JPH03144167A - Hydraulic driving device - Google Patents

Hydraulic driving device

Info

Publication number
JPH03144167A
JPH03144167A JP28407789A JP28407789A JPH03144167A JP H03144167 A JPH03144167 A JP H03144167A JP 28407789 A JP28407789 A JP 28407789A JP 28407789 A JP28407789 A JP 28407789A JP H03144167 A JPH03144167 A JP H03144167A
Authority
JP
Japan
Prior art keywords
hydraulic
pressure
axle
capacity
hydraulic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28407789A
Other languages
Japanese (ja)
Inventor
Ryosuke Sugawara
菅原 良輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP28407789A priority Critical patent/JPH03144167A/en
Publication of JPH03144167A publication Critical patent/JPH03144167A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the idle revolution preventing function to automatically act by installing a control means for detecting the idle revolution of each axle and for shifting the capacity of a variable capacity type hydraulic motor joined with an axle on which an idle revolution state is detected, in a reduction direction. CONSTITUTION:When slip is not generated on each of wheels 3, 4, the liquid discharged from a hydraulic pump is distributed equally to the hydraulic motors 7 and 8 from a hydraulic circuit 9, and each equal driving torque is generated, and the differential function is developed through the flow rate variation of the discharged liquid in the hydraulic circuit 9. The control valve 20 of a control means 11 is kept at a neutral position when each pressure in the right and left pressure chambers 15 and 16 is equal. When the right wheel 3 idle-revolves because of slip, the pressure lowering at an orifice 13 increases over that at an orifice 14. The pressure in the pressure chamber 16 becomes higher than that in the pressure chamber 15, and the control valve 20 is moved rightward, and a control pressure is introduced into an actuator 21, and the capacity of a hydraulic motor 7 is shifted in the reduction direction, and the driving torque for the wheel 3 is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車や一般産業用車両などに好適に適用可
能な液圧駆動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydraulic drive device suitably applicable to automobiles, general industrial vehicles, and the like.

し従来の技術] 前輪駆動(又は後輪駆動)の車両においては、周知のよ
うに、コーナリング走行に係る内輪差などを吸収するた
めに左右の車軸がデファレンシャル・ギヤを介して結合
されている。デファレンシャル・ギヤは差動機構を主体
として構成され、エンジン動力を各車軸に差動分配でき
るものである。
BACKGROUND OF THE INVENTION In a front wheel drive (or rear wheel drive) vehicle, as is well known, left and right axles are coupled via a differential gear in order to absorb differences between inner wheels during cornering. A differential gear is mainly composed of a differential mechanism and can differentially distribute engine power to each axle.

このようなデファレンシャル・ギヤはまた、四輪駆動の
車両においても前後輪の車軸間に介設され、駆動誤差な
どを吸収するために役立てられる。
Such a differential gear is also interposed between the front and rear axles of a four-wheel drive vehicle, and is used to absorb drive errors.

[発明が解決しようとする課題] ところで、このようなデファレンシャル・ギヤを採用す
る場合、単にそれのみでは、一方の車軸に軸着されてい
る車輪がぬかるみ等に落ちてスリップした場合にその車
軸の一方的な空転を許容し、エンジン動力を最早その車
軸に適正に伝達し得なくなるばかりか、デファレンシャ
ル・ギヤの性質上、他方の車軸にも適正な動力を伝達す
ることが困難となり、結果的に車両をぬかるみから脱出
させることができないという不都合を生じる。そこで、
このような不都合を解消するために、かかるデファレン
シャル・ギヤにデフロック機構を付帯“的に設け、一方
の車軸が空転した場合に、デファレンシャル・ギヤに特
有の差動機能を拘束して一力的な空転を防止できるよう
にしている。このため、装置全体が益々大掛かりなもの
となり、人為的なレバー操作も必要になる等の不具合を
生じている。
[Problems to be Solved by the Invention] By the way, when such a differential gear is employed, it is difficult to prevent the wheel mounted on one axle from slipping if it falls into mud or slips. Not only does this allow unilateral idling, making it no longer possible to properly transmit engine power to that axle, but due to the nature of differential gears, it becomes difficult to properly transmit power to the other axle, resulting in This results in the inconvenience of not being able to get the vehicle out of the mud. Therefore,
In order to eliminate this inconvenience, a differential lock mechanism is attached to the differential gear, and when one axle spins, the differential function unique to the differential gear is restrained and the differential lock mechanism is added to the differential gear. This is designed to prevent idling.This has resulted in problems such as the overall device becoming increasingly large-scale and requiring manual lever operation.

本発明は、このような課題に着目してなされたものであ
って、簡易な構成の液圧式伝動系を採用し、かかる伝動
系を通じてデファレンシャル機能を発揮させるとともに
、車軸が空転した場合に従来に比べてより有効な空転防
止機能が自動的に働くようにした液圧駆動装置を実現す
ることを目的としている。
The present invention has been made with a focus on such problems, and employs a hydraulic power transmission system with a simple configuration.The present invention utilizes a hydraulic power transmission system with a simple configuration to exert a differential function through this transmission system, and also to prevent the axle from spinning when the axle spins. The aim is to realize a hydraulic drive device that has a more effective idling prevention function that automatically operates.

[課題を解決するための手段] 本発明は、かかる目的を達成するために、次のような構
成を採用したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following configuration.

すなわち、本発明に係る液圧駆動装置は、エンジンによ
り駆動される液圧ポンプと、差動をとるべき複数の車軸
にそれぞれ結合された可変容量形液圧モータと、これら
の液圧モータに前記液圧ポンプからの吐出液を送給する
液圧回路とを備えた液圧駆動装置において、前記各車軸
の空転を検出する検出手段と、この検出手段を通じて空
転状態を検出された車軸に結合されている液圧モータの
容量を減少方向にシフトする制御手段とを設けたことを
特徴としている。
That is, the hydraulic drive device according to the present invention includes a hydraulic pump driven by an engine, variable displacement hydraulic motors each coupled to a plurality of axles that are to be differentially driven, and a hydraulic pump driven by an engine. In a hydraulic drive device comprising a hydraulic circuit for supplying fluid discharged from a hydraulic pump, a detecting means for detecting idling of each axle, and a detecting means coupled to an axle whose idling state is detected through the detecting means. The present invention is characterized in that it is provided with a control means for shifting the capacity of the hydraulic motor in a decreasing direction.

[作用コ このような構成のものであると、何れの車軸も空転して
いないときには、液圧ポンプの吐出液を各液圧モータに
略等配に送給して路間等な駆動トルクを生じさせ、コー
ナリング走行時などでの差動機能は液圧回路における吐
出液の流量変化を通じて無理なく対応する。しかも、何
れかの車軸がスリップにより空転した場合には、その車
軸に結合されている液圧モータの容量が減少方向にシフ
トされて吐出液による駆動トルクを減じ、他の車軸に結
合されている液圧モータに対しては依然として一定或い
はそれ以−ヒの吐出液を送給して有効な駆動トルクを維
持するため、結果的に、この液圧駆動装置によるとスリ
ップを速やかに解消してぬかるみ等から有効に脱出でき
るようになる。
[Operations] With this configuration, when none of the axles is idling, the fluid discharged from the hydraulic pump is distributed approximately evenly to each hydraulic motor to generate driving torque between roads, etc. The differential function during cornering can be easily handled by changing the flow rate of the discharged fluid in the hydraulic circuit. Moreover, if any axle spins due to slipping, the capacity of the hydraulic motor connected to that axle is shifted in the direction of decrease to reduce the driving torque generated by the discharged fluid, and the hydraulic motor connected to the other axle is shifted to reduce the capacity. Since the hydraulic motor is still supplied with a constant or higher discharge fluid to maintain effective drive torque, this hydraulic drive system quickly eliminates slippage and eliminates mud. You will be able to effectively escape from etc.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

この実施例の液圧駆動装置は、第1図に示す後輪駆動車
両に適用されたもので、エンジン1により駆動される可
変容量形液圧ポンプ2と、左右独立に存在し各々に車輪
3.4を軸着した車軸5.6及びこれらの車軸5.6に
結合された可変容量形液圧モータ7.8と、これらの液
圧モータ7.8に前記液圧ポンプ2からの吐出液を送給
する液圧回路9とを備えている。そして、この液圧回路
9に、第2図に示す如く空転検出手段17.18及び制
御手段11を一体的に構成している。
The hydraulic drive system of this embodiment is applied to a rear wheel drive vehicle shown in FIG. A variable displacement hydraulic motor 7.8 is connected to the axle 5.6 on which the . A hydraulic circuit 9 is provided for supplying. In this hydraulic pressure circuit 9, as shown in FIG. 2, idle detection means 17, 18 and control means 11 are integrally constructed.

具体的に説明すると、液圧回路9は、液圧ポンプ2から
の吐出液を両液圧モータ7.8に等配に分流させ、仕事
を終えた液を再び液圧ポンプ2に3F2流するためにタ
ンク12に落とし得るようにしている。そして、両液圧
モータ7.8の上流にオリフィス部13.14を設け、
オリフィス部13と液圧モータ7との流路間を圧力室1
5に連通させ、オリフィス部14と液圧モータ8との流
路間を圧力室16に連通させている。すなわち、オリフ
ィス部13と圧力室15とが車軸3に対する空転検出手
段17をなし、オリフィス14と圧力室16とが車軸4
に対する空転検出手段18をなす(詳細は後述する)。
Specifically, the hydraulic circuit 9 divides the discharged liquid from the hydraulic pump 2 to both hydraulic motors 7.8 in equal distribution, and flows the liquid that has finished its work to the hydraulic pump 2 3F2 again. It is designed so that it can be dropped into the tank 12 for this purpose. An orifice portion 13.14 is provided upstream of both hydraulic motors 7.8,
A pressure chamber 1 is provided between the flow path between the orifice portion 13 and the hydraulic motor 7.
5, and the flow path between the orifice portion 14 and the hydraulic motor 8 is communicated with the pressure chamber 16. That is, the orifice portion 13 and the pressure chamber 15 constitute the slip detection means 17 for the axle 3, and the orifice 14 and the pressure chamber 16 constitute the idling detection means 17 for the axle 4.
18 (details will be described later).

一方、制御手段11は、前記両圧力室15.16に導入
される圧力に応じてシリンダ19内を摺動し得るコント
ロール弁20と、前記各液圧モータ7.8の容量を変化
させるアクチュエータ21.22と、前記コントロール
弁20に生じるコントロール圧pをアクチュエータ21
に導入するための圧力導入路23と、該コントロール弁
20に生じるコントロール圧pをアクチュエータ22に
導入するための圧力導入路24とから構成されている。
On the other hand, the control means 11 includes a control valve 20 that can slide within the cylinder 19 according to the pressure introduced into both pressure chambers 15.16, and an actuator 21 that changes the capacity of each of the hydraulic motors 7.8. .22 and the control pressure p generated in the control valve 20 by the actuator 21.
The pressure introduction path 23 includes a pressure introduction path 23 for introducing the control pressure p generated in the control valve 20 into the actuator 22.

コントロール弁20は左右に弾設したスプリング25.
26によって付勢されており、左右の圧力室15.16
が同圧であればこれらのスプリング25.26により常
に中立位置にオフセットされる。また、左圧力室16が
右圧力室15よりも高圧になればコントロール弁20は
右行してアクチュエータ21にコントロール圧pを導入
し、逆に、右圧力室15が左圧力室16よりも高圧にな
ればコントロール弁20は左行してアクチュエタ22に
コントロール圧pを導入する。このようにしてコントロ
ール圧が導入されると、アクチュエータ21はスプリン
グ27に抗して液圧モータ7の容量を減少方向に変化さ
せ、アクチュエータ22はスプリング28に抗して液圧
モータ8の容量を減少方向に変化させる。アクチュエー
タ21.22が作動しない限り、両液圧モータ7.8は
他の制御系(図示せず)によって設定された最大容積に
おいて駆動される(すなわち、その制御系は液圧ポンプ
2、液圧モータ7.8に対する容量変更を通じて変速比
制御を行うものである)。
The control valve 20 has springs 25 installed on the left and right sides.
26, and the left and right pressure chambers 15.16
If the pressures are the same, these springs 25 and 26 will always offset them to the neutral position. Furthermore, if the left pressure chamber 16 becomes higher in pressure than the right pressure chamber 15, the control valve 20 moves to the right and introduces the control pressure p to the actuator 21, and conversely, the right pressure chamber 15 has a higher pressure than the left pressure chamber 16. When this happens, the control valve 20 moves to the left and introduces the control pressure p into the actuator 22. When the control pressure is introduced in this way, the actuator 21 resists the spring 27 and changes the capacity of the hydraulic motor 7 in a decreasing direction, and the actuator 22 resists the spring 28 and changes the capacity of the hydraulic motor 8. change in the direction of decrease. As long as the actuator 21.22 is not actuated, both hydraulic motors 7.8 are driven at the maximum displacement set by another control system (not shown) (i.e. the control system controls the hydraulic pump 2, the hydraulic The gear ratio is controlled by changing the capacity of the motor 7.8).

次に、本実施例の作動を説明する。両車軸3.4に滑り
が生じないときには液圧ポンプ2からの吐出液は左右の
液圧モータ7.8に等配に流れ込み、コントロール圧p
は流出せず両液圧モータ7.8は最大容積で車輪3.4
に同等の駆動トルクを及ぼす。また、コーナリング走行
時などでの差動機能は、液圧ポンプ2からの吐出液が液
圧回路9を通じて両液圧モータ7.8に流れ込む流量状
態が変化することで対応する。そして、今かりに右輪3
がスリップし空転したとすれば、オリフィス部13での
圧力降下はオリフィス部14でのそれに比べて大きくな
り、圧力室16が圧力室15よりも相対的に高圧となっ
てコントロール弁20を右行させる。これにより、アク
チュエータ21にコントロール圧pが導入され、液圧モ
ータ7の容量が減少方向にシフトされる結果、車輪3に
対する駆動トルクが低減される。このため、スリップが
おさまり易くなる。スリップがおさまると、オリフィス
部13での圧力降下が次第に小さくなり圧力室15は徐
々に圧力室16と同圧になるので、コントロール弁20
は中立位置に向かって左行し、完全に中立位置に復帰し
た時にアクチュエータ21に導入されていたコントロー
ル圧pが消失し、液圧モータ7は再び最大容積となって
液圧モータ8と同等の駆動トルクを回復する。また、以
上とは逆に、左輪4がスリップし空転したとすれば、オ
リフィス部14での圧力降下はオリフィス部13でのそ
れに比べて大きくなり、圧力室15が圧力室16よりも
相対的に高圧となってコントロール弁20を左行させる
。これにより、アクチュエタ22にコントロール圧pが
導入され、液圧モータ8の容量が減少方向にシフトされ
る結果、車輪4に対する駆動トルクが低減される。この
ため、スリップがおさまり易くなる。スリップがおさま
ると、オリフィス部14での圧力降下が次第に小さくな
り圧ツノ室16は徐々に圧力室15と同圧になるので、
コントロール弁20は中立位置に向かって右行し、完全
に中立位置に復帰した時にアクチュエータ22に導入さ
れていたコントロール圧が消失し、液圧モータ8は再び
最大容積となって液圧モータ7と同等の駆動トルクを回
復する。これらの作動において、空転による容量シフト
の割合は、各スプリング25.26.27.28の弾性
係数を通じて調整される。
Next, the operation of this embodiment will be explained. When there is no slippage on both axles 3.4, the fluid discharged from the hydraulic pump 2 flows evenly into the left and right hydraulic motors 7.8, and the control pressure p
does not flow out and both hydraulic motors 7.8 are at maximum volume and the wheels 3.4
exerts an equivalent driving torque on Further, the differential function during cornering and the like is handled by changing the flow rate state of the fluid discharged from the hydraulic pump 2 flowing into both hydraulic motors 7.8 through the hydraulic circuit 9. Then, right wheel 3
If the valve slips and spins idly, the pressure drop at the orifice portion 13 becomes larger than that at the orifice portion 14, and the pressure in the pressure chamber 16 becomes relatively higher than that in the pressure chamber 15, causing the control valve 20 to move to the right. let As a result, the control pressure p is introduced into the actuator 21, and the capacity of the hydraulic motor 7 is shifted in a decreasing direction, so that the driving torque for the wheels 3 is reduced. For this reason, slippage is easily suppressed. When the slip subsides, the pressure drop at the orifice portion 13 gradually decreases and the pressure chamber 15 gradually becomes the same pressure as the pressure chamber 16, so the control valve 20
moves to the left toward the neutral position, and when the actuator 21 completely returns to the neutral position, the control pressure p introduced into the actuator 21 disappears, and the hydraulic motor 7 again reaches its maximum displacement, reaching the same level as the hydraulic motor 8. Restore drive torque. Also, contrary to the above, if the left wheel 4 slips and spins, the pressure drop at the orifice portion 14 will be larger than that at the orifice portion 13, and the pressure chamber 15 will be relatively smaller than the pressure chamber 16. The high pressure causes the control valve 20 to move to the left. As a result, the control pressure p is introduced into the actuator 22, and the capacity of the hydraulic motor 8 is shifted in a decreasing direction, so that the driving torque for the wheels 4 is reduced. For this reason, slippage is easily suppressed. When the slip subsides, the pressure drop at the orifice portion 14 gradually decreases, and the pressure horn chamber 16 gradually becomes the same pressure as the pressure chamber 15.
The control valve 20 moves to the right toward the neutral position, and when the control valve 20 completely returns to the neutral position, the control pressure introduced into the actuator 22 disappears, and the hydraulic motor 8 becomes the maximum displacement again, and the hydraulic motor 7 Restores equivalent drive torque. In these operations, the rate of volume shift due to idle rotation is adjusted through the elastic modulus of each spring 25, 26, 27, 28.

しかして、このように構成される図示装置によると、適
正なデファレンシャル機能が確保され通常走行を支障な
(行い得るとともに、車輪3.4がスリップした場合に
も自動的に空転防止機能が働くのでスリップは有効に解
消され、逸早く通常走行状態に復帰し得るものとなる。
According to the illustrated device configured in this manner, a proper differential function is ensured and normal driving is not hindered, and even if the wheels 3.4 slip, the slip prevention function is automatically activated. Slips are effectively eliminated and normal driving conditions can be quickly restored.

しかも、その空転防止機能は、従来のデフロック機構に
比べて構成が簡略である上に、単に差動を中止するに止
どまらず積極的にトルク配分を変化させることによって
対処するものであるため、スリップからより効果的に脱
出することが可能となる。
Moreover, its anti-slip mechanism has a simpler structure than conventional differential lock mechanisms, and is handled by proactively changing the torque distribution rather than simply canceling the differential. Therefore, it becomes possible to escape from the slip more effectively.

なお、このような液圧駆動装置は四輪駆動車両にも適用
することができる。第3図はその一例を示しており、エ
ンジン31により駆動される液圧ポンプ32と、前輪3
3の車軸34および後輪35の車軸36にそれぞれデフ
ァレンシャル・ギヤ37.38を介して結合された可変
容量形液圧モータ39.40と、これらの液圧モータ3
9.40に前記液圧ポンプ32からの吐出液を送給する
液圧回路41と、前記実施例と同様の構成による検出手
段(図示省略)並びに制御手段42とから構成されてい
るものであって、前・後輪33.34に適時適切にトル
ク分配することができ、スリップからの早期脱出も有効
に果たし得るものとなる。また、四輪について各々独立
に液圧モータを設け、個々に空転を検出して容量制御す
ることもできる。さらに、検出手段や制御手段の構成は
図示例のものに限定されるものではなく、本発明の趣旨
を逸脱しない範囲で種々変形が可能である。
Note that such a hydraulic drive device can also be applied to a four-wheel drive vehicle. FIG. 3 shows an example, in which a hydraulic pump 32 driven by an engine 31 and a front wheel 3
Variable displacement hydraulic motors 39.40 are coupled to the axle 34 of the rear wheel 3 and the axle 36 of the rear wheel 35 via differential gears 37.38, respectively, and these hydraulic motors 3
9.40, it is composed of a hydraulic circuit 41 for feeding the liquid discharged from the hydraulic pump 32, and a detection means (not shown) and a control means 42 having the same configuration as in the above embodiment. As a result, torque can be distributed to the front and rear wheels 33, 34 in a timely and appropriate manner, and early escape from slippage can be effectively achieved. It is also possible to independently provide hydraulic motors for each of the four wheels, and individually detect idling and control the capacity. Further, the configurations of the detection means and control means are not limited to those shown in the drawings, and various modifications can be made without departing from the spirit of the present invention.

[発明の効果] 本発明の液圧駆動装置は、以上説明したように、液圧式
伝動系を通じてデファレンシャル機能を適切に発揮させ
ることができるとともに、車軸が空転した場合に従来の
デフロツタ機描に比べてよりより有効な空転防止機能を
自動的に発揮させることができ、その構成もコンパクト
化することができる。このため、この装置を車両に適用
すれば、車輪の空転を未然に防止又は早期解消して走行
安定性を向上させ、軽量化し、タイヤ摩耗量を低減する
等の優れた効果を上げることが可能になる。
[Effects of the Invention] As explained above, the hydraulic drive device of the present invention is able to properly perform the differential function through the hydraulic transmission system, and when the axle is idling, the hydraulic drive device of the present invention is able to properly perform the differential function. Therefore, a more effective anti-slip function can be automatically exerted, and the configuration can be made more compact. Therefore, if this device is applied to vehicles, it will be possible to prevent or quickly eliminate wheel spin, improve running stability, reduce weight, and reduce tire wear, among other excellent effects. become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示し、第1図
は液圧駆動装置を搭載した後輪駆動車両の模式図、第2
図は概略的な回路図である。第3図は本発明を四輪駆動
車両に適用した他の実施例を示す第1図に対応する模式
図である。 1.31・・・エンジン 2.32・・・液圧ポンプ 5.6.34.36・・・車軸 7.8.39.40・・・可変容量形液圧モータ9.4
1・・・液圧回路 17.18・・・検出手段 11.42・・・制御手段
1 and 2 show one embodiment of the present invention, FIG. 1 is a schematic diagram of a rear wheel drive vehicle equipped with a hydraulic drive device, and FIG.
The figure is a schematic circuit diagram. FIG. 3 is a schematic diagram corresponding to FIG. 1 showing another embodiment in which the present invention is applied to a four-wheel drive vehicle. 1.31... Engine 2.32... Hydraulic pump 5.6.34.36... Axle 7.8.39.40... Variable displacement hydraulic motor 9.4
1... Hydraulic pressure circuit 17.18... Detection means 11.42... Control means

Claims (1)

【特許請求の範囲】[Claims] エンジンにより駆動される液圧ポンプと、差動をとるべ
き複数の車軸にそれぞれ結合された可変容量形液圧モー
タと、これらの液圧モータに前記液圧ポンプからの吐出
液を送給する液圧回路とを備えた液圧駆動装置において
、前記各車軸の空転を検出する検出手段と、この検出手
段を通じて空転状態を検出された車軸に結合されている
液圧モータの容量を減少方向にシフトする制御手段とを
設けたことを特徴とする液圧駆動装置。
A hydraulic pump driven by an engine, variable displacement hydraulic motors each connected to a plurality of axles that should be differentially driven, and a fluid that supplies discharged fluid from the hydraulic pump to these hydraulic motors. a hydraulic drive device comprising: a detection means for detecting idling of each axle; and a hydraulic motor coupled to an axle for which idling is detected through the detection means, and a displacement of the hydraulic motor coupled to the axle is shifted in a direction to decrease the capacity of the hydraulic motor. A hydraulic drive device, characterized in that it is provided with a control means for controlling.
JP28407789A 1989-10-31 1989-10-31 Hydraulic driving device Pending JPH03144167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28407789A JPH03144167A (en) 1989-10-31 1989-10-31 Hydraulic driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28407789A JPH03144167A (en) 1989-10-31 1989-10-31 Hydraulic driving device

Publications (1)

Publication Number Publication Date
JPH03144167A true JPH03144167A (en) 1991-06-19

Family

ID=17673971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28407789A Pending JPH03144167A (en) 1989-10-31 1989-10-31 Hydraulic driving device

Country Status (1)

Country Link
JP (1) JPH03144167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372149A (en) * 2001-06-13 2002-12-26 Howa Mach Ltd Hydraulic circuit for hydraulically driven vehicle
WO2007052692A1 (en) * 2005-11-02 2007-05-10 Hitachi Construction Machinery Co., Ltd. Travel control device for working vehicle and working vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372149A (en) * 2001-06-13 2002-12-26 Howa Mach Ltd Hydraulic circuit for hydraulically driven vehicle
WO2007052692A1 (en) * 2005-11-02 2007-05-10 Hitachi Construction Machinery Co., Ltd. Travel control device for working vehicle and working vehicle
JP2007127174A (en) * 2005-11-02 2007-05-24 Hitachi Constr Mach Co Ltd Apparatus and method for controlling travelling motion of working vehicle
US8585156B2 (en) 2005-11-02 2013-11-19 Hitachi Construction Machinery Co., Ltd. Travel control device for work vehicle and work vehicle

Similar Documents

Publication Publication Date Title
US4973296A (en) Apparatus for driving a pair of motor vehicle road wheels
JPH05131857A (en) Drive unit for vehicle
JPS588434A (en) Change-over controller of four-wheel drive vehicle
JPH0891194A (en) Anti-skid control device for four-wheel drive car
JPH03144167A (en) Hydraulic driving device
JPH1044803A (en) Hydraulic four-wheel drive vehicle
JPH0457525B2 (en)
JPS63258223A (en) Four-wheel driving system
JP3565566B2 (en) Driving force distribution device for four-wheel drive vehicles
KR101187482B1 (en) Device for driving 4 wheel using motor having limited slip differential function
JPH0558317A (en) Power steering device
JP3430754B2 (en) Four-wheel drive vehicles
JPH0435367B2 (en)
JPH0440976Y2 (en)
JPS6361632A (en) All-wheel-drive coupling device
JPH05169996A (en) Four-wheel drive vehicle
JP3593785B2 (en) Four-wheel drive vehicles
JP2629364B2 (en) Vehicle drive torque distribution device
KR0124340Y1 (en) Travel driving apparatus for heavy equipment
JPH0511061Y2 (en)
JP3904630B2 (en) Four-wheel drive vehicle
JPH05104971A (en) Vehicle driving device
JP2965600B2 (en) Driving force transmission device for four-wheel drive vehicles
JPS6365533B2 (en)
JPH05139174A (en) Vehicle driving device