JPH03142041A - Method for continuously producing complex hollow cast billet - Google Patents

Method for continuously producing complex hollow cast billet

Info

Publication number
JPH03142041A
JPH03142041A JP28070889A JP28070889A JPH03142041A JP H03142041 A JPH03142041 A JP H03142041A JP 28070889 A JP28070889 A JP 28070889A JP 28070889 A JP28070889 A JP 28070889A JP H03142041 A JPH03142041 A JP H03142041A
Authority
JP
Japan
Prior art keywords
core material
molten metal
molten
hollow
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28070889A
Other languages
Japanese (ja)
Inventor
Michio Ohashi
大橋 通男
Masahiro Yoshihara
正裕 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28070889A priority Critical patent/JPH03142041A/en
Publication of JPH03142041A publication Critical patent/JPH03142041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To continuously produce a complex hollow cast billet having stable quality by inserting a hollow core material preheated at temp. of m.p. or leas into a mold, pouring molten metal around the core material, packing cold material into hollow part of the core material at the time of making the outer surface of core material in melting condition, and drawing out. CONSTITUTION:The hollow core material 5 is preheated to the temp. having m.p. thereof or less with a bearing device 4 and continuously inserted in the mold 2 directly connected with a tundish 1, and the molten metal 3 is poured around the core material 5. When the outer surface of core material 5 in the molten metal 3 comes to molten or semi-molten state with the molten metal 3, the cold material 6 is packed into the hollow part 5' in the core material 5 to solidify the molten metal 3, and the core material 5 and the solidified shell 3' are diffused, joined and drawn out. By this method, crack at the time of solidifying and insertion of the molten metal into joined interface are prevented, and the complex hollow cast billet having stable quality is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シームレスクラツド鋼管用素材としての複合
中空鋳片の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a composite hollow slab as a material for seamless clad steel pipes.

(従来の技術及びその課題) クラツド鋼の製造方法としては、爆着法、圧延法、肉盛
溶接法及び鋳ぐるみ法が一般に知られている。
(Prior art and its problems) Generally known methods for producing clad steel include an explosion bonding method, a rolling method, an overlay welding method, and a casting method.

しかし、このうち前者の三つの方法は生産性、コスト面
でシームレスクラツド鋼管用素材の製造法としては問題
がある。
However, the former three methods have problems in terms of productivity and cost as methods for producing materials for seamless clad steel pipes.

これに対し、鋳ぐるみ法は溶湯によって異鋼種の合わせ
材を封入するものであるため、鋳造の連続化が可能で、
生産性、コスト削減等量産プロセスとしての期待は大き
く、数多くの提案が威されている。
On the other hand, the casting method uses molten metal to enclose composite materials of different steel types, so casting can be continuous.
There are great expectations for this as a mass production process in terms of productivity and cost reduction, and many proposals have been made.

例えば特開昭53−25233号公報、特開昭53−2
9229号公報、特開昭54−71039号公報に開示
された方法は、いずれも水平連続鋳造法の応用技術であ
るが、芯材挿入部の湯洩れ防止機構が実操業技術として
は実施不可能である。
For example, JP-A-53-25233, JP-A-53-2
The methods disclosed in JP-A No. 9229 and JP-A-54-71039 are applied technologies of horizontal continuous casting, but the leakage prevention mechanism of the core material insertion part is impossible to implement as an actual operation technology. It is.

また、特公昭44−4903号公報に開示された方法で
は、合わせ界面において芯材及び合わせ材とも一旦溶融
するため、合わせ界面が安定せずクラツド比確保の点で
問題がある。
Furthermore, in the method disclosed in Japanese Patent Publication No. 44-4903, since both the core material and the laminated material are once melted at the mating interface, the mating interface is not stable and there is a problem in securing the cladding ratio.

一方、鋳ぐるみ法の場合、肉盛溶接法以外では合わせ溶
湯の熱源と、凝固過程の収縮による合わせ界面の圧着に
よって接合させるものである。従って芯材と比較して合
わせ溶湯の収縮率が大きい場合には鋳造による接合(以
下rAs cast接合」という)が可能となるが、逆
に合わせ溶湯の収縮率が小さい場合にはAs cast
接合は不可能である。
On the other hand, in the case of the casting method, other than the build-up welding method, the joining is carried out by the heat source of the molten metal and the pressure bonding of the mating interface due to contraction during the solidification process. Therefore, if the shrinkage rate of the molten laminated metal is large compared to the core material, joining by casting (hereinafter referred to as rAs cast joining) is possible, but on the other hand, if the shrinkage rate of the molten laminated metal is small, As cast bonding is possible.
Bonding is not possible.

特にクラツド鋼管のように、その用途から内面すなわち
芯材側にステンレス鋼などの特殊合金を用いることが多
い場合には、鋳ぐるみ法の適用は少なくなる。更に、鋳
ぐるみ法の最大の欠点である凝固過程の収縮に起因する
割れが実用化への最大のネックとなっている。また更に
、接合部における芯材の差し込みは後の製管工程を経た
最終製品(シームレス鋼管)においても解消されず、ク
ラッド製品として品質上致命的な欠陥として問題となる
Particularly in cases such as clad steel pipes, where special alloys such as stainless steel are often used for the inner surface, that is, the core material side, the casting method is less applicable. Furthermore, cracks caused by shrinkage during the solidification process, which is the biggest drawback of the casting method, are the biggest bottleneck in putting it into practical use. Furthermore, the insertion of the core material at the joint is not eliminated even in the final product (seamless steel pipe) that has undergone the subsequent pipe manufacturing process, and it becomes a problem as a fatal defect in terms of quality as a clad product.

本発明は鋳ぐるみ法における上記したような問題点に鑑
みて威されたものであり、接合における合わせ溶湯の割
れ及び核部への芯材のさし込みを防止し、安定した品質
のクラツド鋼管用素材を連続的に製造できる方法を提供
することを目的とする。
The present invention was developed in view of the above-mentioned problems in the casting method, and prevents the cracking of the molten metal during joining and the insertion of the core material into the core, and produces clad steel pipes of stable quality. The purpose of this invention is to provide a method that can continuously produce materials for use in manufacturing.

(課題を解決するための手段) 本発明者らは上記した従来の問題点について鋭意研究・
実験を行った結果、以下の事項を知見し本発明を成立さ
せた。
(Means for Solving the Problems) The present inventors have conducted extensive research on the above-mentioned conventional problems.
As a result of conducting experiments, the following matters were discovered and the present invention was established.

合わせ溶湯の凝固収縮に起因する割れ防止策としては、
緩冷却によって初期凝固を徐々に進行させることが有効
である。
As a measure to prevent cracking caused by solidification shrinkage of molten metal,
It is effective to gradually advance the initial solidification by slow cooling.

これは、As cast接合の条件である、芯材を溶融
又は半溶融状態にすることにもつながる。
This also leads to bringing the core material into a molten or semi-molten state, which is a condition for As cast joining.

しかし、凝固の進行を遅らせて初期凝固時に発生する収
縮割れを防止しても、凝固が進行するに従ってその後の
収縮による割れの発生はさけられない。
However, even if the progress of solidification is delayed to prevent shrinkage cracks that occur during initial solidification, cracks due to subsequent shrinkage cannot be avoided as solidification progresses.

しかして、これを防止するには芯材の形状(外径)を合
わせ溶湯の凝固収縮に合わせて変化させることが必要で
ある。
In order to prevent this, it is necessary to change the shape (outer diameter) of the core material in accordance with the solidification and shrinkage of the molten metal.

すなわち、合わせ溶湯からの伝熱により加熱膨張する芯
材を冷却して収縮させることが有効である。
That is, it is effective to cool and shrink the core material, which is heated and expanded by heat transfer from the molten metal.

本発明は上記知見に基づいて成されたものであり、タン
ディシュに直結された両端開放のモールド内へ中空の芯
材を挿入しつつ前記タンディシュによって芯材の周囲に
溶湯を注入し、前記溶湯をモールド内で連続的に凝固さ
せながら間欠的もしくは連続的に引抜いて複合中空鋳片
を製造する方法であって、モールド内に挿入する芯材を
予め該芯材の溶融温度以下の温度に予熱し、この予熱し
た芯材の外表面が注入溶湯からの伝熱によって半溶融あ
るいは溶融状態となった時に芯材の中空部内に冷材を充
填することを要旨とするものである。
The present invention has been made based on the above findings, and involves inserting a hollow core material into a mold that is open at both ends and directly connected to a tundish, and injecting molten metal around the core material using the tundish. A method of manufacturing composite hollow slabs by continuously solidifying in a mold and drawing them out intermittently or continuously, in which the core material to be inserted into the mold is preheated to a temperature below the melting temperature of the core material. The gist of this method is to fill the hollow portion of the core material with a cold material when the outer surface of the preheated core material becomes semi-molten or molten due to heat transfer from the injected molten metal.

ところで、芯材の予熱温度は、芯材の大きさ(外径、内
径)、特にその肉厚によって決まるものである。しかし
、予熱温度が芯材の溶融温度以上になると芯材の形状保
持ができないことになる。
By the way, the preheating temperature of the core material is determined by the size (outer diameter, inner diameter) of the core material, especially its wall thickness. However, if the preheating temperature exceeds the melting temperature of the core material, the shape of the core material cannot be maintained.

そこで、本発明では芯材の予熱温度を溶融温度以下とし
ている。
Therefore, in the present invention, the preheating temperature of the core material is set to be lower than the melting temperature.

(実 施 例) 以下本発明方法を第1図〜第3図に基づいて説明する。(Example) The method of the present invention will be explained below based on FIGS. 1 to 3.

第1図において、1はタンディシュ、2はこのタンディ
シュ1の下流側に直結されたモールドであり、これらタ
ンディシュ1とモールド2内に供給された溶湯3中に加
熱装置4によって溶融温度以下の温度に予熱された中空
の芯材5が連続的に挿入される。
In FIG. 1, 1 is a tundish, and 2 is a mold directly connected to the downstream side of the tundish 1. The molten metal 3 supplied into the tundish 1 and the mold 2 is heated to a temperature below the melting temperature by a heating device 4. Preheated hollow core material 5 is continuously inserted.

この時の合わせ界面の温度変化を第1図及び第3図に基
づいて説明する。
The temperature change at the mating interface at this time will be explained based on FIGS. 1 and 3.

先に述べたように、芯材5は加熱装置4でその表面温度
@が溶融温度以下の任意の温度■点になるまで加熱され
て溶湯3中に挿入される(第3図Φ)。そして、溶湯3
中に挿入された芯材5は、溶湯3からの伝熱により、芯
材5の溶融又は半溶融温度0点まで昇温し、この温度域
Oで固相一液相界面が形成され拡散接合する。
As mentioned above, the core material 5 is heated by the heating device 4 until its surface temperature reaches an arbitrary temperature point 2 below the melting temperature, and then inserted into the molten metal 3 (FIG. 3 Φ). And molten metal 3
The core material 5 inserted therein is heated to its melting or semi-melting temperature 0 point by heat transfer from the molten metal 3, and in this temperature range O, a solid phase-liquid phase interface is formed and diffusion bonding is performed. do.

この後に芯材5の中空部5°に冷材6を充填して芯材5
を冷却しく第3図の@)、凝固シェル3゛と同じ収縮方
向に形状変化を促進させる。
After this, the hollow part 5 of the core material 5 is filled with the cold material 6, and the core material 5
The solidified shell 3' is cooled to promote shape change in the same direction of contraction as the solidified shell 3'.

一方、前記したように予熱して溶湯3内に挿入された芯
材5との合わせ界面の溶湯3の温度Oは、芯材5側への
伝熱によって冷却され、芯材5の表面温度0点に相当す
るまで降温し、初期凝固が進行する領域となる。
On the other hand, the temperature O of the molten metal 3 at the mating interface with the core material 5 which has been preheated and inserted into the molten metal 3 as described above is cooled by heat transfer to the core material 5 side, and the surface temperature of the core material 5 is 0. The temperature decreases to a point corresponding to this point, and this becomes the region where initial solidification progresses.

この初期凝固領域を第2図の模式図で説明すると、従来
の鋳ぐるみ法では、第2図中に破線Oで示すように、初
期凝固シェル3゛の形成は急速に進行するが、本発明方
法では芯材5は予熱されているため、第2図中に曲線■
で示すように、凝固は徐々に進行する。すなわち、いわ
ゆる緩冷却させる領域のであり、この領域ので芯材5と
凝固シェル3゛は拡散接合する。
To explain this initial solidification region using the schematic diagram in FIG. 2, in the conventional casting method, the formation of the initial solidification shell 3' progresses rapidly as shown by the broken line O in FIG. 2, but in the present invention In this method, the core material 5 is preheated, so the curve ■
As shown in , coagulation progresses gradually. That is, this is a so-called slow cooling region, and in this region, the core material 5 and the solidified shell 3' are diffusion bonded.

そして、その後に芯材5の中空部5゛に弱打6を・充填
するのであるが、この弱打6の充填により、芯材5は冷
却による収縮方向への形状変化を促進される。この効果
に加えて、芯材5の内、外径差すなわち肉厚が小さくな
ると、その内面形状の保持が困難となったり、また完全
に溶融してしまうことが考えられるが弱打6の充填はこ
れらを防止する役目も果たす。
Thereafter, the hollow part 5'' of the core material 5 is filled with the weak rams 6, and the filling of the rams 6 promotes the shape change of the core material 5 in the direction of contraction due to cooling. In addition to this effect, if the difference between the inner and outer diameters of the core material 5, that is, the wall thickness becomes smaller, it may become difficult to maintain the inner shape or it may completely melt. also plays a role in preventing these.

次に本発明方法の実施結果を、比較方法を実施した結果
と併せて説明する。
Next, the results of implementing the method of the present invention will be explained together with the results of implementing the comparative method.

以下の実施例、比較例ともに複合シームレス鋼管の素材
(素管)を対象に製造したものでビレットサイズは20
8 φ師で、鋼種は挿入芯材がステンレス鋼、鋳ぐるみ
溶鋼は低炭素鋼である。
Both the following examples and comparative examples were manufactured using composite seamless steel pipe material (base pipe), and the billet size was 20.
The insert core material is stainless steel, and the cast molten steel is low carbon steel.

下記表1に実施例および比較例の鋳造条件、ならびに結
果の一欄を、表2に挿入芯材および鋳ぐるみ溶鋼に用い
たステンレス鋼と低炭素鋼の化学成分を、また表3には
芯材および鋳ぐるみ溶鋼の液相点(固相点)温度ならび
に収縮率を対比して示す。
Table 1 below lists the casting conditions and results of the Examples and Comparative Examples, Table 2 shows the chemical composition of the stainless steel and low carbon steel used for the insert core material and casting molten steel, and Table 3 shows the chemical compositions of the core material and cast molten steel. The liquidus point (solidus point) temperature and shrinkage rate of steel and casting molten steel are shown in comparison.

なお、挿入芯材予熱時はAr雰囲気で挿入芯材の酸化を
防止した。
Note that when preheating the insert core material, oxidation of the insert core material was prevented in an Ar atmosphere.

又、用いた挿入芯材は熱間製管を機械加工により外削し
たものであり、サイズは外径100 φ鴫、内径60φ
閣とした。
In addition, the insertion core material used is a hot-made pipe that has been machined and has an outer diameter of 100 φ and an inner diameter of 60 φ.
It was made into a cabinet.

実施例1) 間欠引抜きによる平均の鋳造速度は0.75m/min
で、鋳ぐるみf?1tiAのタンディシュ内注入温度は
ΔT=54°C1芯材予熱温度は950°Cで製造した
ところ、鋳ぐるみ中の合わせ界面最高到達温度は、14
20℃であった。
Example 1) Average casting speed by intermittent drawing is 0.75 m/min
So, cast animal f? The injection temperature in the tundish of 1tiA was ΔT = 54°C, and the core material preheating temperature was 950°C, and the maximum temperature reached at the mating interface in the casting was 14°C.
The temperature was 20°C.

この温度は、挿入芯材のステンレス鋼の固液共存温度域
に相当するもので、製造したビレットの合わせ界面の接
合は、はぼ完全であった。
This temperature corresponds to the solid-liquid coexistence temperature range of the stainless steel insert core material, and the bonding at the mating interface of the produced billet was almost perfect.

また、合わせ界面最高温度到達後、芯材の中空部には鋼
球を充填した。これについても、製造ビレットの合わせ
界面の割れ、ステンレス鋼の低炭素鋼側への差し込みも
皆無で本発明の狙いどうりの効果が確認された。
Further, after the maximum temperature at the mating interface was reached, the hollow part of the core material was filled with steel balls. In this regard, the intended effect of the present invention was confirmed as there was no cracking at the mating interface of the manufactured billet and no insertion of the stainless steel into the low carbon steel side.

又、充填した鋼球は鋳造後容易に排出でき、後処理で特
にコストアップにつながることはなかった。
Moreover, the filled steel balls could be easily discharged after casting, and post-processing did not particularly lead to an increase in cost.

比較例1) 挿入芯材を常温で、挿入芯材の中空部への冷材を充填せ
ずに製造した。尚、他のhj造条件は実施例1)と同一
である。
Comparative Example 1) An insert core material was manufactured at room temperature without filling the hollow part of the insert core material with a cold material. Note that the other hj construction conditions are the same as in Example 1).

鋳ぐるみ中の合わせ界面最高到達温度は1410 ’C
で実施例1)と同様に挿入芯材のステンレス鋼の固液共
存域に達しているが、到達する時間は鋳ぐるみ後、数分
を要している。
The maximum temperature reached at the mating interface in the casting is 1410'C
As in Example 1), the solid-liquid coexistence region of the stainless steel of the inserted core material was reached, but it took several minutes after casting.

製造したビレットの合わせ界面は、実施例1)とほぼ同
等の接合状況であったが、合わせ界面の炭素鋼側に割れ
が見られ、その部分にステンレス鋼が侵入している、い
わゆる°°差し込み゛が認められた。
The bonded interface of the manufactured billet had almost the same bonding condition as in Example 1), but cracks were observed on the carbon steel side of the bonded interface, and stainless steel had penetrated into that part, a so-called °° insertion.゛ was recognized.

比較例2) 挿入芯材を実施例I)と同様950″Cに予熱し、挿入
芯材の中空部への路材充填なしで製造した。
Comparative Example 2) The insert core material was preheated to 950''C in the same manner as in Example I), and the insert core material was manufactured without filling the hollow portion of the insert core material with the path material.

他の鋳造条件は実施例1)と同一である。Other casting conditions were the same as in Example 1).

製造したビレットの合わせ界面は、実施例1)と同等の
接合状況にはあるが、挿入芯材の変形が大きく、さらに
部分的に挿入芯材そのものが溶融欠落していることも確
認された。
Although the joint interface of the produced billet was in the same bonding condition as in Example 1), it was confirmed that the insertion core material was greatly deformed, and furthermore, it was confirmed that the insertion core material itself was partially melted and missing.

(発明の効果) 以上説明したように本発明方法は、鋳ぐるみ法の最大の
欠点である。凝固時の割れや合わせ界面の差し込みを防
止し、最終製品としてのシームレスクラツド鋼管の品質
安定に多大の効果をもたらすものである。
(Effects of the Invention) As explained above, the method of the present invention has the biggest drawback of the casting method. This prevents cracking during solidification and insertion at the mating interface, and has a great effect on stabilizing the quality of seamless clad steel pipes as final products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の概略説明図、第2図は本発明方法
における溶湯の凝固形態の模式図、第3図は本発明方法
における合わせ界面近傍の温度変化の一例を示す図面で
ある。 1はタンディシュ、2はモールド、3は溶湯、4は加熱
装置、5は芯材、6は冷材。 第1図 第3vA
FIG. 1 is a schematic explanatory diagram of the method of the present invention, FIG. 2 is a schematic diagram of the solidification form of molten metal in the method of the present invention, and FIG. 3 is a drawing showing an example of temperature change near the mating interface in the method of the present invention. 1 is a tundish, 2 is a mold, 3 is a molten metal, 4 is a heating device, 5 is a core material, and 6 is a cold material. Figure 1 3vA

Claims (1)

【特許請求の範囲】[Claims] (1)タンディシュに直結された両端開放のモールド内
へ中空の芯材を挿入しつつ前記タンディシュによって芯
材の周囲に溶湯を注入し、前記溶湯をモールド内で連続
的に凝固させながら間欠的もしくは連続的に引抜いて複
合中空鋳片を製造する方法であって、モールド内に挿入
する芯材を予め該芯材の溶融温度以下の温度に予熱し、
この予熱した芯材の外表面が注入溶湯からの伝熱によっ
て半溶融あるいは溶融状態となった時に芯材の中空部内
に冷材を充填することを特徴とする複合中空鋳片の連続
的製造法。
(1) While inserting a hollow core material into a mold with both ends open, which is directly connected to a tundish, molten metal is injected around the core material by the tundish, and while the molten metal is continuously solidified in the mold, intermittent or A method of manufacturing composite hollow slabs by continuous drawing, the method comprising: preheating a core material to be inserted into a mold to a temperature below the melting temperature of the core material;
A continuous manufacturing method for composite hollow slabs characterized by filling the hollow part of the core material with a cold material when the outer surface of the preheated core material becomes semi-molten or molten due to heat transfer from the injected molten metal. .
JP28070889A 1989-10-27 1989-10-27 Method for continuously producing complex hollow cast billet Pending JPH03142041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28070889A JPH03142041A (en) 1989-10-27 1989-10-27 Method for continuously producing complex hollow cast billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28070889A JPH03142041A (en) 1989-10-27 1989-10-27 Method for continuously producing complex hollow cast billet

Publications (1)

Publication Number Publication Date
JPH03142041A true JPH03142041A (en) 1991-06-17

Family

ID=17628843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28070889A Pending JPH03142041A (en) 1989-10-27 1989-10-27 Method for continuously producing complex hollow cast billet

Country Status (1)

Country Link
JP (1) JPH03142041A (en)

Similar Documents

Publication Publication Date Title
JPH06320252A (en) Manufacture of forming die having heating and cooling water line
US2438405A (en) Method for manufacturing bimetallic bodies
JPH03142041A (en) Method for continuously producing complex hollow cast billet
JP2622875B2 (en) Manufacturing method of metal parts
JP3487315B2 (en) Die casting method
JPH11320073A (en) Production of two-layered nickel-base alloy clad steel sheet by casting method
US3669179A (en) Process of bonding molten metal to preform without interfacial alloy formation
JPH0579429B2 (en)
JPH05123831A (en) Method for continuously casting composite cast billet
US1206188A (en) Method of making ingots.
JP2832691B2 (en) Thixocasting method
JP2987115B2 (en) Casting method and casting
JP3813822B2 (en) Manufacturing method of clad material with good brazing properties
JPH03133543A (en) Continuous casting method
JPH0126787B2 (en)
JPS62203640A (en) Continuous production for composite hollow billet
JPS6072654A (en) Production of composite metallic pipe
JPH0191948A (en) Method and apparatus for semi-continuously casting cast billet
JPS61111743A (en) Production of clad steel ingot
JPS63194848A (en) Continuous casting method for solid composite and hollow composite round cast billet
JPS61286044A (en) Continuous casting method for clad ingot
JPH01130860A (en) Manufacture of stainless steel cast billet for forging
JPS61103668A (en) Composite roll manufacturing device
SU602572A1 (en) Method of making bimetallic die castings
SU806240A1 (en) Method of centrifugal casting of bimetallic worm wheel