JPH03142855A - Manufacture of dielectric isolated substrate - Google Patents

Manufacture of dielectric isolated substrate

Info

Publication number
JPH03142855A
JPH03142855A JP28130389A JP28130389A JPH03142855A JP H03142855 A JPH03142855 A JP H03142855A JP 28130389 A JP28130389 A JP 28130389A JP 28130389 A JP28130389 A JP 28130389A JP H03142855 A JPH03142855 A JP H03142855A
Authority
JP
Japan
Prior art keywords
substrate
film
voltage
supporting substrate
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28130389A
Other languages
Japanese (ja)
Inventor
Motomori Miyajima
基守 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28130389A priority Critical patent/JPH03142855A/en
Publication of JPH03142855A publication Critical patent/JPH03142855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To improve the reliability of bonding by polishing and flattening the surface of a filling material, overlapping a supporting substrate on the material, applying a voltage across a semiconductor substrate and the supporting substrate, and performing heat treatment. CONSTITUTION:A polycrystalline silicon film 15 is deposited until element isolating grooves 13 are filled up. The surface of the film is polished and flattened. A supporting substrate 17 which has a thermal oxide film 16 and comprises a silicon substrate is otherwise prepared. The supporting substrate 17 is overlapped on the surface of the flattened polycrystalline silicon film 15, and the substrate and the film and bonded. That is, the devices are heated to 1,100 deg.C at the temperature rising speed of 100-200 deg.C/min. by using a heater 18 under the reduced pressure or of, e.g. 1-5Torr. During the temperature rising, a pulse-shaped voltage of 200-500V is applied from a voltage source 19 that is connected between the silicon substrate 11 and the supporting substrate 17. Thereafter, heat treatment is performed for about one hour at 1,000-1,100 deg.C in inactive gas atmosphere. The electrostatic attracting force generated between both substrates by the application of the voltage enhances the adhesion between both substrates, and the reliability of the bonding by the heat treatment is improved.

Description

【発明の詳細な説明】 〔概 要〕 誘電体分離基板の製造方法に関し、 支持基板と半導体基板の密1着性を静電引力によって改
善し接着の信頼性を向上させることを目的とし、 半導体基板に素子分離溝を形成する工程と、全面に絶縁
膜を堆積し該絶縁膜に選択的に開口部を形成する工程と
、この上に該素子分離溝を埋め込むまでシリコン膜ある
いは導電性物質からなる充填物質を堆積し該開口部にお
いて該半導体基板と該充填物質を接触させる工程、また
は、素子分離溝を絶縁物質で埋め込んだ後この上にシリ
コン膜あるいは導電性物質からなる充填物質を堆積し該
開口部において該半導体基板と該充填物質を接触させる
工程と、該充電物質表面を研磨して平坦化する工程と、
この上に支持基板あるいは絶縁膜の形成された支持基板
を重ね合わせて該半導体基板と該支持基板の間に電圧を
印加しつつ熱処理することにより該充填物質と該支持基
板を接着する工程を含むように構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a dielectric separation substrate, the purpose is to improve the close adhesion between a supporting substrate and a semiconductor substrate by electrostatic attraction, and to improve the reliability of adhesion. A step of forming an isolation trench in the substrate, a step of depositing an insulating film on the entire surface and selectively forming an opening in the insulating film, and a step of depositing a silicon film or a conductive material on top of this until the device isolation trench is filled. A step of depositing a filling material consisting of a silicon film or a conductive material and bringing the semiconductor substrate into contact with the filling material in the opening, or filling an element isolation trench with an insulating material and then depositing a filling material made of a silicon film or a conductive material thereon. a step of bringing the semiconductor substrate into contact with the filling material in the opening; and a step of polishing and planarizing the surface of the charging material.
The step includes the step of overlaying a support substrate or a support substrate on which an insulating film is formed and heat-treating the semiconductor substrate and the support substrate while applying a voltage between the semiconductor substrate and the support substrate to bond the filling material and the support substrate. Configure it as follows.

〔産業上の利用分野〕[Industrial application field]

本発明は誘電体分離基板の製造方法に関する。 The present invention relates to a method for manufacturing a dielectric isolation substrate.

半導体ICの素子間分離のために通常用いられるpn接
合は簡単なプロセスで形成できる利点がある反面、耐圧
が低くかつ寄生トランジスタ作用を有する等の問題があ
ってその応用が制限される。
Although a pn junction, which is commonly used for isolation between elements of semiconductor ICs, has the advantage of being formed by a simple process, it has problems such as low breakdown voltage and parasitic transistor action, which limit its application.

誘電体分離には上述のような欠点がなく、たとえば電話
交換機用の高耐圧ICあるいはCMO3等へ用いられて
いるが、プロセスが複雑となり信頼性に欠けるという問
題が残されている。
Dielectric separation does not have the above-mentioned drawbacks and is used, for example, in high-voltage ICs for telephone exchanges or CMO3, but the problem remains that the process is complicated and reliability is lacking.

〔従来の技術〕 第6図(a)〜(d)は従来例にかかる誘電体分離基板
の製造方法を示す工程断面図である。
[Prior Art] FIGS. 6(a) to 6(d) are process cross-sectional views showing a method of manufacturing a dielectric isolation substrate according to a conventional example.

まず同図(a)に示すように、シリコン基板11に素子
分離溝13を形成した後、全面に熱酸化膜12を形成す
る。ついで同図(ハ)に示すように、通常のCVD法を
用いて素子分離溝13を埋め込むまで多結晶シリコン膜
15を堆積した後、表面を研磨して平坦化する。ついで
同図(C)に示すように、表面に熱酸化膜16の形成さ
れたシリコン基板からなる支持基板17を上記の多結晶
シリコン膜15に重ね合わせヒータ1日により加熱して
接着させる。この際、シリコン基板11あるいは支持基
板17の反りのために、上述のように単に重ね合わせた
だけでは密着性が悪く熱処理による接着が不充分となる
。そのため、シリコン基板11と支持基板17の間に電
圧源19により直流あるいはパルス状の電圧を印加し、
その間に働く静電引力によって両基板間の密着性を改善
し接着の信頼性を向上させる。ついで同図(d)に示し
たように、熱酸化膜12の一部が露出するまでシリコン
基板11を研磨し島状の単結晶シリコン層llaを形成
する0以上の工程により、熱酸化膜12で互いに分離さ
れかつ多結晶シリコン膜15を接着材として支持基板1
7で支持された誘電体分離基板を得ることができる。
First, as shown in FIG. 2A, after forming an element isolation groove 13 in a silicon substrate 11, a thermal oxide film 12 is formed on the entire surface. Next, as shown in FIG. 3C, a polycrystalline silicon film 15 is deposited using the usual CVD method until it fills the element isolation trench 13, and then the surface is polished and planarized. Next, as shown in FIG. 2C, a support substrate 17 made of a silicon substrate having a thermal oxide film 16 formed on its surface is superimposed on the polycrystalline silicon film 15 and heated with a heater for bonding. At this time, due to the warpage of the silicon substrate 11 or the support substrate 17, simply stacking them as described above results in poor adhesion and insufficient adhesion by heat treatment. Therefore, a DC or pulsed voltage is applied between the silicon substrate 11 and the support substrate 17 by the voltage source 19,
The electrostatic attraction that acts between them improves the adhesion between the two substrates and improves the reliability of the bond. Next, as shown in FIG. 2D, the silicon substrate 11 is polished until a part of the thermal oxide film 12 is exposed to form an island-shaped single crystal silicon layer lla. The supporting substrate 1 is separated from each other by using the polycrystalline silicon film 15 as an adhesive.
A dielectric isolation substrate supported by 7 can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の印加電圧によりシリコン基板11と支持基板17
の間に働く静電引力は、両基板間の間隔が小さいほど強
くなり支持基板17と多結晶シリコン膜15の密着性は
向上する。上記両基板の間隔は第6図(C)に示した多
結晶シリコン膜15の厚みtを零にしたときに最小とな
り、このときに静電引力は最も強くなる。しかし素子分
離溝のある領域では他の領域に比べて素子分離溝の深さ
分だけシリコン基板11と支持基板17の間隔が離れて
おり、その間の静電引力は小さい。しかも通常は、シリ
コン基板11上で素子分離溝の占める面積の割合が大き
いため、静電引力の平均値は小さくなり、結局、密着性
が悪くなるという問題がある。
The above applied voltage causes the silicon substrate 11 and the support substrate 17 to
The smaller the distance between the two substrates, the stronger the electrostatic attraction acting between them becomes, and the adhesion between the supporting substrate 17 and the polycrystalline silicon film 15 improves. The distance between the two substrates becomes the minimum when the thickness t of the polycrystalline silicon film 15 shown in FIG. 6C becomes zero, and the electrostatic attraction becomes the strongest at this time. However, in the area where the element isolation groove exists, the distance between the silicon substrate 11 and the support substrate 17 is greater than that in other areas by the depth of the element isolation groove, and the electrostatic attraction between them is small. Furthermore, since the element isolation trench usually occupies a large proportion of the area on the silicon substrate 11, the average value of electrostatic attraction becomes small, resulting in a problem of poor adhesion.

そこで本発明は、支持基板と半導体基板の密着性を静電
引力によって改善し接着の信頼性を向上させることを目
的とする。
Accordingly, an object of the present invention is to improve the adhesion between a support substrate and a semiconductor substrate using electrostatic attraction, thereby improving the reliability of adhesion.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、半導体基板に素子分離溝を形成する
工程と、全面に絶縁膜を堆積し該絶縁膜に選択的に開口
部を形成する工程と、この上に該素子分離溝を埋め込む
までシリコン膜あるいは導電性物質からなる充填物質を
堆積し該開口部において該半導体基板と該充填物質を接
触させる工程と、該充電物質表面を研磨して平坦化する
工程と、この上に支持基板あるいは絶縁膜の形成された
支持基板を重ね合わせて該半導体基板と該支持基板の間
に電圧を印加しつつ熱処理することにより該充填物質と
該支持基板を接着する工程を含むことを特徴とする誘電
体分離基板の製造方法、あるいは、上記誘電体分離基板
の製造方法において、素子分離溝を絶縁物質で埋め込ん
だ後この上にシリコン膜あるいは導電性物質からなる充
填物質を堆積し該開口部において該半導体基板と該充填
物質を接触させる工程を含むことを特徴とする誘電体分
離基板の製造方法によって達成される。
The solution to the above problem involves the steps of forming an isolation trench in a semiconductor substrate, depositing an insulating film over the entire surface, selectively forming an opening in the insulating film, and burying the isolation trench on top of this. A step of depositing a filling material made of a silicon film or a conductive material and bringing the semiconductor substrate into contact with the filling material in the opening, a step of polishing and planarizing the surface of the charging material, and a step of depositing a supporting substrate or A dielectric characterized by comprising the step of stacking supporting substrates on which insulating films are formed and bonding the filling material and the supporting substrate by applying a voltage between the semiconductor substrate and the supporting substrate and performing heat treatment. In the method for manufacturing a body isolation substrate or the above method for manufacturing a dielectric isolation substrate, an element isolation trench is filled with an insulating material, and then a filling material made of a silicon film or a conductive material is deposited thereon, and a filling material made of a silicon film or a conductive material is deposited on the trench. This is achieved by a method for manufacturing a dielectric isolation substrate, which includes the step of bringing a semiconductor substrate into contact with the filling material.

〔作 用〕[For production]

本発明では、開口部を介して半導体基板と充填物質を導
通させている。従って、半導体基板と支持基板の間に電
圧を印加した際、静電引力は充填物質の厚みとは無関係
に充填物質と支持基板との間の絶縁膜あるいは空隙のみ
を介して働くことになり、従来に比べて静電引力が強く
なる。そのため、充填物質と支持基板の間の密着性が向
上する。
In the present invention, the semiconductor substrate and the filling material are electrically connected through the opening. Therefore, when a voltage is applied between the semiconductor substrate and the support substrate, electrostatic attraction acts only through the insulating film or gap between the filling material and the support substrate, regardless of the thickness of the filling material. Electrostatic attraction is stronger than before. Therefore, the adhesion between the filling material and the support substrate is improved.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示す工程断面図である
FIG. 1 is a process sectional view showing a first embodiment of the present invention.

まず同図(a)に示すように、シリコン基板11に通常
のフォトリソグラフィを用いて素子分離溝13を形成し
、酸化性雰囲気中で熱処理を行って熱酸化膜12を形成
する。続いて、熱酸化膜12を選択的にエツチングし開
口部14を形成する。開口部14は後の素子形成工程に
おいて素子の形成されない場所、たとえばスクライプ線
領域等に形成する。ついで同図(ロ)に示すように、C
VD法により素子分離溝13が埋め込まれるまで多結晶
シリコン膜15を堆積し、その表面を研磨して平坦化す
る。ついで同図(C)に示すように、平坦化された多結
晶シリコン膜15の表面に、熱酸化膜16を有する別に
用意したシリコン基板からなる支持基板17を重ね合わ
せて以下のような方法で接着する。なお、熱酸化膜16
の形成されていないシリコン基板を支持基板として用い
ることもできる゛が、この場合にも多結晶シリコン膜1
5と支持基板17はシリコン基板11あるいは支持基板
17の僅かな反りによって生じる空隙で絶縁されている
First, as shown in FIG. 2A, element isolation grooves 13 are formed in a silicon substrate 11 using ordinary photolithography, and a thermal oxide film 12 is formed by heat treatment in an oxidizing atmosphere. Subsequently, the thermal oxide film 12 is selectively etched to form an opening 14. The opening 14 is formed in a location where no device will be formed in a subsequent device formation step, such as a scribe line region. Then, as shown in the same figure (b), C
A polycrystalline silicon film 15 is deposited by the VD method until the element isolation groove 13 is filled, and its surface is polished and planarized. Next, as shown in FIG. 2C, a support substrate 17 made of a separately prepared silicon substrate having a thermal oxide film 16 is superimposed on the surface of the flattened polycrystalline silicon film 15, and the support substrate 17 is formed by the following method. Glue. Note that the thermal oxide film 16
It is also possible to use a silicon substrate on which no polycrystalline silicon film 1 is formed as a supporting substrate.
5 and the support substrate 17 are insulated by a gap created by slight warping of the silicon substrate 11 or the support substrate 17.

接着を行うためには、1〜5 Torrの減圧下におい
てヒーター18を用いて100〜b 速度で1100°Cまで加熱する。そして、この昇温中
に同図(C)に見られるように、シリコン基板11と支
持基板17との間に接続さた電圧源19から、200〜
500 Vのパルス状電圧を印加する。その後不活性ガ
ス雰囲気中で1000〜1100℃、約1時間の熱処理
を行う。以上のような電圧印加によって両基板間に生じ
る静電引力が両基板の密着性を高め熱処理による接着の
信頼性を向上させるものである。この際、半導体基板1
1は開口部14を通して多結晶シリコン膜15と接続さ
れているため、上記電圧は多結晶シリコンM15と支持
基板17との間に加わることになる。従って、多結晶シ
リコン膜15と支持基板17との間には従来に比べて強
い静電引力が働き、接着の信頼性が向上する。また、以
上の構成では、多結晶シリコン膜15と支持基板17と
の間の絶縁膜16あるいは空隙が上記印加電圧によって
絶縁破壊されてもその後の素子製作工程にはなんらの影
響をも及ぼさない、従って、大きな電圧を印加して静電
引力をより強めることも可能である。しかし従来例の構
成では、絶縁膜12に電圧が加わるため過大な印加電圧
によって絶縁破壊が生じた場合には素子分離機能が損な
われる。従って、印加電圧の大きさが制限されていた。
To perform the bonding, heating is performed to 1100° C. at a rate of 100-b using a heater 18 under a reduced pressure of 1-5 Torr. During this temperature rise, as shown in FIG.
A pulsed voltage of 500 V is applied. Thereafter, heat treatment is performed at 1000 to 1100° C. for about 1 hour in an inert gas atmosphere. The electrostatic attraction generated between the two substrates by the voltage application as described above increases the adhesion between the two substrates and improves the reliability of adhesion by heat treatment. At this time, the semiconductor substrate 1
Since M1 is connected to polycrystalline silicon film 15 through opening 14, the above voltage is applied between polycrystalline silicon M15 and support substrate 17. Therefore, a stronger electrostatic attraction force acts between the polycrystalline silicon film 15 and the support substrate 17 than in the past, and the reliability of adhesion is improved. Furthermore, in the above configuration, even if the insulation film 16 or the gap between the polycrystalline silicon film 15 and the support substrate 17 is dielectrically broken down by the applied voltage, the subsequent device manufacturing process is not affected in any way. Therefore, it is also possible to apply a large voltage to further strengthen the electrostatic attraction. However, in the conventional structure, since a voltage is applied to the insulating film 12, if dielectric breakdown occurs due to an excessively applied voltage, the element isolation function is impaired. Therefore, the magnitude of the applied voltage has been limited.

なお、多結晶シリコン膜は不純物がドープされていない
場合に常温では絶縁性を有するが、上記熱処理温度のも
とでは導電性を有するようになり、電圧は多結晶シリコ
ン膜15と支持基板17の間に印加される。
Note that the polycrystalline silicon film has insulating properties at room temperature when it is not doped with impurities, but becomes conductive at the above heat treatment temperature, and the voltage is applied between the polycrystalline silicon film 15 and the supporting substrate 17. applied in between.

ついで同図(イ)に示したように、熱酸化膜12の一部
が露出するまでシリコン基板11を研磨すると、シリコ
ン基板11が互いに分離されて単結晶シリコン層11a
が形成される。その後、この単結晶シリコン層り1a内
に素子を形成する。
Next, as shown in FIG. 12A, the silicon substrate 11 is polished until a part of the thermal oxide film 12 is exposed, and the silicon substrates 11 are separated from each other to form a single crystal silicon layer 11a.
is formed. Thereafter, elements are formed within this single crystal silicon layer 1a.

次に、第2図〜第5図は上記第1の実施例の一部工程を
変更した他の実施例を示す断面図である。
Next, FIGS. 2 to 5 are sectional views showing other embodiments in which some steps of the first embodiment are changed.

いずれも第1図(d)に対応する誘電体分離基板の構造
を示しており、同図と同一機能を有するものには同一番
号を付した。
Each shows the structure of a dielectric isolation substrate corresponding to FIG. 1(d), and parts having the same functions as those in FIG. 1(d) are given the same numbers.

第2図に示した第2の実施例では、素子分離溝内のみを
PSG等の絶縁物質15aで埋め込んだ後、この上に多
結晶シリコン膜15を堆積させたものであり、その他の
工程は第1図と同様である。
In the second embodiment shown in FIG. 2, only the inside of the element isolation trench is filled with an insulating material 15a such as PSG, and then a polycrystalline silicon film 15 is deposited thereon, and other steps are not performed. It is similar to FIG.

第3図に示した第3の実施例では、絶縁物質15aを素
子分離溝を含む全面に堆積しこの絶縁物質15aに開口
部14を形成する。ついで多結晶シリコン膜15を堆積
したものである。その他の工程は第1図と同様である。
In the third embodiment shown in FIG. 3, an insulating material 15a is deposited over the entire surface including the isolation trenches, and an opening 14 is formed in the insulating material 15a. A polycrystalline silicon film 15 is then deposited. The other steps are the same as those shown in FIG.

第4図に示した第4の実施例では、半導体基板11に通
常の熱酸化法によりtocos酸化12aを形成するこ
とによって素子分離溝を形成したものであり、その他の
工程は第1図と同様である。この実施例では、浅い素子
分離溝を高精度で形成することができるためCMO3I
C等のMOS)ランジスタを含むICの製造に適してい
る。
In the fourth embodiment shown in FIG. 4, element isolation grooves are formed by forming TOCOS oxide 12a on a semiconductor substrate 11 by a normal thermal oxidation method, and other steps are the same as in FIG. It is. In this example, since shallow element isolation trenches can be formed with high precision, CMO3I
It is suitable for manufacturing ICs including MOS transistors such as C.

第5図に示した第5の実施例では、(100)面を有す
る半導体基板を苛性ソーダ溶液を含むエツチング液で異
方性エツチングすることによりV形状の素子分離溝を形
成したものであり、その他の工程は第1図と同様である
。この実施例では、深い素子分離溝を簡単なプロセスで
得ることができるため高耐圧ICの製造に適している。
In the fifth embodiment shown in FIG. 5, V-shaped element isolation grooves are formed by anisotropically etching a semiconductor substrate having a (100) plane with an etching solution containing a caustic soda solution. The process is the same as that shown in FIG. This embodiment is suitable for manufacturing high-voltage ICs because deep element isolation grooves can be obtained through a simple process.

以上のいずれの構造においてもシリコン基板11と多結
晶シリコン膜15が開口部14を通して接続されている
。従って、シリコン基板と支持基板の間に印加された電
圧は支持基板と多結晶シリコン膜との間に加わり、その
結果、強い静電引力が生じて接着の信頼性は向上する。
In any of the above structures, silicon substrate 11 and polycrystalline silicon film 15 are connected through opening 14. Therefore, the voltage applied between the silicon substrate and the support substrate is applied between the support substrate and the polycrystalline silicon film, resulting in a strong electrostatic attraction and improving the reliability of adhesion.

なお、上述のいずれの実施例においても多結晶シリコン
膜に不純物を添加したものを用いることもできる。また
、多結晶シリコン膜に代えて、アモルファスシリコン膜
、SiCまたは、タングステン、モリブデン等の高融点
金属膜あるいはそのシリサイドを用いることができる。
Note that in any of the embodiments described above, a polycrystalline silicon film doped with impurities can also be used. Further, instead of the polycrystalline silicon film, an amorphous silicon film, SiC, a high melting point metal film such as tungsten or molybdenum, or a silicide thereof can be used.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、支持基板の接着力が向上
し、信頼性の高い誘電体分離基板を得ることができるた
め、これを用いた高耐圧IC,CMO3IC等の半導体
装置の信頼性を向上させる上で有益である。
As described above, according to the present invention, the adhesion of the support substrate is improved and a highly reliable dielectric separation substrate can be obtained, which improves the reliability of semiconductor devices such as high voltage ICs and CMO3 ICs using the same. It is beneficial in improving the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は第1の実施例を示す工程断面図
、第2図は第2の実施例を示す断面図、 第3図は第3の実施例を示す断面図、 第4図は第4の実施例を示す断面図、 第5図は第5の実施例を示す断面1図、第6図は従来例
の問題点を示す工程断面図、である。 図において、 11はシリコン基板、 11aは多結晶シリコン層、 12は熱酸化膜、 12aはLOCO3酸化膜、 13は素子分離溝、 14は開口部、 15は多結晶シリコン膜、 15aは絶縁物質、 16は絶縁膜、 17は支持基板、 18はヒーター 19は電圧源、 である。 ’!I/)f2q列1: テデ−,yx、!L Jj 
面ffi第2の実方七イ列を示す釘面図 第 図 第3の実;)七イケ]1辷示T町面図 第 図 第、4.の実方色イタ・1 を示 イ 送部 i  間
第 図 第ぢの実施分]奢オ、す餠面図 第 図
1(a) to (d) are process sectional views showing the first embodiment, FIG. 2 is a sectional view showing the second embodiment, and FIG. 3 is a sectional view showing the third embodiment. FIG. 4 is a sectional view showing the fourth embodiment, FIG. 5 is a sectional view showing the fifth embodiment, and FIG. 6 is a process sectional view showing problems in the conventional example. In the figure, 11 is a silicon substrate, 11a is a polycrystalline silicon layer, 12 is a thermal oxide film, 12a is a LOCO3 oxide film, 13 is an element isolation trench, 14 is an opening, 15 is a polycrystalline silicon film, 15a is an insulating material, 16 is an insulating film, 17 is a supporting substrate, and 18 is a heater 19, which is a voltage source. '! I/) f2q column 1: Tede-,yx,! L Jj
A nail surface diagram showing the second real 7-A row. Shows the real square color Ita 1 of A Sending section

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板(11)に素子分離溝(13)を形成
する工程と、全面に絶縁膜(12)を堆積し該絶縁膜(
12)に選択的に開口部(14)を形成する工程と、 この上に該素子分離溝(13)を埋め込むまでシリコン
膜あるいは導電性物質からなる充填物質(15)を堆積
し該開口部(14)において該半導体基板(11)と該
充填物質(15)を接触させる工程と、 該充電物質(15)表面を研磨して平坦化する工程と、
この上に支持基板(17)あるいは絶縁膜(16)の形
成された支持基板(17)を重ね合わせて該半導体基板
(11)と該支持基板(17)の間に電圧を印加しつつ
熱処理することにより該充填物質(15)と該支持基板
(17)を接着する工程を含むことを特徴とする誘電体
分離基板の製造方法。
(1) A step of forming an element isolation trench (13) in a semiconductor substrate (11), depositing an insulating film (12) on the entire surface, and depositing the insulating film (12) on the entire surface.
12) selectively forming an opening (14) in the opening (14); depositing a filling material (15) made of a silicon film or a conductive material thereon until the element isolation trench (13) is filled; 14), a step of bringing the semiconductor substrate (11) and the filling material (15) into contact; and a step of polishing and planarizing the surface of the charging material (15).
A support substrate (17) or a support substrate (17) on which an insulating film (16) is formed is superimposed on this, and heat treatment is performed while applying a voltage between the semiconductor substrate (11) and the support substrate (17). A method for manufacturing a dielectric isolation substrate, characterized in that the method further comprises the step of bonding the filling material (15) and the supporting substrate (17).
(2)素子分離溝(13)を絶縁物質(15a)で埋め
込んだ後、この上にシリコン膜あるいは導電性物質から
なる充填物質(15)を堆積し該開口部(14)におい
て該半導体基板(11)と該充填物質(15)を接触さ
せる工程を含むことを特徴とする特許請求の範囲第1項
記載の誘電体分離基板の製造方法。
(2) After filling the element isolation trench (13) with an insulating material (15a), a filling material (15) made of a silicon film or a conductive material is deposited thereon, and the semiconductor substrate ( 11. The method of manufacturing a dielectric isolation substrate according to claim 1, further comprising the step of bringing the filling material (15) into contact with the filler material (11).
JP28130389A 1989-10-27 1989-10-27 Manufacture of dielectric isolated substrate Pending JPH03142855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28130389A JPH03142855A (en) 1989-10-27 1989-10-27 Manufacture of dielectric isolated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28130389A JPH03142855A (en) 1989-10-27 1989-10-27 Manufacture of dielectric isolated substrate

Publications (1)

Publication Number Publication Date
JPH03142855A true JPH03142855A (en) 1991-06-18

Family

ID=17637197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28130389A Pending JPH03142855A (en) 1989-10-27 1989-10-27 Manufacture of dielectric isolated substrate

Country Status (1)

Country Link
JP (1) JPH03142855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645429A (en) * 1992-07-27 1994-02-18 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645429A (en) * 1992-07-27 1994-02-18 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP3435930B2 (en) Semiconductor device and manufacturing method thereof
JPS61296709A (en) Manufacture of semiconductor
JPH0750421A (en) Mos field-effect transistor
JP2001274343A (en) Thermal conductivity enhanced semiconductor structure and its manufacturing method
US5882981A (en) Mesa isolation Refill Process for Silicon on Insulator Technology Using Flowage Oxides as the Refill Material
JPH03129765A (en) Semiconductor device and manufacture thereof
JPH0312775B2 (en)
JPH0656865B2 (en) Adhesive substrate for high voltage devices
JPH0682753B2 (en) Method for manufacturing semiconductor device
JPH03142855A (en) Manufacture of dielectric isolated substrate
JP3371121B2 (en) Semiconductor manufacturing method
KR930008994A (en) Wafer bonding technology
JPH01251635A (en) Dielectric isolation type semiconductor device
JPH04148525A (en) Soi substrate and its manufacture
JP2586422B2 (en) Method of manufacturing dielectric integrated composite integrated circuit device
JPH03180070A (en) Semiconductor device and manufacture thereof
JPH02148821A (en) Semiconductor substrate to be adhered
JPS6362252A (en) Manufacture of dielectric isolation substrate
JPH1070139A (en) Soi semiconductor device and its manufacture
JPH05267438A (en) Adhesion-type dielectric separation semiconductor substrate
JPH0645429A (en) Manufacture of semiconductor device
JP3493289B2 (en) Manufacturing method of dielectric isolation substrate
JP2811006B2 (en) Method for manufacturing semiconductor device
JP2001007341A (en) Semiconductor device and manufacture thereof
JPH04302160A (en) Manufacture of semiconductor device