of the medium liquid 10 with the concentration C7' at the temperature T-, and p = 0. By the above operation, the temperature - r
The thermal energy of 5 was recovered as the latent heat of vaporization of water, and it was converted (concentrated) into concentration energy of the heat storage liquid and stored as heat.
冷熱発生時は、蓄熱液を貯蔵した第1のタンク500お
よび第1容器600内の蓄熱液20が第1熱交換器の伝
熱管610で温度T−まで冷却され水蒸気圧が下がって
いるため、第1容器600内の水蒸気が吸収され圧力が
下がる(第4図G→A)。一方、媒体液を貯蔵した第2
のタンク100および第2容器200の圧力も下がるた
めに、媒体液10の水が蒸発し、その蒸発潜熱により冷
却され温度が下がる(第4図C→E)。媒体液10から
発生した水蒸気31は、蒸気通路400を経て第1容器
600に入り蓄熱液20へ吸収凝縮される。吸収時に蓄
熱液20は、温度がC7からC2へ下がると共に凝縮潜
熱により発熱するが、伝熱管610で冷却され温度T−
に保たれる(第4図A点)。一方、媒体液10は圧力低
下により自己蒸発し、′a度がCy′ よりC8′
へ下がると共に、蒸発潜熱により温度が下がるが、伝
熱管210より熱を豚い、温度T+になり(第4図E点
)、第2容器200内の第2熱交換器の伝熱管210よ
り冷熱が得られる。冷熱発生時の気室圧力は、濃度C2
の蓄熱液20の温度T−での平衡水蒸気圧に等しくPや
となる。When cold heat is generated, the heat storage liquid 20 in the first tank 500 and the first container 600 storing the heat storage liquid is cooled to a temperature T- by the heat transfer tube 610 of the first heat exchanger, and the water vapor pressure is lowered. The water vapor in the first container 600 is absorbed and the pressure decreases (from G to A in FIG. 4). On the other hand, the second
Since the pressure in the tank 100 and the second container 200 also decreases, the water in the medium liquid 10 evaporates and is cooled by its latent heat of evaporation, resulting in a decrease in temperature (FIG. 4 C→E). Water vapor 31 generated from the medium liquid 10 enters the first container 600 through the steam passage 400 and is absorbed and condensed into the heat storage liquid 20 . During absorption, the temperature of the heat storage liquid 20 decreases from C7 to C2 and generates heat due to latent heat of condensation, but it is cooled by the heat transfer tube 610 and the temperature decreases to T-
(point A in Figure 4). On the other hand, the medium liquid 10 self-evaporates due to the pressure drop, and the 'a' degree changes from Cy' to C8'.
As the temperature decreases, the temperature decreases due to the latent heat of evaporation, but heat is absorbed from the heat transfer tube 210, and the temperature reaches T+ (point E in FIG. 4), and cold heat is transferred from the heat transfer tube 210 of the second heat exchanger in the second container 200. is obtained. The air chamber pressure when cold heat is generated is the concentration C2
P is equal to the equilibrium water vapor pressure of the heat storage liquid 20 at the temperature T-.
以上冷熱発生を例にとって説明したが、高温発生も同様
に利用でき、その場合は高温熱は第1容器600の第1
熱交換器の伝熱管610により得られる。Although the above explanation has been given using cold heat generation as an example, high temperature generation can also be used in the same way.
Obtained by heat exchanger tubes 610.
すなわち第2容器200内で発生した水蒸気31は蒸気
通路400を通って第1容器600に入り、第1熱交換
器の伝熱管610により熱が奪われて凝縮する。第1熱
交換器の伝熱管610より高温熱が得られる。That is, the water vapor 31 generated in the second container 200 passes through the steam passage 400 and enters the first container 600, where heat is removed by the heat transfer tube 610 of the first heat exchanger and condenses. High temperature heat is obtained from the heat transfer tube 610 of the first heat exchanger.
以上のように、本発明によれば多孔質材料を用いること
なしに、熱交換器の伝熱管を利用して蒸気の発生および
吸収を効率よく行わせ、蓄熱ならびに冷熱、高温熱を得
ることができる。As described above, according to the present invention, it is possible to efficiently generate and absorb steam using heat transfer tubes of a heat exchanger, and to store heat and obtain cold heat and high-temperature heat without using porous materials. can.
第1図は本発明の蓄熱装置の実施例を示す構成図、第2
図は従来例を示す構成図、第3図は従来の多孔質材料を
用いたときの蓄熱の原理を示す説明図、第4図は臭化リ
チウム水溶液の蓄熱操作に対応する蒸気圧線図である。
10・・・媒体液、20・・・蓄熱液、30・・・水蒸
気、31・・・水蒸気、100・・・第2のタンク(媒
体タンク)、200・・第2容器、210・・第2熱交
換器の伝熱管、220・・・媒体液の散布ノズル、30
0・・ミストセパレータ(気水分離器)、400・・蒸
気通路、500・・・第1のタンク(蓄熱液タンク)、
600・・・第1容器、610・・・第1熱交換器の伝
熱第1図
第3図
第2図
Ts : 水の凝縮温度
Ts′: 蓄熱液の吸収温度
TL : 操作温度FIG. 1 is a configuration diagram showing an embodiment of the heat storage device of the present invention, and FIG.
The figure is a configuration diagram showing a conventional example, Figure 3 is an explanatory diagram showing the principle of heat storage when using a conventional porous material, and Figure 4 is a vapor pressure diagram corresponding to the heat storage operation of an aqueous lithium bromide solution. be. DESCRIPTION OF SYMBOLS 10... Medium liquid, 20... Heat storage liquid, 30... Water vapor, 31... Water vapor, 100... Second tank (medium tank), 200... Second container, 210... No. 2 Heat exchanger tube, 220... Spraying nozzle for medium liquid, 30
0... Mist separator (steam water separator), 400... Steam passage, 500... First tank (heat storage liquid tank),
600...First container, 610...Heat transfer of first heat exchanger Fig. 1 Fig. 3 Fig. 2 Ts: Condensation temperature of water Ts': Absorption temperature of heat storage liquid TL: Operating temperature
Claims (1)
する第1容器と、 該第1容器と蒸気通路を介して連通し該蓄熱液に吸収さ
せるための媒体液を収容する第2容器と、 該第1容器に内蔵された第1の熱交換器と、該第2容器
に内蔵された第2の熱交換器と、該第1容器内の該第1
の熱交換器に前記蓄熱液を散布する蓄熱液散布手段と、 該第2容器内の該第2の熱交換器に前記媒体液を散布す
る媒体液散布手段と、 該第1容器と接続された蓄熱液貯蔵用の第1のタンクと
、 該第2容器と接続された媒体液貯蔵用の第2のタンクと
、 該第1のタンクの前記蓄熱液を前記蓄熱液散布手段に供
給する手段と、 該第2のタンクの前記媒体液を前記媒体液散布手段に供
給する手段と、 を具備したことを特徴とする蓄熱装置。 2、蒸気を吸収することによつて発熱する蓄熱液を収容
する第1容器と、 該第1容器と蒸気通路を介して連通し該蓄熱液に吸収さ
せるための媒体液を収容する第2容器と、 該第1容器に内蔵された第1の熱交換器と、該第2容器
に内蔵された第2の熱交換器と、該第1容器内の該第1
の熱交換器に前記蓄熱液を散布する蓄熱液散布手段と、 該第2容器内の該第2の熱交換器に前記媒体液を散布す
る媒体液散布手段と、 該第1容器と接続された蓄熱液貯蔵用の第1のタンクと
、 該第2容器と接続された媒体液貯蔵用の第2のタンクと
、 該第1のタンクの前記蓄熱液を前記蓄熱液散布手段に供
給する手段と、 該第2のタンクの前記媒体液を前記媒体液散布手段に供
給する手段と、 前記蒸気通路に備えられたミスト分離手段と、を具備し
たことを特徴とする蓄熱装置。 3、蒸気を吸収することによつて発熱する蓄熱液を収容
する第1容器と、 該第1容器と蒸気通路を介して連通し該蓄熱液に吸収さ
せるための媒体液を収容する第2容器と、 該第1容器に内蔵された第1の熱交換器と、該第2容器
に内蔵された第2の熱交換器と、該第1容器内の該第1
の熱交換器に前記蓄熱液を散布する蓄熱液散布手段と、 該第2容器内の該第2の熱交換器に前記媒体液を散布す
る媒体液散布手段と、 該第1容器と接続された蓄熱液貯蔵用の第1のタンクと
、 該第2容器と接続された媒体液貯蔵用の第2のタンクと
、 該第1のタンクの前記蓄熱液を前記蓄熱液散布手段の供
給する手段と、 該第2のタンクの前記媒体液を前記媒体液散布手段に供
給する手段と、 を具備し、 前記第1のタンクの蓄熱液を前記蓄熱液散布手段によつ
て前記第1容器内に散布して蒸気を発生させ、該第1の
タンク内の蓄熱液の濃度を高める蓄熱段階と、 発生した該蒸気を前記第2容器内で凝縮させて媒体液に
吸収させる段階と、 を含むことを特徴とする蓄熱装置による蓄熱方法。 4、蒸気を吸収することによつて発熱する蓄熱液を収容
する第1容器と、 該第1容器と蒸気通路を介して連通し該蓄熱液に吸収さ
せるための媒体液を収容する第2容器と、 該第1容器に内蔵された第1の熱交換器と、該第2容器
に内蔵された第2の熱交換器と、該第1容器内の該第1
の熱交換器に前記蓄熱液を散布する蓄熱液散布手段と、 該第2容器内の該第2の熱交換器に前記媒体液を散布す
る媒体液散布手段と、 該第1容器と接続された蓄熱液貯蔵用の第1のタンクと
、 該第2容器と接続された媒体液貯蔵用の第2のタンクと
、 該第1のタンクの前記蓄熱液を前記蓄熱液散布手段に供
給する手段と、 該第2のタンクの前記媒体液を前記媒体液散布手段に供
給する手段とを具備し、 前記第2のタンクの媒体液を前記媒体液散布手段によつ
て前記第2の熱交換器に散布して加熱し蒸気を発生させ
る段階と、 該第2の熱交換器の伝熱管に流体を供給し前記媒体液散
布手段によつて散布された媒体液と熱交換させることに
よつて冷熱を得る段階と、発生した該蒸気を前記第1の
熱交換器によつて凝縮し、前記蓄熱液に吸収させて該蓄
熱液の濃度を低下させる段階と、 を含むことを特徴とする蓄熱装置による蓄熱発生方法。 5、蒸気を吸収することによつて発熱する蓄熱液を収容
する第1容器と、 該第1容器と蒸気通路を介して連通し該蓄熱液に吸収さ
せるための媒体液を収容する第2容器と、 該第1容器に内蔵された第1の熱交換器と、該第2容器
に内蔵された第2の熱交換器と、該第1容器内の該第1
の熱交換器に前記蓄熱液を散布する蓄熱液散布手段と、 該第2容器内の該第2の熱交換器に前記媒体液を散布す
る媒体液散布手段と、 該第1容器と接続された蓄熱液貯蔵用の第1のタンクと
、 該第2容器と接続された媒体液貯蔵用の第2のタンクと
、 該第1のタンクの前記蓄熱液を前記蓄熱液散布手段に供
給する手段と、 該第2のタンクの前記媒体液を前記媒体液散布手段に供
給する手段とを具備し、 前記第2のタンクの媒体液を前記媒体液散布手段によつ
て前記第2の熱交換器に散布して加熱し蒸気を発生させ
る段階と、 発生した該蒸気を前記第1の熱交換器によつて凝縮し、
前記蓄熱液に吸収させて該蓄熱液の濃度を低下させる段
階と、 該第1の熱交換器の伝熱管に流体を供給し前記蒸気と熱
交換させることによつて高温熱を得る段階と、 を含むことを特徴とする蓄熱装置による高温熱発生方法
。[Scope of Claims] 1. A first container containing a heat storage liquid that generates heat by absorbing steam, and a medium liquid that communicates with the first container via a steam passage and is absorbed by the heat storage liquid. a first heat exchanger built into the first container; a second heat exchanger built into the second container; and a second heat exchanger built into the first container;
a heat storage liquid dispersing means for dispersing the heat storage liquid to the heat exchanger of the second container; a medium liquid dispersing means for dispersing the medium liquid to the second heat exchanger in the second container; a first tank for storing a heat storage liquid; a second tank for storing a medium liquid connected to the second container; and means for supplying the heat storage liquid in the first tank to the heat storage liquid distribution means. A heat storage device comprising: a means for supplying the medium liquid in the second tank to the medium liquid dispersing means. 2. A first container containing a heat storage liquid that generates heat by absorbing steam; and a second container communicating with the first container via a steam passage and containing a medium liquid to be absorbed by the heat storage liquid. a first heat exchanger built in the first container; a second heat exchanger built in the second container; and a first heat exchanger built in the first container.
a heat storage liquid dispersing means for dispersing the heat storage liquid to the heat exchanger of the second container; a medium liquid dispersing means for dispersing the medium liquid to the second heat exchanger in the second container; a first tank for storing a heat storage liquid; a second tank for storing a medium liquid connected to the second container; and means for supplying the heat storage liquid in the first tank to the heat storage liquid distribution means. A heat storage device comprising: a means for supplying the medium liquid in the second tank to the medium liquid dispersing means; and a mist separating means provided in the steam passage. 3. A first container containing a heat storage liquid that generates heat by absorbing steam; and a second container communicating with the first container via a steam passage and containing a medium liquid to be absorbed by the heat storage liquid. a first heat exchanger built in the first container; a second heat exchanger built in the second container; and a first heat exchanger built in the first container.
a heat storage liquid dispersing means for dispersing the heat storage liquid to the heat exchanger of the second container; a medium liquid dispersing means for dispersing the medium liquid to the second heat exchanger in the second container; a first tank for storing a heat storage liquid; a second tank for storing a medium liquid connected to the second container; and means for supplying the heat storage liquid in the first tank to the heat storage liquid distribution means. and means for supplying the medium liquid in the second tank to the medium liquid dispersing means, the heat storage liquid in the first tank being supplied into the first container by the heat storage liquid distributing means. a heat storage step of spraying to generate steam to increase the concentration of the heat storage liquid in the first tank; and a step of condensing the generated steam in the second container and absorbing it into the medium liquid. A heat storage method using a heat storage device characterized by: 4. A first container containing a heat storage liquid that generates heat by absorbing steam; and a second container communicating with the first container via a steam passage and containing a medium liquid to be absorbed by the heat storage liquid. a first heat exchanger built in the first container; a second heat exchanger built in the second container; and a first heat exchanger built in the first container.
a heat storage liquid dispersing means for dispersing the heat storage liquid to the heat exchanger of the second container; a medium liquid dispersing means for dispersing the medium liquid to the second heat exchanger in the second container; a first tank for storing a heat storage liquid; a second tank for storing a medium liquid connected to the second container; and means for supplying the heat storage liquid in the first tank to the heat storage liquid distribution means. and means for supplying the medium liquid in the second tank to the medium liquid dispersing means, the medium liquid in the second tank being supplied to the second heat exchanger by the medium liquid distributing means. a step of spraying and heating the fluid to generate steam, and supplying a fluid to the heat exchanger tube of the second heat exchanger and exchanging heat with the medium liquid sprayed by the medium liquid spraying means to generate cold heat. and a step of condensing the generated vapor by the first heat exchanger and absorbing it into the heat storage liquid to reduce the concentration of the heat storage liquid. How to generate heat storage. 5. A first container containing a heat storage liquid that generates heat by absorbing steam; and a second container communicating with the first container via a steam passage and containing a medium liquid to be absorbed by the heat storage liquid. a first heat exchanger built in the first container; a second heat exchanger built in the second container; and a first heat exchanger built in the first container.
a heat storage liquid dispersing means for dispersing the heat storage liquid to the heat exchanger of the second container; a medium liquid dispersing means for dispersing the medium liquid to the second heat exchanger in the second container; a first tank for storing a heat storage liquid; a second tank for storing a medium liquid connected to the second container; and means for supplying the heat storage liquid in the first tank to the heat storage liquid distribution means. and means for supplying the medium liquid in the second tank to the medium liquid dispersing means, the medium liquid in the second tank being supplied to the second heat exchanger by the medium liquid distributing means. a step of spraying and heating to generate steam; and condensing the generated steam by the first heat exchanger;
a step of reducing the concentration of the heat storage liquid by absorbing it into the heat storage liquid; a step of obtaining high-temperature heat by supplying the fluid to the heat exchanger tubes of the first heat exchanger and exchanging heat with the steam; A method for generating high-temperature heat using a heat storage device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2247478A JPH0684874B2 (en) | 1990-09-19 | 1990-09-19 | Heat storage device and method of using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2247478A JPH0684874B2 (en) | 1990-09-19 | 1990-09-19 | Heat storage device and method of using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60018557A Division JPS61180891A (en) | 1985-02-04 | 1985-02-04 | Method of storing heat using porous material and device therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03144292A true JPH03144292A (en) | 1991-06-19 |
JPH0684874B2 JPH0684874B2 (en) | 1994-10-26 |
Family
ID=17164057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2247478A Expired - Lifetime JPH0684874B2 (en) | 1990-09-19 | 1990-09-19 | Heat storage device and method of using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0684874B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5368447A (en) * | 1976-11-30 | 1978-06-17 | Ebara Corp | Heat-accumulating system |
JPS58132381U (en) * | 1982-03-02 | 1983-09-06 | バブコツク日立株式会社 | Heating device that utilizes concentration differences |
-
1990
- 1990-09-19 JP JP2247478A patent/JPH0684874B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5368447A (en) * | 1976-11-30 | 1978-06-17 | Ebara Corp | Heat-accumulating system |
JPS58132381U (en) * | 1982-03-02 | 1983-09-06 | バブコツク日立株式会社 | Heating device that utilizes concentration differences |
Also Published As
Publication number | Publication date |
---|---|
JPH0684874B2 (en) | 1994-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3642059A (en) | Heating and cooling unit | |
US4309980A (en) | Closed vaporization heat transfer system | |
EP3027972B1 (en) | Heat dissipation systems with hygroscopic working fluid | |
US4638646A (en) | Heat storing apparatus | |
US20130305752A1 (en) | Heat dissipation systems with hygroscopic working fluid | |
JPH0224572B2 (en) | ||
EP3156751B1 (en) | Heat dissipation systems with hygroscopic working fluid | |
JPS61110852A (en) | Absorption heat pump/refrigeration system | |
US9488392B2 (en) | Thin film-based compact absorption cooling system | |
US4617800A (en) | Apparatus for producing power using concentrated brine | |
US3316736A (en) | Absorption refrigeration systems | |
JPH03144292A (en) | Hear accumulating device and use of the same | |
CA1279483C (en) | Air conditioning process and apparatus | |
JPH02122169A (en) | Chemical heat pump | |
JP4209339B2 (en) | Air humidity control medium and its use | |
US4704993A (en) | Apparatus for producing power using concentrated brine | |
JP3553833B2 (en) | Absorption refrigerator | |
JP3381094B2 (en) | Absorption type heating and cooling water heater | |
JP3715157B2 (en) | 2-stage double-effect absorption refrigerator | |
JPS61231078A (en) | Method of storing heat | |
JPS6249539B2 (en) | ||
JPS61268961A (en) | Self-exhaust heat recovery device | |
JPS6232384B2 (en) | ||
JP2000018754A (en) | Absorption heat pump device and its operation method | |
JP2010151328A (en) | Heat storage device |