JPS63194848A - Continuous casting method for solid composite and hollow composite round cast billet - Google Patents

Continuous casting method for solid composite and hollow composite round cast billet

Info

Publication number
JPS63194848A
JPS63194848A JP2793987A JP2793987A JPS63194848A JP S63194848 A JPS63194848 A JP S63194848A JP 2793987 A JP2793987 A JP 2793987A JP 2793987 A JP2793987 A JP 2793987A JP S63194848 A JPS63194848 A JP S63194848A
Authority
JP
Japan
Prior art keywords
core material
composite
continuously
cast
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2793987A
Other languages
Japanese (ja)
Inventor
Tadashi Hirashiro
正 平城
Yasuo Sugitani
杉谷 泰夫
Michio Ohashi
大橋 通男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2793987A priority Critical patent/JPS63194848A/en
Publication of JPS63194848A publication Critical patent/JPS63194848A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously and effectively produce a solid composite or a hollow composite round cast billet by making a drawing velocity in a mold at 0.45-2.0m/min, making over-heating degree of molten metal for cast-in at 20-100 deg.C and forming under satisfying the specific condition. CONSTITUTION:While inserting the stainless steel-made solid or hollow round material 3, into both end opening mold 2 directly connecting with a tundish 1 at one end thereof, the molten carbon steel 4 is poured around the core material 3 from the tundish 1. and, while continuously solidifying the molten steel 4 in the mold 2, it is intermittently or continuously drawn. This cast billet formed by satisfying the inequality after finding etad=d/D and etat=2t/D as dimensionless parameters, in which use D for the cast billet diameter, (d) for the core material outer diameter and (t) for thickness of the core material under condition of 0.45-2.0m/min drawing velocity and 20-100 deg.C the over-heating degree of the molten steel for the cast-in.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばシームレスクラツド鋼管用素材として
の複合中実あるいは複合中空丸鋳片を連続的に製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for continuously producing composite solid or composite hollow round slabs as materials for seamless clad steel pipes, for example.

(従来の技術およびその問題点) 近年、工業技術の目まぐるしい進歩発展と社会情勢の変
化の中で、従来知られていた単独の材料では実現できな
いような各種特性を兼備した素材に対する要望が高まっ
てきており、これらの要望に応えるべく、クラフト鋼を
始めとして様々な複合材料が提案され、実用されている
(Conventional technology and its problems) In recent years, with the rapid progress and development of industrial technology and changes in social conditions, there has been an increasing demand for materials that have various characteristics that cannot be achieved with conventionally known single materials. In order to meet these demands, various composite materials including kraft steel have been proposed and put into practical use.

ところで、一般に、クラツド鋼の製造方法には爆着法、
圧延法、肉盛溶接法および鋳ぐるみ法が良く知られてい
るが、このうち前者の三つの方法は母材の表面に合わせ
材を各々の手段で接合するものであり、生産性、コスト
面でシームレスクラツド鋼管用素管の製造方法としては
問題がある。
By the way, the methods for producing clad steel generally include the explosion bonding method,
The rolling method, overlay welding method, and casting method are well known, but the former three methods involve joining the laminated material to the surface of the base material using each method, and are low in terms of productivity and cost. However, there are problems with the method of manufacturing raw pipes for seamless clad steel pipes.

これに対して、鋳ぐるみ法は、芯材を溶湯によって鋳ぐ
るみ封入することによって製造するものであり、鋳造の
連続化の可能性もあり、生産性向上、コスト低減に対す
る期待は大きい。
On the other hand, the casting method is a method of manufacturing by enclosing the core material with molten metal, and there is a possibility of continuous casting, and there are high expectations for productivity improvement and cost reduction.

従来、このような鋳ぐるみ法によって複合材料を連続的
に製造するための実用化が有望な手段として、例えば特
開昭53−29229号公報や特開昭54−71039
号公報に開示されているような方法が知られている。
Conventionally, as a promising means of practical application for continuously manufacturing composite materials by such a casting method, for example, Japanese Patent Application Laid-Open No. 53-29229 and Japanese Patent Application Laid-Open No. 54-71039 have been proposed.
A method such as that disclosed in Japanese Patent Application No.

上記各公報に記載される方法は、複合ロールや複合ビレ
ットを連続的に製造しようとするものであり、異種金属
溶湯を保持するタンディツシュの側面に連結した両端開
放水平モールド内へ、該タンディツシュの対向側面から
芯材を連続的に挿入し、該芯材の周囲に金属溶湯を凝固
・付着せしめてピンチロールで連続的に引き抜くことに
より複合材を高能率で製造しようとするものである。
The methods described in the above-mentioned publications attempt to continuously manufacture composite rolls and composite billets, and the method is to continuously manufacture composite rolls and composite billets by inserting a mold into a horizontal mold with both ends open and connected to the sides of a tundish that holds molten metal of different types. The idea is to manufacture a composite material with high efficiency by continuously inserting a core material from the side, solidifying and adhering molten metal around the core material, and continuously pulling it out with pinch rolls.

しかしながら、このような水平連続鋳造法では、芯材の
供給がタンディツシュの側面を貫通して行われる関係上
、芯材供給部の溶湯洩れ防止のために極めて複雑で高精
度の機構を要し、工業規模での実用化は極めて困難なも
のであった。
However, in such a horizontal continuous casting method, since the core material is supplied through the side of the tundish, an extremely complex and highly accurate mechanism is required to prevent molten metal from leaking from the core material supply section. Practical application on an industrial scale was extremely difficult.

一方、複合ロールの製造又は再生方法として特公昭44
−4903号公報に開示される如き手段も知られている
On the other hand, as a method for manufacturing or recycling composite rolls,
Means as disclosed in Japanese Patent No. 4903 is also known.

この特公昭44−4903号公報に示された複合ロール
の製造又は再生手段は、高周波電流を通ずる中空水冷式
銅製コイルを内蔵する耐火性加熱型の下に薄銅板を介し
て黒鉛質型と、これに続く両端開放モールドを重ねて配
置したものを使用し、これらの型の中に母体く摩耗した
ロール又は新品製造用円柱体)を垂直に挿入して降下さ
せながら高周波電流にて表面の予熱を行ってから、所望
材質の金属溶湯を母体と型との空隙に連続注入すると同
時に母体を連続降下させることによって、該母体の表面
に金属溶湯を肉盛りするものである。
The method for producing or reproducing a composite roll disclosed in Japanese Patent Publication No. 44-4903 is to use a graphite type with a thin copper plate placed under a fire-resistant heating type containing a hollow water-cooled copper coil through which high-frequency current is passed. Next, a stack of molds with both ends open is used, and a worn roll or a cylindrical body for new manufacturing is inserted vertically into these molds, and the surface is preheated with high-frequency current while being lowered. After this, molten metal of a desired material is continuously injected into the gap between the base body and the mold, and at the same time, the base body is continuously lowered to build up the molten metal on the surface of the base body.

ところが、この方法では、母体の酸化を防止するために
その表面に低融点ガラスをコーティングしているので、
このコーティングされたガラスが母体と金属溶湯との界
面に巻き込まれることになる。従って、この方法では、
鋳造速度(引抜速度)を50〜100m/分程度に小さ
くしなければならず、生産性の点において問題がある。
However, in this method, the surface of the base material is coated with low-melting glass to prevent oxidation.
This coated glass will be caught at the interface between the matrix and the molten metal. Therefore, in this method,
The casting speed (drawing speed) must be reduced to about 50 to 100 m/min, which poses a problem in terms of productivity.

以上述べたように、複合材の連鋳化については数多くの
提案がなされているが、いずれも実用技術として確立さ
れたものはなく、現状では実用化には至っていない。
As mentioned above, many proposals have been made regarding continuous casting of composite materials, but none of them has been established as a practical technology, and so far, it has not been put into practical use.

そこで本出願人はこれらの問題点を解決し、シームレス
クラツド鋼管用素材としての複合中空鋳片を高速でしか
も長尺に鋳込むことができ、かつ、鋳造時での完全結合
を可能とする複合中空鋳片の連続鋳造法を特願昭61−
46829号明細書及び図面において提案した。
Therefore, the present applicant has solved these problems, and has made it possible to cast composite hollow slabs as a material for seamless clad steel pipes at high speed and in long lengths, and to make it possible to completely connect them at the time of casting. Patent application for continuous casting method of composite hollow slabs in 1988-
It was proposed in the specification and drawings of No. 46829.

すなわち第1図に示すように、一端にタンディツシュl
を直結した両端開放鋳型2内へ、中空芯材3を挿入しつ
つ、該タンディツシュ1によって挿入芯材3の周囲に溶
湯4を注入して連続的に凝固させ、間歇的若しくは連続
的に引抜く事により複合鋳片を連続鋳造する方法におい
て、中空の挿入芯材3の外表面のみを溶融状態にし、鋳
造時に接合良好な複合丸鋳片を得る製造法であゆ、実施
例として、ビレットサイズφ208mm(鋳型径φ21
6m1)鋳片について、いくつかの中空芯材の外表面の
みを溶融させ、鋳造状態での接合を紹介した。
That is, as shown in Figure 1, there is a tanditsh l at one end.
While inserting the hollow core material 3 into a mold 2 with both ends open, the molten metal 4 is injected around the inserted core material 3 using the tundish 1, solidified continuously, and then pulled out intermittently or continuously. In a method of continuously casting composite slabs, only the outer surface of the hollow insertion core material 3 is melted, and a composite round slab with good bonding during casting is obtained.As an example, a billet size of 208 mm is used. (Mold diameter φ21
For 6m1) slabs, we melted only the outer surface of some hollow core materials and introduced joining in the cast state.

なお、第1図中5は芯材3のサポートロール、6はフィ
ードノズル耐火物、7は接続耐火物、8は凝固シェルを
示す。
In FIG. 1, 5 indicates a support roll for the core material 3, 6 indicates a feed nozzle refractory, 7 indicates a connecting refractory, and 8 indicates a solidified shell.

本出願人が先に提案した特願昭61−46829号に記
載の発明は優れた方法ではあるが、製品タラソドサイズ
の多様化に対応するには種々のビレットサイズについて
鋳造時での接合条件を実験により見い出さなければなら
ないために非常に効率が悪いという問題を内在していた
Although the invention described in Japanese Patent Application No. 61-46829 previously proposed by the present applicant is an excellent method, it is necessary to adjust the joining conditions at the time of casting for various billet sizes in order to respond to the diversification of product thalassod sizes. This had the inherent problem of being extremely inefficient because it had to be discovered through experimentation.

本発明はかかる問題点を解決できる複合中実及び複合中
空丸鋳片の連続製造方法を提供せんとするものである。
The present invention aims to provide a continuous manufacturing method for composite solid and composite hollow round slabs that can solve these problems.

(問題点を解決するための手段) 本発明は、一端にタンディツシュを直結した両端開放鋳
型内へステンレスの中実もしくは中空丸芯材を挿入しつ
つ該タンディツシュから前記芯材の周囲に炭素鋼の溶湯
を注入し、前記鋳型内で溶湯を連続的に凝固させながら
間歇的もしくは連続的に引抜くことにより複合中実ある
いは複合中空丸鋳片を製造する方法において、引抜速度
を0.45〜2.0m/分で、また鋳ぐるみ溶湯の過熱
度を20〜100°Cで、しかも下記式、の条件を満足
させて製造することを要旨とする複合中実及び複合中空
丸鋳片の連続製造方法である。
(Means for Solving the Problems) The present invention involves inserting a solid or hollow round core material of stainless steel into a mold with both ends open to which a tundish is directly connected, and then inserting carbon steel from the tundish around the core material. A method of producing a composite solid or composite hollow round slab by injecting molten metal and drawing it intermittently or continuously while solidifying the molten metal continuously in the mold, the drawing rate being 0.45 to 2. Continuous production of composite solid and composite hollow round slabs at a speed of .0 m/min, with a superheating degree of the cast molten metal of 20 to 100°C, and satisfying the conditions of the following formula. It's a method.

すなわち、本発明は任意の丸ビレツトサイズに対して挿
入される芯材の外表面のみを溶融させ鋳造時において接
合させる条件設定として無次元パラメータη4及びη、
により第2図に示す斜線領域を提示した事にある。ここ
で、無次元パラメータη4、η、は、ビレット径をD、
芯材外径をd、芯材肉厚をtとした場合、η、=d/D
、η、=2t/Dで表される。
That is, the present invention sets the conditions for melting only the outer surface of the core material inserted for any round billet size and joining it during casting, using dimensionless parameters η4 and η,
The reason is that the shaded area shown in FIG. 2 was presented. Here, the dimensionless parameters η4, η are the billet diameter D,
When the outer diameter of the core material is d and the thickness of the core material is t, η, = d/D
, η, = 2t/D.

第2図は第1図に示す複合連続鋳造法において、放間伝
熱解析を実施し次の過程で得られた線図である。
FIG. 2 is a diagram obtained in the following process by carrying out radiation heat transfer analysis in the composite continuous casting method shown in FIG.

まず鋳片径をパラメータとして種々の芯材外径に対して
芯材肉厚を変化させ、その時の鋳込計算での芯材内外表
面の最高到達温度と芯材肉厚との相関グラフ(第3図)
を求め、更にそれらの線と芯材の固相線温度を切る点A
、Bを求めると芯材の状態は次のように区分される。
First, the core material wall thickness is changed for various core material outer diameters using the slab diameter as a parameter, and the correlation graph between the maximum temperature reached on the inner and outer surfaces of the core material and the core material thickness in the casting calculation at that time (Fig. Figure 3)
Find the point A that cuts these lines and the solidus temperature of the core material.
, B, the state of the core material is classified as follows.

■ A点以下の肉厚    :中空芯材全溶融■ A点
以上B点以下の肉厚: 〃  半溶融(外面のみ溶融) ■ B点以上の肉厚   : 〃  非溶融そして、上
記区分により、種々の丸鋳片サイズ夫々についてA、B
点を求め、無次元パラメータη1、η5により再整理し
て最終的な第2図を作成した。
■ Thickness below point A: Hollow core material completely melted ■ Thickness between point A and below point B: Semi-molten (only the outer surface melted) ■ Thickness above point B: Non-melted, and varies depending on the above classification Regarding round slab sizes A and B
The points were determined and rearranged using dimensionless parameters η1 and η5 to create the final Figure 2.

第2図において、横軸η、は芯材外径/鋳片外径比であ
る。そして、η4の値としてとり得る値はO≦η4≦1
であるが、η4=0の場合は芯材が無いか或いは芯材径
がある有限値で鋳片外径が無限に大きい場合であり、ま
たηd−1の場合は芯材外径が鋳片外径に等しくなる場
合であって両値共現実的には有り得ないので実際的に中
空クラッドとして存在する条件範囲は0〈η6〈1とな
る。
In FIG. 2, the horizontal axis η is the core outer diameter/slab outer diameter ratio. Then, the possible values of η4 are O≦η4≦1
However, when η4=0, there is no core material, or when the core diameter is a certain finite value and the outside diameter of the slab is infinitely large, and when ηd-1, the outside diameter of the core material is the same as that of the slab. Since this is a case in which the diameter is equal to the outer diameter and both values are not realistically possible, the condition range for the hollow cladding to actually exist is 0<η6<1.

一方、縦軸η、は芯材肉厚の2倍/芯材外径比であり、
これも理論的には0≦η、≦1をとりうるが、上記と同
様な理由で実際的にとり得る値はO〈η、<1である。
On the other hand, the vertical axis η is the ratio of twice the core material thickness/core material outer diameter,
Theoretically, this can also take 0≦η, ≦1, but for the same reason as above, the value that can actually be taken is O<η, <1.

更に、芯材の外径は肉厚の2倍より大きくなる事はない
ので芯材が中空として存在する条件は2t<d、すなわ
ちη、〈η4である。
Furthermore, since the outer diameter of the core material cannot be larger than twice the wall thickness, the condition for the core material to exist as a hollow material is 2t<d, that is, η, <η4.

2t=d、すなわちη、=η、では芯材が中実である事
を意味している。従って、2t>dすなわちη、〉η、
の領域は条件的に存在しない。
2t=d, that is, η,=η, means that the core material is solid. Therefore, 2t>d or η, 〉η,
The area conditionally does not exist.

このように無次元パラメータη4、ηtを使用すると、
中実芯材の挿入条件は第2図においてη、−η4の直線
上にすべて網羅されている。一方、中空芯材挿入条件は
η、=η4なる直線の右下の三角領域ですべて網羅され
る事になる。
Using the dimensionless parameters η4 and ηt in this way,
The conditions for inserting the solid core material are all covered on the straight line of η and -η4 in FIG. On the other hand, the conditions for inserting the hollow core material are all covered by the triangular area at the lower right of the straight line η, = η4.

なお、第2図は下記第1表の条件で、η6、η、を任意
に変えて作成したものである。
Note that FIG. 2 was created under the conditions shown in Table 1 below, with η6 and η being arbitrarily changed.

第1表 しかして、計算より得られた芯材の半溶融域、すなわち
鋳造時接合域は、 −0,25ηd +0.25<ηL <−0,45ηd
 +0.45ただしη、≦ηd杓 の範囲であり、第2図における斜線領域0である。
In the first expression, the half-molten region of the core material obtained by calculation, that is, the bonding region during casting, is -0,25ηd +0.25<ηL <-0,45ηd
+0.45 However, it is within the range of η, ≦ηd, which is the shaded area 0 in FIG.

これ以外の領域のうち■すなわら η、≦−0.25ηd +0.25 ただし、η、≦η ml では芯材は完全に溶融してしまって中空丸芯材の形状を
維持できなくなる。
Among the other regions, ■, that is, η, ≦−0.25ηd +0.25 However, in η, ≦η ml, the core material is completely melted and the shape of the hollow round core material cannot be maintained.

また、領域0すなわち、 −0,45ηd +0.45≦η、 ただしη、≦ηd”1 では芯材の外表面は溶融しない。従って、鋳造時での溶
着は望めず非接合域となる。
Further, in region 0, that is, −0,45ηd +0.45≦η, where η,≦ηd”1, the outer surface of the core material does not melt. Therefore, welding during casting cannot be expected, resulting in a non-bonded region.

なお、上記各式におけるただし書中の*1は芯材肉厚×
2≦芯材外径なる条件を示すものである。
Note that *1 in the proviso in each of the above formulas is core material thickness x
This indicates the condition that 2≦the outer diameter of the core material.

(実 施 例) 以下本発明方法の実施結果について説明する。(Example) The results of implementing the method of the present invention will be explained below.

第2図におけるη、が0から0.6までの区間を拡大図
示したものを第4図に示す。
FIG. 4 shows an enlarged view of the section where η in FIG. 2 is from 0 to 0.6.

第4図中には、本出願人が特願昭61−46829号明
細書中において一部示した第2表に示す実施例と第3表
に示すその後の追加テストデークをプロットした。
In FIG. 4, the examples shown in Table 2 and the subsequent additional test data shown in Table 3, which were partially shown in the specification of Japanese Patent Application No. 61-46829 by the present applicant, are plotted.

上記第3表及び第4表において、 =            X100  (%)1−(
η4−η ) 2 一ηd”X100(%) ある。なお下記第4表に芯材及び鋳ぐみる溶湯化学成分
と凝固温度を示す。
In Tables 3 and 4 above, = X100 (%)1-(
η4-η) 2 - ηd''X100 (%) Table 4 below shows the chemical compositions and solidification temperatures of the core material and the molten metal in which it is cast.

本実施例では、芯材表面にNH4BF、+バイダー(樹
脂)を1:1に配合したスカム反撥側塗布した。
In this example, the scum repellent side was coated with a 1:1 mixture of NH4BF and +binder (resin) on the surface of the core material.

第4図中に5%〜30%まで5%きざみの等クラツド比
の曲線をあわせて示した。これにより、製品必要クラツ
ド比及びビレットサイズDが決まれば、鋳造時で溶着す
る芯材の外径d及び肉厚tを第3図より決定する事がで
きて非常に実用的である。特に鋳造時における接合領域
0の中でも領域■に近い程芯材の肉厚幅に対して芯材外
表面からの溶着域が広がり、一方領域■に近い程その溶
着域が狭くなる。
FIG. 4 also shows curves of equal cladding ratios in 5% increments from 5% to 30%. As a result, once the required product cladding ratio and billet size D are determined, the outer diameter d and wall thickness t of the core material to be welded during casting can be determined from FIG. 3, which is very practical. Particularly in the joint area 0 during casting, the closer to area (2) the weld area from the outer surface of the core material becomes wider relative to the thickness of the core material, while the closer to area (2) the weld area becomes narrower.

第4図中に示す実施例と計算領域との対応より、鋳造時
における接合領域■の中でも特に−〇、3ηd +0.
3 <ηt<0.4ηd +0.4(η、≦ηd) の領域(第5図中の漏域)に条件設定すると芯材と鋳ぐ
るみ材との間に更に良好な鋳造時における接合状態が得
られる事を確認した。
From the correspondence between the example shown in FIG. 4 and the calculation area, it is found that -〇, 3ηd +0.
If the conditions are set in the region of 3 <ηt<0.4ηd +0.4 (η, ≦ηd) (the leakage area in Fig. 5), a better bonding state between the core material and the cast material during casting will be achieved. I confirmed what I could get.

更に、引抜速度や溶湯過熱度及び芯材ステンレス材質を
変えた場合についても計算による検討をおこなった結果
、 ■ 溶湯過熱度や引抜速度の上界に伴って第2図に示す
鋳造時における接合領域は若干上方へすれるが、通常連
続鋳造で実施される溶湯過熟度へT=20℃〜100℃
、及び引抜速度0.45m/分〜2.Om/分では、そ
のずれはわずかであるため、設定領域としては第2図に
示す領域ζごよる予測で十分である。
Furthermore, as a result of calculating calculations for the cases where the drawing speed, degree of superheating of the molten metal, and stainless steel core material were changed, we found that: ■ The joining area during casting as shown in Figure 2 depends on the upper bounds of the degree of superheating of the molten metal and the drawing speed. Although it slides slightly upward, it is close to the molten metal supermaturity level T = 20℃ to 100℃, which is normally carried out in continuous casting.
, and a drawing speed of 0.45 m/min to 2. Since the deviation is small at Om/min, prediction based on the area ζ shown in FIG. 2 is sufficient as the setting area.

■ 芯材材質については鋳ぐるみ材の同一溶湯y熱度に
対して、芯材の固相温度が低くなるに−れ、第2図に示
す鋳造時における接合域は上ノヘずれるが、固相温度が
1300 ”C〜150〔°C近傍の範囲で鋳ぐるみ溶
湯か炭素鋼では第2図で示される領域で十分鋳造時にお
ける接合復を推定できる。
■ Regarding the core material material, as the solidus temperature of the core material becomes lower for the same molten metal y heat of the casting material, the joining area during casting shown in Figure 2 shifts upwards, but the solidus temperature When casting molten metal or carbon steel is in the range of around 1300°C to 150°C, it is possible to sufficiently estimate the joint failure during casting in the range shown in Fig. 2.

ことが判明した。It has been found.

この確認のため、216φビレツトサイズに−いて追加
テストを実施した例を第5表に示す。
To confirm this, Table 5 shows an example in which an additional test was conducted using a billet size of 216φ.

引抜速度を上昇する場合には芯材表面に塗布したスカム
反iB剤の効果が薄れ、2m/分以上だと実質上効果が
なくなり、クラッド界面に不純物の巻き込みなどが生じ
て接合しても界面不良となる。
When the drawing speed is increased, the effect of the scum anti-iB agent applied to the surface of the core material is weakened, and when it exceeds 2 m/min, it becomes virtually ineffective, and impurities are entrapped at the cladding interface, causing the interface to fail even when bonded. It becomes defective.

第5表中のケース401.5 m/分でも若干巻き込み
がみられた。
Slight entrainment was also observed in the case 401.5 m/min in Table 5.

また、芯材材質については固相線温度が5US304 
(1400℃)よりも30℃程低い5US316のテス
トでも良好な接合がみられた(ケース5)。
In addition, the solidus temperature of the core material is 5US304
Good bonding was also observed in the test of 5US316, which was about 30°C lower than (1400°C) (Case 5).

厳密には、芯材及び鋳ぐるみ材の種類や引抜速度、溶湯
過熱度の個々の条件で第2図を作成する事が最上ではあ
るが本発明ではそれらのうちステンレス中実あるいは中
空芯材を炭素鋼で鋳ぐるむ第1図の連続鋳造において、
鋳込頻度の高い条件域、 ■ 引抜速度:0.45m/分〜2.Om/分■ 芯材
固相温度:1300〜1500℃■ 鋳くるみ炭素鋼過
熱度:△T−20℃〜100℃における芯材の鋳造時で
の接合条件域を提示した事によりクラッド鋳片設計を容
易化したのである。
Strictly speaking, it is best to create Figure 2 based on individual conditions such as the type of core material and casting material, drawing speed, and degree of superheating of the molten metal. In the continuous casting shown in Figure 1, which is made of carbon steel,
Condition range with high casting frequency: ■ Drawing speed: 0.45 m/min ~ 2. Om/min■ Core material solidus temperature: 1300~1500℃■ Cast walnut carbon steel superheating degree: △T - Cladding slab design by presenting the joining condition range during core material casting at 20℃~100℃ This made it easier.

(発明の効果) 以上説明したように本発明によれば以下に列挙する効果
が得られる。
(Effects of the Invention) As explained above, according to the present invention, the following effects can be obtained.

1)任意サイズの複合中実あるいは複合中空丸鋳片(芯
材ニステンレス、鋳ぐるみ材:炭素鋼)の連続鋳造にお
ける鋳造時での接合域を無次元パラメータη4、η、で
整理した形で定量化した。
1) In continuous casting of composite solid or composite hollow round slabs of arbitrary size (core material: stainless steel, casting material: carbon steel), the joint area during casting is organized by dimensionless parameters η4, η. Quantified.

2)第2図に示す鋳造時における接合域よりη4、η、
を読みとることより容易に鋳造時において接合クラツド
材を得る事ができビレット設計が容易になった。
2) From the joint area during casting shown in Figure 2, η4, η,
By reading this, it is easier to obtain bonded clad material during casting, making billet design easier.

3)従来単にクラツド比だけで単純に整理されてきたこ
とによる一般性の欠如を解消し、鋳造時における接合確
認テストを省略することで、工数削減、合理化が可能と
なった。
3) The lack of generality caused by the conventional arrangement simply based on the cladding ratio has been overcome, and by omitting the joint confirmation test during casting, it has become possible to reduce the number of man-hours and streamline the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の説明図、第2図は本発明に使用す
るη、とη6の関係図、第3図は第2図を得るための芯
材肉厚と最高到達温度との関係図、第4図は第2図の要
部拡大図、第5図は実施例の説明に使用する図面であっ
て第2図と同じ図面である。 1はタンディツシュ、2は鋳型、3は芯材、4は溶湯、
8は凝固シェル。 第1図 襞高到遠湿友 地#厚み〆2/4寿片外軽a  l−1=2ぢら第4図 尾ネtタト4も/碕ハタト者嗅4シ  5”吟ら第5図
Figure 1 is an explanatory diagram of the method of the present invention, Figure 2 is a diagram of the relationship between η and η6 used in the present invention, and Figure 3 is the relationship between core material thickness and maximum temperature to obtain Figure 2. 4 is an enlarged view of the main part of FIG. 2, and FIG. 5 is a drawing used for explaining the embodiment and is the same drawing as FIG. 2. 1 is a tandish, 2 is a mold, 3 is a core material, 4 is a molten metal,
8 is a solidified shell. Fig. 1 Fold height to far wet Tomoji # Thickness 〆 2/4 Shou Kata Sogai light a l-1 = 2 jira Fig. 4 Tail net t tato 4 mo/Saki hatato person smell 4 shi 5” Gin et al. 5th figure

Claims (1)

【特許請求の範囲】[Claims] (1)一端にタンディッシュを直結した両端開放鋳型内
へステンレスの中実もしくは中空丸芯材を挿入しつつ該
タンディッシュから前記芯材の周囲に炭素鋼の溶湯を注
入し、前記鋳型内で溶湯を連続的に凝固させながら間歇
的もしくは連続的に引抜くことにより複合中実あるいは
複合中空丸鋳片を製造する方法において、引抜速度を0
.45〜2.0m/分で、また鋳ぐるみ溶湯の過熱度を
20〜100℃で、しかも下記式の条件を満足させて製
造することを特徴とする複合中実及び複合中空丸鋳片の
連続製造方法。 −0.25η_d+0.25<η_t<−0.45η_
d+0.45 (η_t≦η_d) η_d=d/D η_t=2t/D ここで、D:鋳片径 d:芯材外径 t:芯材肉厚
(1) A solid or hollow round stainless steel core material is inserted into a mold with both ends open to which a tundish is directly connected, and molten carbon steel is injected from the tundish around the core material. In a method of producing composite solid or composite hollow round slabs by drawing the molten metal intermittently or continuously while solidifying it continuously, the drawing speed is set to 0.
.. Continuous composite solid and composite hollow round slabs characterized by being manufactured at a speed of 45 to 2.0 m/min, with a superheating degree of the cast molten metal of 20 to 100°C, and satisfying the conditions of the following formula. Production method. -0.25η_d+0.25<η_t<-0.45η_
d+0.45 (η_t≦η_d) η_d=d/D η_t=2t/D Where, D: Slab diameter d: Core outer diameter t: Core wall thickness
JP2793987A 1987-02-09 1987-02-09 Continuous casting method for solid composite and hollow composite round cast billet Pending JPS63194848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2793987A JPS63194848A (en) 1987-02-09 1987-02-09 Continuous casting method for solid composite and hollow composite round cast billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2793987A JPS63194848A (en) 1987-02-09 1987-02-09 Continuous casting method for solid composite and hollow composite round cast billet

Publications (1)

Publication Number Publication Date
JPS63194848A true JPS63194848A (en) 1988-08-12

Family

ID=12234867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2793987A Pending JPS63194848A (en) 1987-02-09 1987-02-09 Continuous casting method for solid composite and hollow composite round cast billet

Country Status (1)

Country Link
JP (1) JPS63194848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148598A (en) * 2014-09-01 2014-11-19 北京科技大学 Clad material solid/liquid composite dual-solidification continuous casting and forming equipment and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148598A (en) * 2014-09-01 2014-11-19 北京科技大学 Clad material solid/liquid composite dual-solidification continuous casting and forming equipment and method
CN104148598B (en) * 2014-09-01 2016-01-20 北京科技大学 A kind of clad material dual solidifying continuously casting former of solid-liquid compound and method

Similar Documents

Publication Publication Date Title
EP3804874B1 (en) Metal compound plate strip continuous production equipment and method
JP2021526463A (en) Equipment and method for manufacturing metal composite plates by continuous casting and rolling method
JP2021527569A (en) Production equipment and methods for manufacturing metal composite plates in a short process
JPS63194848A (en) Continuous casting method for solid composite and hollow composite round cast billet
JPS6076263A (en) Production of composite metallic material
JPH02295646A (en) Production of clad plate
JPS61132248A (en) Method and device for continuous production of clad material
JPS62203640A (en) Continuous production for composite hollow billet
JP2958334B2 (en) Continuous forging of metal composite materials
JPS6149748A (en) Continuous casting method of clad steel billet
JPS61229459A (en) Production of composite casting roll
JPH0569088A (en) Method for continuously casting complex metal material
JPS5838655A (en) Production of rolling roll for bar steel
JPS63183760A (en) Method for continuously casting multiple kinds of steel slab
JPS61135463A (en) Method and device for continuous casting of metal-clad material
JPS61195739A (en) Manufacture of clad material
JPS62203641A (en) Continuous production for composite billet
CN115365467A (en) Production device and production method of composite long material
JPH05123831A (en) Method for continuously casting composite cast billet
JPH0155070B2 (en)
JPH01130860A (en) Manufacture of stainless steel cast billet for forging
JPH05154612A (en) Method for preventing eccentricity of core material in continuous casting for complex cast billet
JPS61195758A (en) Continuous producing device for composite ingot
JPH05185184A (en) Method for continuously producing clad cast billet
JPS6072654A (en) Production of composite metallic pipe