JPH03141885A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH03141885A
JPH03141885A JP27887489A JP27887489A JPH03141885A JP H03141885 A JPH03141885 A JP H03141885A JP 27887489 A JP27887489 A JP 27887489A JP 27887489 A JP27887489 A JP 27887489A JP H03141885 A JPH03141885 A JP H03141885A
Authority
JP
Japan
Prior art keywords
roller
shaft
parts
grooves
crank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27887489A
Other languages
Japanese (ja)
Inventor
Takao Yoshimura
多佳雄 吉村
Ichiro Morita
一郎 森田
Hideji Ogawara
秀治 小川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP27887489A priority Critical patent/JPH03141885A/en
Priority to US07/969,815 priority patent/US5316455A/en
Publication of JPH03141885A publication Critical patent/JPH03141885A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the volume efficiency by furnishing communicating parts to the internal circumference of a roller and grooves formed from a plurality of a seal parts at each end face of a roller on its bearing side, the roller being accommodated rotatably in a crank of a shaft, wherein the grooves with seal parts stretche in the circumferential direction and reduce the section area as going apart from the communication parts. CONSTITUTION:Grooves 20-24-27 and ones 28-32-35 in the equal number are provided at the end faces 19a, 19b of a roller 19 which contact bearings 7, 8 for a shaft 3, wherein the roller 19 is held rotatably by a crank 3c of the shaft 3. of the shaft 3. These grooves 20-35 are formed from communication parts 20a-35a to the inside circumference of the roller 19 and also seal part 20b-35b, 20c-35c which extend in the circumferential direction from said communication parts 20a-35a and reduce the section area while going apart from the communication parts 20a-35a. Accordingly an oil pressure force is generated by the wedge effect due to the seal parts with rotation in both directions caused by spiral rotating of the roller 19 round its own axis, which ensures high level retention to accomplish enhancement of the volume efficienecy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍サイクル等に使用する回転式圧縮機に関
し、特に体積効率が良好な機械部の構成に係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary compressor used in a refrigeration cycle or the like, and particularly relates to the configuration of a mechanical part with good volumetric efficiency.

従来の技術 従来の構成を第3図、第4図、第6図、第6図を用いて
説明する。
Prior Art A conventional configuration will be explained with reference to FIGS. 3, 4, 6, and 6.

1は密閉ケーシング、2は電動機部であり、シャフト3
を介してシリンダ4、ローラ6、ベーン6、主軸受7.
副軸受8により構成される機械部本体9と連結している
。シャフト3は主軸3a。
1 is a sealed casing, 2 is an electric motor section, and shaft 3
The cylinder 4, roller 6, vane 6, main bearing 7.
It is connected to a mechanical part main body 9 constituted by a sub-bearing 8. The shaft 3 is a main shaft 3a.

副軸3b、及び主軸3a、副軸3bの軸芯からEだけ偏
心したクランク3Cよりなる。筐た、シャフト3の中心
には穴3eが懲戒されると共にクランク3cには給油孔
3f、給油溝3qが設けられている。10はベーン背面
に設けられたスプリングである。11a、11bldシ
リンダ4内で、ローラ6、ベーン6、主軸受7.副軸受
8により構成される吸入室と圧縮室である。ローラ6の
主軸受7、副軸受8と対向するそれぞれの端面5a。
It consists of a subshaft 3b, and a crank 3C eccentric by E from the axes of the main shaft 3a and subshaft 3b. A hole 3e is formed in the center of the shaft 3, and an oil supply hole 3f and an oil supply groove 3q are provided in the crank 3c. 10 is a spring provided on the back side of the vane. 11a, 11bld Inside the cylinder 4, a roller 6, a vane 6, a main bearing 7. These are a suction chamber and a compression chamber formed by the sub-bearing 8. Each end face 5a of the roller 6 faces the main bearing 7 and the sub-bearing 8.

6bの内周側には内周側から外周器に向うに伴い断面積
が減少するテーバsc、sdが設けられている。12は
、シャフト3と連結する給油amである。13は吸入管
であり、副軸受8、シリンダ4の吸入通路14を介して
吸入室11aと連通している。16は吐出孔であり吐出
弁16を介して密閉ケーシング1内と連通している。1
7は吐出管であり密閉ケーシング1内に開放している。
Tapers sc and sd whose cross-sectional area decreases from the inner circumferential side toward the outer circumferential device are provided on the inner circumferential side of 6b. 12 is an oil supply am connected to the shaft 3. Reference numeral 13 denotes a suction pipe, which communicates with the suction chamber 11a via the auxiliary bearing 8 and the suction passage 14 of the cylinder 4. Reference numeral 16 denotes a discharge hole, which communicates with the inside of the sealed casing 1 via the discharge valve 16. 1
Reference numeral 7 denotes a discharge pipe that opens into the sealed casing 1.

18は潤滑油である。18 is lubricating oil.

第6図の実線の矢印方向は、圧縮機運転中のある時点に
釦けるローラ6の運動方向をまた破線の矢印方向は、ロ
ーラ6の運動によりローラの端面6a、5bを潤滑油1
8が流れる方向を示している。また、so 、sfはロ
ーラ6のテーパ5c。
The direction of the solid arrow in FIG. 6 indicates the direction of movement of the roller 6, which is pressed at a certain point during the operation of the compressor.
8 indicates the direction of flow. Also, so and sf are the taper 5c of the roller 6.

6dのうち、この破線の矢印方向に断面積を徐々に減少
する部位(5fは図示せず)であり、5q。
Of 6d, this is a portion (5f not shown) whose cross-sectional area gradually decreases in the direction of the broken arrow, and 5q.

6hは、断面積を徐々に増加する部位(shは図示せず
)である。
6h is a portion (sh is not shown) whose cross-sectional area is gradually increased.

次に回転式圧縮機の圧縮機構について説明する。Next, the compression mechanism of the rotary compressor will be explained.

冷却システム(図示せず)からの冷媒ガスは、吸入管1
3、吸入孔14より導かれシリンダ4内の吸入室11a
に至る。吸入室11aに至った冷媒ガスは、シャフト3
のクランク3Cに回転自在に収納されたローラ6とベー
ン6により仕切られた圧縮室11bで、電動機部2の回
転に伴うシャフト3の回転運動により漸次圧縮される。
Refrigerant gas from the cooling system (not shown) is supplied to the suction pipe 1
3. Suction chamber 11a inside cylinder 4 guided from suction hole 14
leading to. The refrigerant gas that has reached the suction chamber 11a is transferred to the shaft 3
The compression chamber 11b is partitioned by a roller 6 and a vane 6, which are rotatably housed in the crank 3C, and is gradually compressed by the rotational movement of the shaft 3 as the motor section 2 rotates.

圧縮された冷媒ガスは、吐出孔16、吐出弁16を介し
て密閉ケーシング1内に一旦吐出された後、吐出管17
を介して冷却システムに吐出される。
The compressed refrigerant gas is once discharged into the sealed casing 1 through the discharge hole 16 and the discharge valve 16, and then through the discharge pipe 17.
to the cooling system.

又、冷媒の溶は込んだ密閉ケーシング1内の高圧の潤滑
油18は、給油機構12によりシャフト3の穴3eに供
給され、主軸受7と副軸受8との摺動部に供給されると
共に、給油孔3f、給油溝3qよりクランク3Cとロー
ラ6の内周側に供給され、ローラ端面5a、5bを潤滑
した後、吸入室11a、圧縮室11bに至り、その後吐
出孔15より密閉ケーシング1内に吐出され、冒閉ケー
シング1の下部に戻る。
Further, the high-pressure lubricating oil 18 in the sealed casing 1 containing the refrigerant is supplied to the hole 3e of the shaft 3 by the oil supply mechanism 12, and is supplied to the sliding parts of the main bearing 7 and the sub-bearing 8. The oil is supplied to the inner peripheral side of the crank 3C and the roller 6 through the oil supply hole 3f and the oil supply groove 3q, and after lubricating the roller end surfaces 5a and 5b, it reaches the suction chamber 11a and the compression chamber 11b, and then from the discharge hole 15 to the sealed casing 1. The liquid is discharged inside and returns to the lower part of the opening and closing casing 1.

このとき、ローラ6は、シャフト3の回転に伴い、クラ
ンク3cのまわりを方向を考えながら自転し且つ、公転
運動を行い、この結果ローラ6上の一点の軌跡は、ら旋
状となる。従って、ローラ6の移動方向は、シャフト3
が回転する間に3600近く変化することになるが例え
ばローラ6のら旋運動の運動方向が、第6図の矢印で示
す方向とすると。
At this time, as the shaft 3 rotates, the roller 6 rotates and revolves around the crank 3c while considering the direction, and as a result, the locus of one point on the roller 6 becomes a spiral. Therefore, the moving direction of the roller 6 is the same as that of the shaft 3.
For example, if the direction of the spiral movement of the roller 6 is the direction shown by the arrow in FIG.

ローラ6の端面sa、sbにはテーパso 、 sdが
設けられているためテーパsc、sdの中で60と6f
の近傍部に流入する潤滑油18のみが。
Since the end faces sa and sb of the roller 6 are provided with tapers so and sd, 60 and 6f are formed in the tapers sc and sd.
Only the lubricating oil 18 flows into the vicinity of.

内径側から外径側に向うに従い断面が先細となりクサビ
効果により油圧力を発生することになる。
The cross section becomes tapered from the inner diameter side toward the outer diameter side, and hydraulic pressure is generated due to the wedge effect.

(但し、6f′はテーパ6dの50’とは反対の部位で
あり、図示していない。)従って、テーパ6Cと6dの
6eと6fの近傍部の油圧力がバランスし、その結果ロ
ーラ6と主軸受7、副軸受8間のクリアランスδ8 と
δbがδ4=δbとなる様にローラ6が保持される。と
ころで、ローラ端面5a。
(However, 6f' is a part opposite to 50' of the taper 6d, and is not shown.) Therefore, the hydraulic pressure in the vicinity of 6e and 6f of the tapers 6C and 6d is balanced, and as a result, the roller 6 and The roller 6 is held so that the clearance δ8 and δb between the main bearing 7 and the sub-bearing 8 become δ4=δb. By the way, the roller end surface 5a.

6bを介して、クランク3C側から吸入室11a。6b from the crank 3C side to the suction chamber 11a.

圧縮室11bに流入する冷媒の溶は込んだ潤滑油の量は
、クリアランスの3乗に比例する。従って、δ1+δb
=一定の場合、流入する量はδ4=δbのときに最小と
な9、その結果、テーパsc、sdを設けることによシ
1体積効率が良好で効率の高いEE圧縮機提供される。
The amount of lubricating oil that has entered the refrigerant solution flowing into the compression chamber 11b is proportional to the cube of the clearance. Therefore, δ1+δb
= constant, the amount of inflow is minimum when δ4 = δb9.As a result, by providing the tapers sc and sd, a highly efficient EE compressor with good volumetric efficiency is provided.

例えば、実公昭61−20317号公報にて示される。For example, it is shown in Japanese Utility Model Publication No. 61-20317.

発明が解決しようとする課題 この様な従来の構造では、冷凍用の気筒容積の小さい小
型圧縮機の様にローラの(外径−内径)/2で示される
肉厚が薄く、運転時の高圧圧力と低圧圧力の比(圧縮比
)が高い圧縮機では、テーパを設けてローラの端面と主
軸受及びローラと副軸受のクリアランスを等しくできて
も、実際には全周に亘って設けられたテーバ部のクリア
ランスはテーパ量だけ広がり又、テーパのない平坦面の
シール距離が全周で短かくなるため、吸入室や圧縮室へ
の冷媒の溶は込んだ潤滑油の流入量が増加し結局テーパ
を設けても漏れ損失が減少せず又。
Problems to be Solved by the Invention In such a conventional structure, like a small compressor with a small cylinder capacity for refrigeration, the wall thickness of the roller (expressed as (outer diameter - inner diameter)/2) is thin, and high pressure during operation is required. In a compressor with a high ratio of pressure to low pressure (compression ratio), even if a taper is provided to equalize the clearance between the roller end face and the main bearing, and between the roller and the sub-bearing, in reality, the clearance is provided around the entire circumference. The clearance of the tapered part increases by the taper amount, and the sealing distance of the non-tapered flat surface becomes shorter around the entire circumference, so the amount of lubricating oil containing refrigerant dissolved into the suction chamber and compression chamber increases. Even if a taper is provided, leakage loss does not decrease.

体積効率があまり向上しないとの課題があった。There was a problem that the volumetric efficiency did not improve much.

又、従来の構造では、テーパに侵入する潤滑油のくさび
効果を利用しており、このくさび効果は、シャフトの回
転運動に伴うローラのら旋状の運動のうち公転運動成分
では発生するが、テーパが円周方向には断面積が変化し
ないためにローラのクランクの!わシを回る自転運動の
成分に対しては。
In addition, the conventional structure utilizes the wedge effect of the lubricating oil that enters the taper, and this wedge effect occurs in the orbital motion component of the spiral motion of the roller accompanying the rotational motion of the shaft. Taper of the roller crank because the cross-sectional area does not change in the circumferential direction! Regarding the component of rotational motion around the eagle.

発生せずくさび効果が小さい。筐た。クサビ効果による
油圧力の発生部位が、ローラの端面上の一箇所のみであ
り、大部分の部位には1発生せず。
This does not occur and the wedge effect is small. It was a cabinet. The hydraulic pressure generated by the wedge effect is only at one location on the end face of the roller, and is not generated at most locations.

更に、テーパ部そのものが、円周方向に連通した形状と
なっているために、くさび効果により発生した圧力は円
周方向に逃げることとなり、くさび効果による発生圧力
は低い。この結果、くさび効果によるローラの安定性は
十分とはぎえず、従って体積効率の向上効果が少ないと
の課題があった。
Furthermore, since the tapered portion itself has a shape that communicates in the circumferential direction, the pressure generated by the wedge effect escapes in the circumferential direction, and the pressure generated by the wedge effect is low. As a result, the stability of the roller due to the wedge effect is not sufficient, resulting in a problem that the effect of improving volumetric efficiency is small.

又、他の従来例として、ローラの端面に内周側から外周
側に至るに伴い輻が狭くなる数条の溝を設けたものがあ
るが、溝が内周側から外周側へ1つすぐ伸びているか、
又は円周方向のどちらか一方へ同じ方向に煩いた曲線で
あるために、1回転中の自転方向が変化するローラの運
動に対して十分なくさび効果を発生することは難しく、
又、油圧力の発生部位が、ローラ上の一箇所となり、や
はりローラの安定性は十分とは言えない課題があった。
Another conventional example is one in which several grooves are provided on the end surface of a roller, the convergence of which narrows from the inner circumference to the outer circumference. Is it growing?
Or, because the curve is curved in the same direction in either direction of the circumference, it is difficult to generate a sufficient wedge effect against the movement of the roller whose rotation direction changes during one rotation.
In addition, the hydraulic pressure is generated at only one location on the roller, which again poses a problem in that the stability of the roller is not sufficient.

本発明は上記従来例の欠点を解決するものであシ、従来
以上に体積効率の向上を図ると共に小型でローラ肉厚の
薄い圧縮機や回転数可変の圧縮機においても吸入室や圧
縮室への冷媒の溶は込んだ潤滑油の流入量を最小に抑え
ることを目的としている。
The present invention solves the above-mentioned drawbacks of the conventional example, and aims to improve the volumetric efficiency more than the conventional example, and also allows the suction chamber and compression chamber to be used even in small compressors with thin roller walls and compressors with variable rotation speed. The purpose is to minimize the amount of lubricating oil that has entered the refrigerant solution.

課題を解決するための手段 本発明は、ローラの端面のそれぞれに、ローラの内周側
との連通部と、略円周方向に伸び連通部より離れるに伴
い・断面積を減少する複数の封止部とより形成される溝
を備えたものである。
Means for Solving the Problems The present invention provides, on each end face of the roller, a communicating portion with the inner peripheral side of the roller, and a plurality of seals extending approximately in the circumferential direction and decreasing in cross-sectional area as the distance from the communicating portion increases. It is equipped with a groove formed by a stop part.

作用 本発明は上記した溝底により、ローラのら腕運動のうち
自転運動の成分に対しては、どちらの方向に自転しても
溝に流入した潤滑油は断面積の小さい方向に流れ、必す
溝の封止部のどちらかに油圧力を発生することとなり、
大きな油圧力を発生することができる。筐だ、油圧力の
発生部位は。
Effect of the present invention Due to the above-mentioned groove bottom, the lubricating oil flowing into the groove flows in the direction of the smaller cross-sectional area regardless of which direction the roller rotates in response to the rotational component of the roller arm movement. Hydraulic pressure will be generated in either of the sealing parts of the groove.
Can generate large hydraulic pressure. The housing is where the hydraulic pressure is generated.

それぞれのローラ端面で2−所以上に分散して発生する
ことになる。更に、溝の封止部に流入した潤滑油は逃げ
場が無いので油圧力は高く維持できる。
This occurs at two or more locations on each roller end face. Furthermore, since the lubricating oil that has flowed into the sealing portion of the groove has no place to escape, the hydraulic pressure can be maintained at a high level.

従って1両端面に発生する油圧力が大きく且っローラ端
面上に分散して発生し1発生した油圧力が高く維持でき
ることになり、ローラと主軸受及び副軸受間のクリアラ
ンスδ8とδbが漏れの最も少ないδ6=δbに確実に
保持される。更に溝は。
Therefore, the hydraulic pressure generated on both end faces of the roller is large and distributed over the roller end face, and the generated hydraulic pressure can be maintained at a high level, and the clearances δ8 and δb between the roller and the main bearing and sub bearing are reduced to prevent leakage. It is ensured that δ6=δb is the smallest. Furthermore, the groove.

全周に亘って設けられてからすシール距離がテーパを設
ける場合よシ長くなり、その結果圧縮室や吸入室へ流入
するオイルの量が減少し体積効率が向上すると共に漏れ
損失が少なくなる。
The glass seal distance provided over the entire circumference is longer than in the case of a taper, and as a result, the amount of oil flowing into the compression chamber and suction chamber is reduced, improving volumetric efficiency and reducing leakage losses.

実施例 以下実施例につき、第1図、第2図にて説明する。Example Examples will be explained below with reference to FIGS. 1 and 2.

尚、従来例と同一の部分は同一符号を付し説明を省略す
る。
Incidentally, the same parts as in the conventional example are given the same reference numerals, and the description thereof will be omitted.

19はローラであり、従来と同様にシャフト3のクラン
ク30に回転自在に保持されている。ローラ19の端面
19a 、 19bVCIri、そレソレ。
A roller 19 is rotatably held by the crank 30 of the shaft 3 as in the conventional case. The end surfaces 19a and 19bVCIri of the roller 19 are there.

・溝20〜24〜27及び溝28〜32〜36が同数だ
け設けられている。溝20〜36はローラ19の内周側
との連通部20a〜36a及び円周方向に沿って連通部
20a〜35aよシ伸び且つ連通部20 a〜35aよ
シ離れるに伴い断面積を減少する封止部20b〜36b
及び2oc〜36cによシ形成されている。
- The same number of grooves 20-24-27 and grooves 28-32-36 are provided. The grooves 20 to 36 extend from the communicating portions 20a to 36a with the inner peripheral side of the roller 19 and from the communicating portions 20a to 35a along the circumferential direction, and decrease in cross-sectional area as they move away from the communicating portions 20a to 35a. Sealing portions 20b to 36b
and 2oc to 36c.

かかる構成において、吸入管13より吸入された冷媒ガ
スは、従来と同様に圧縮され吐出管17よシ冷却システ
ムに吐出される。
In this configuration, the refrigerant gas sucked through the suction pipe 13 is compressed in the same way as in the conventional case and is discharged through the discharge pipe 17 to the cooling system.

また、冷媒の溶は込んだ密閉ケーシング1内の高圧の潤
滑油18も従来と同様に抽械部本体9を潤滑するが、ロ
ーラ19の内周側に流入した潤滑油18は、ローラ19
a、19bを潤滑した後従来と同様に密閉ケーシングの
下部に戻る。
In addition, the high-pressure lubricating oil 18 in the sealed casing 1 into which the refrigerant has been dissolved also lubricates the drawing part main body 9 as in the conventional case, but the lubricating oil 18 that has flowed into the inner peripheral side of the roller 19
After lubricating parts a and 19b, return to the lower part of the sealed casing as in the conventional case.

ローラ19は、従来と同様にシャフト3の回転に伴い、
公転運動と自転運動を行い、この結果ローラ19はら腕
運動を行う。このら腕運動のある瞬間の運動の方向を従
来と同様に実線の矢印方向とし、又ローラ19の運動に
より潤滑油18が流れる方向を破線の矢印方向とする。
As the shaft 3 rotates, the roller 19 rotates as in the conventional case.
The roller 19 performs a revolution movement and an autorotation movement, and as a result, the roller 19 performs an arm movement. The direction of the arm movement at a certain moment is the direction of the solid arrow, as in the conventional case, and the direction in which the lubricating oil 18 flows due to the movement of the roller 19 is the direction of the broken arrow.

このとき、ローラ19の端面19a上の溝20〜27で
は、封止部20b〜27b 、20(+〜27cのうち
封止部20c 、21 c 、23b 、24b 。
At this time, in the grooves 20 to 27 on the end surface 19a of the roller 19, the sealing parts 20c, 21c, 23b, and 24b among the sealing parts 20b to 27b, 20(+ to 27c).

26b 、26b 、26c 、27cが、破線の矢印
方向で示す潤滑油18の流れ方向に対して、断面積を減
少することとなり、連通部20a〜27aより流入する
潤滑油18により油圧力を発生する。
26b, 26b, 26c, and 27c have a reduced cross-sectional area with respect to the flow direction of the lubricating oil 18 indicated by the dashed arrow direction, and the lubricating oil 18 flowing from the communicating portions 20a to 27a generates hydraulic pressure. .

即ち、溝20〜27のうち、溝22以外の溝では。That is, among grooves 20 to 27, grooves other than groove 22.

封止部20b〜27b、20a〜27cのどちらか一方
又は両方で油圧力が発生し、油圧力の発生位置が、従来
の一箇所だけと異なり、ローラ端面19a上に分散され
る。又、端面19b上の溝28〜35においても、端面
19a上の溝20〜27と同様に溝22と対称位置溝3
0以外の溝で、封止部28b〜35b 、28C〜35
cのどちらか一方又は両方で油圧が発生し、且つ油圧の
発生位置は、端面19aと19bで対称位置となる。
Hydraulic pressure is generated in one or both of the sealing portions 20b to 27b and 20a to 27c, and the position where the hydraulic pressure is generated is distributed over the roller end surface 19a, unlike the conventional case where the hydraulic pressure is generated only at one location. Also, the grooves 28 to 35 on the end surface 19b are located at symmetrical positions to the groove 3 in the same way as the grooves 20 to 27 on the end surface 19a.
In grooves other than 0, sealing parts 28b to 35b, 28C to 35
Hydraulic pressure is generated at one or both of the end faces 19a and 19b.

更に、ローラ19のら旋運!17Iを形成する自転成分
に釦いては、略円周方向に断面積を減少する封止部20
b〜35b 、20c 、36cを形成しているために
、どちらの自転方向に対してもクサビ効果による油圧力
を発生する。また油圧力は、封止部20b〜35b 、
20c〜35cの近傍で発生するので油圧力の逃げ場が
なく、油圧力は高く保持される。従って、ローラ19の
端面19a。
Furthermore, roller 19 is spinning! Regarding the rotational component forming 17I, the sealing part 20 whose cross-sectional area decreases approximately in the circumferential direction
b to 35b, 20c, and 36c, a hydraulic pressure due to a wedge effect is generated in either direction of rotation. In addition, the hydraulic pressure is applied to the sealing parts 20b to 35b,
Since it occurs near 20c to 35c, there is no escape for the hydraulic pressure, and the hydraulic pressure is kept high. Therefore, the end surface 19a of the roller 19.

19bには常に同じ大きさの油圧力が分散した位置に発
生しバランスすることになる。寸た。この油圧力は、自
転成分により発生する油圧力分と、油圧力が逃げず高く
保持される分だけ従来より高い油圧力となるため、ロー
ラ19は、−回転中従来以上に確実にクリアランスδ3
=δb の位置に保持され1体積効率が向上する。
At 19b, hydraulic pressure of the same magnitude is always generated at dispersed positions, resulting in a balance. Dimensions. This hydraulic pressure is higher than the conventional one due to the hydraulic pressure generated by the rotation component and the hydraulic pressure that is kept high without escaping.
= δb, and the 1-volume efficiency is improved.

更に、溝20〜36は、全周に亘って設けられてふ・ら
ず、シール距離がテーパを設ける場合より長くなり、こ
のために、圧縮室や吸入室へ流入する潤滑油の量が減少
し小型の圧縮機等で、ローラ肉厚の薄い場合でも体積効
率が向上する。
Furthermore, since the grooves 20 to 36 are provided all around the circumference, the sealing distance is longer than if the grooves are tapered, thereby reducing the amount of lubricating oil flowing into the compression chamber and suction chamber. This improves volumetric efficiency even in small compressors and the like, where the roller wall thickness is thin.

尚1本実施例においては、断面積の変化を溝巾にて行っ
たが、溝の深さで行っても良い。
In this embodiment, the cross-sectional area was changed by the groove width, but it may also be changed by the groove depth.

発明の効果 発明の効果 以上の説明から明らかな様に本発明は、シリンダと、シ
リンダの端面に固定された主軸受及び副軸受と、主軸受
及び副軸受内を回転摺動し且つクランクを有するシャフ
トと、シャフトのクランクに自転自在に収納されたロー
ラと、ローラに当接し且つシリンダに設けられた溝内を
往復摺動するベーンと、ローラの主軸受及び副軸受と対
向する端面のそれぞれに、ローラの内周側との連通部。
Effects of the Invention Effects of the Invention As is clear from the above description, the present invention has a cylinder, a main bearing and a sub-bearing fixed to the end face of the cylinder, a cylinder that rotates and slides within the main bearing and the sub-bearing, and has a crank. A shaft, a roller rotatably housed in the crank of the shaft, a vane that contacts the roller and slides back and forth in a groove provided in the cylinder, and an end surface facing the main bearing and sub-bearing of the roller, respectively. , the communication part with the inner peripheral side of the roller.

釦よび略円周方向に伸び連通部より離れるに伴い断面積
を減少する複数の封止部より形成される溝を備えたもの
であるから、ローラのら旋連動を形成する自転連動に対
しても油圧力が発生するために油圧力が高くなり、また
油圧力の発生部位はそれぞれの端面上の2箇所以上に分
散して発生し。
Since it is equipped with a groove formed by a button and a plurality of sealing parts that extend approximately in the circumferential direction and whose cross-sectional area decreases as the distance from the communication part increases, Since hydraulic pressure is also generated, the hydraulic pressure becomes high, and the hydraulic pressure is generated at two or more locations on each end face.

更に封止部に流入した潤滑油は逃げ場がないので発生し
た油圧力を高く維持できることとなるので、ローラの端
面と主軸受、副軸受間のクリアランスを常に均等に保持
することができ、漏れ損失が減少し体積効率が向上する
。又、溝が全周に亘って釦らず、シール距離が長くなり
、ローラ肉厚の薄い小型で高圧縮比の圧縮機でも体積効
率の高い圧縮機を供給することができる。
Furthermore, since the lubricating oil that has flowed into the sealing part has no place to escape, the generated hydraulic pressure can be maintained high, so the clearance between the roller end face, main bearing, and sub-bearing can always be maintained evenly, reducing leakage loss. decreases and improves volumetric efficiency. In addition, the groove is not buttoned all around the circumference, so the sealing distance is long, and even a small, high compression ratio compressor with a thin roller wall can provide a compressor with high volumetric efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回転式圧縮機のローラ
の正面図、第2図は本発明の機械部の拡大断面図、第3
園は従来の回転式圧縮機の縦断面図、第4図は第3図の
IV−IV’線における矢視図、第5図は第3図の機械
部の拡大断面図、第6図は従来のローラ正面図である。 3・・・・・・シャフト、3C・・・・・・クランク、
4・・・・・・シリンダ、6・・・・・・ベーン、7・
・・・・・主軸受、8・山・・副軸受、19・・・・・
・o−7,19a、19b・・・・・・ローラ端面、2
0〜24〜27.28〜32〜36・・・・・・溝、2
0a〜24a〜27a 、28a〜32a〜36a・・
・・・・連通部、20b〜24b〜27b。 20c〜24c〜270.28b〜32b〜36b。 28c〜32c〜36a・・・・・・封止部。
FIG. 1 is a front view of a roller of a rotary compressor showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the mechanical part of the present invention, and FIG.
Figure 4 is a longitudinal cross-sectional view of a conventional rotary compressor, Figure 4 is a view along the line IV-IV' in Figure 3, Figure 5 is an enlarged cross-sectional view of the mechanical part in Figure 3, and Figure 6 is a vertical cross-sectional view of a conventional rotary compressor. FIG. 3 is a front view of a conventional roller. 3...Shaft, 3C...Crank,
4...Cylinder, 6...Vane, 7.
...Main bearing, 8. Mountain...Sub bearing, 19...
・o-7, 19a, 19b...Roller end surface, 2
0~24~27.28~32~36...Groove, 2
0a~24a~27a, 28a~32a~36a...
...Communication portion, 20b to 24b to 27b. 20c-24c-270.28b-32b-36b. 28c to 32c to 36a... Sealing portion.

Claims (1)

【特許請求の範囲】[Claims] シリンダと、前記シリンダの端面に固定された主軸受及
び副軸受と、前記主軸受及び副軸受内を回転摺動し且つ
クランクを有するシャフトと、前記シャフトのクランク
に自転自在に収納されたローラと、前記ローラに当接し
且つ前記シリンダに設けられた溝内を往復摺動するベー
ンと、前記ローラの前記主軸受及び副軸受と対向する端
面のそれぞれに、前記ローラの内周側との連通部および
略円周方向に伸び前記連通部より離れるに伴い断面積を
減少する複数の封止部より形成される溝を備えた回転式
圧縮機。
a cylinder; a main bearing and a sub-bearing fixed to an end surface of the cylinder; a shaft that rotates and slides within the main bearing and the sub-bearing and has a crank; and a roller that is rotatably housed in the crank of the shaft. , a vane that contacts the roller and slides back and forth in a groove provided in the cylinder; and a communication portion with the inner peripheral side of the roller on each of the end surfaces of the roller facing the main bearing and the sub-bearing. and a rotary compressor including a groove formed by a plurality of sealing portions extending substantially circumferentially and decreasing in cross-sectional area as the distance from the communication portion increases.
JP27887489A 1989-10-25 1989-10-25 Rotary compressor Pending JPH03141885A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27887489A JPH03141885A (en) 1989-10-25 1989-10-25 Rotary compressor
US07/969,815 US5316455A (en) 1989-10-25 1991-05-30 Rotary compressor with stabilized rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27887489A JPH03141885A (en) 1989-10-25 1989-10-25 Rotary compressor

Publications (1)

Publication Number Publication Date
JPH03141885A true JPH03141885A (en) 1991-06-17

Family

ID=17603321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27887489A Pending JPH03141885A (en) 1989-10-25 1989-10-25 Rotary compressor

Country Status (1)

Country Link
JP (1) JPH03141885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011110019A1 (en) * 2010-03-10 2011-09-15 广东美芝制冷设备有限公司 Rotary compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011110019A1 (en) * 2010-03-10 2011-09-15 广东美芝制冷设备有限公司 Rotary compressor
CN102192149A (en) * 2010-03-10 2011-09-21 广东美芝制冷设备有限公司 Rotary compressor

Similar Documents

Publication Publication Date Title
US5395224A (en) Scroll machine lubrication system including the orbiting scroll member
JP5516651B2 (en) Scroll compressor
JPH04234589A (en) Axial compliance device for scroll compressor
US8888475B2 (en) Scroll compressor with oil supply across a sealing part
KR20080095695A (en) Structure for feeding oil in scroll compressor
KR20050026875A (en) Scroll compressor
KR20110131751A (en) Scroll compressor
JP2014125908A (en) Scroll compressor
US5316455A (en) Rotary compressor with stabilized rotor
JP2642329B2 (en) Rotary hermetic compressor
JPH03141885A (en) Rotary compressor
CN110573732B (en) Drum type displacement compressor
JP2604814B2 (en) Rotary compressor
CN208330724U (en) Screw compressor back pressure apparatus
CN108612654B (en) Scroll compressor
KR100304945B1 (en) Scroll Compressor with oil control structure
JP2672626B2 (en) Rotary compressor
KR100309290B1 (en) Oil discharge protector for scroll compressor
JP2022552920A (en) Spherical pump rotor with static pressure support structure and static pressure support structure
JP3630769B2 (en) Scroll compressor
JPH01305187A (en) Low pressure type rotary compressor
JP2604835B2 (en) Rotary compressor
JPH03271592A (en) Rotary compressor
JPH03271588A (en) Rotary compressor
JP2014105692A (en) Scroll compressor