JPH0314185B2 - - Google Patents

Info

Publication number
JPH0314185B2
JPH0314185B2 JP55061140A JP6114080A JPH0314185B2 JP H0314185 B2 JPH0314185 B2 JP H0314185B2 JP 55061140 A JP55061140 A JP 55061140A JP 6114080 A JP6114080 A JP 6114080A JP H0314185 B2 JPH0314185 B2 JP H0314185B2
Authority
JP
Japan
Prior art keywords
photoreceptor
transfer
charge
potential
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55061140A
Other languages
Japanese (ja)
Other versions
JPS56156847A (en
Inventor
Kazuo Maruyama
Kyoshi Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP6114080A priority Critical patent/JPS56156847A/en
Publication of JPS56156847A publication Critical patent/JPS56156847A/en
Publication of JPH0314185B2 publication Critical patent/JPH0314185B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/06Eliminating residual charges from a reusable imaging member

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子写真方法、さらに詳しく言えば、
安定した帯電を行うことのできる電子写真方法に
関する。 導電性基板上に感光層、絶縁層を順次積層し一
体化した感光体は、例えば感光層表面の保護等の
効果から非常に有用とされ従来より数多くの提案
がなされている。上記感光体を繰り返し使用する
場合に於いては、上記絶縁層表面の残留電荷の取
り扱い技術が主題となる駅で、プロセスも絶縁層
を有さない感光体を使用する場合とは大きく異な
る。その代表的なプロセスは例えば米国特許第
3041167号に代表される如きものであり、以下、
その概略を図面を参照しながら説明する。 第1図は感光体の構成を示す。11は導電性基
板、12は光導電性層、13は透明絶縁体層をそ
れぞれ表わす。第2図a〜cは上記感光体を用い
た場合の潜像形成法について示す。第2図aに於
いて、上記感光体の絶縁体層表面にコロナ帯電器
を用いて1次帯電を施す。感光体がSeの如きP
型半導体の場合には上記一次帯電は負極性である
のが望ましい訳でこの場合には絶縁体層表面は負
極性に帯電されることになる。上記絶縁体層上に
負電荷が乗ると正電荷が基板側から感光層内に注
入され光導電性層と絶縁体層の境界付近の光導電
性層内部に捕獲され第2図aの状態を作る。この
場合は導電性基板と感光層間に注入阻止層が無く
あるいは小さいので容易に基板側より電荷が注入
される場合である。逆に基板側からの電荷注入が
行なわれない場合には光導電性層が正負いずれの
電荷をも輸送可能であり、光が光導電性層全体で
吸収される場合には上記一次帯電と同時あるいは
直後に一様露光を感光体に施すことにより上記状
態と同様状態をもたらすことができる。次に光導
電性層と絶縁体層界面にのみ電荷を残すために第
2図bに示す如く暗所にて帯電器にて一次帯電と
は逆の極性にて、即ちこの場合には正極性にて2
次帯電を施す。2次帯電により絶縁体層表面の電
荷は除電されて第2図bの状態を作り出す。2次
帯電の後第2図cで示す如く画像露光を施すと露
光部では光導電により光導電性層と絶縁体層間に
存在する正電荷は放電され、又暗部では正電荷が
残るために潜像となる訳である。この方法の場合
1次帯電と2次帯電の強さを適当に調整すること
により絶縁体層上の電荷を正にも負にもすること
が可能であり、静電コントラストは自由に選択が
出来る。本方式にて感光体を繰り返えし使用する
場合には、感光体の一様帯電に先立ち絶縁体層表
面に残留する電荷と感光層内部に残留する電荷の
両方を消去する必要がある。その場合従来の絶縁
層を有しない感光体の場合は光照射のみでの放電
が可能であつたが絶縁体層表上の電荷を除電する
には更にもう一つの除電器が必要となる。望まし
くは絶縁体層の除電と同時に感光体内部の除電を
行なうことである。この様な除電を施しても、長
時間繰り返えして潜像形成除電の工程を連続的に
行なう場合には、感光体内部電荷及び絶縁体層表
面電荷を充分に除電出来ず、その結果特に非画像
部(明部=露光部)の電位が徐々に上昇する現象
が見られる。非画像部の電位が徐々に増大する
と、現象サイクルをくりかえす毎に非画像部に汚
れ(カブリ)を生じ画像の品位を著しく低下させ
ることとなる。 そこで本出願人は非画像部電位の上昇を防止す
るために1次帯電と2次帯電の強度バランスを、
検知手段を用いることなく互いの強度にも応じて
自動的に補正を行なうようにした発明について先
に出願を行なつた(特願昭54−5824号)。 これは、第1コロナ帯電器と第2コロナ帯電器
の各々のシールド電極、放電電極及びこれら帯電
器に直流もしくは交流電圧を印加する電源を、他
の装置から電気的に絶縁し、且つ第1コロナ帯電
器と第2コロナ帯電器のシールド電極とを電気的
に結合すると共に、電源の一端を放電電極と、他
端をシールド電極とに電気的に結合した電子写真
の帯電装置を用いたものであつて、第1コロナ帯
電電流値と第2コロナ帯電電流値は、異付号で絶
対値が等しくできるので、第1コロナ帯電器と第
2コロナ帯電器とを独立して設けた帯電器に比べ
て非画像部電位の上昇を大巾に押えることがで
き、安定な帯電が行なえるものである。 しかし、この帯電装置を用いたとしても、トナ
ー現像後、紙へのトナー画像の転写を電界を用い
て行ない、その後、感光体に対して一様露光同時
除電を行なう方法を採用する限りは、繰り返しプ
ロセスに伴う帯電直前の露光部電位の上昇、即
ち、露光部−非露光部電位の差の上昇を防止し得
えず、結果的に、前画像効果が現れ、連続複写時
にはこの効果が顕著となり複写サイクルの安定性
が損われカブリ発生が顕著となるといつた現象を
生じる。 本発明者等は更に研究を重ね上記帯電装置を使
用する場合には、前回プロセスの現像終了後に、
一様露光することにより感光層内部の非露光部電
位を露光部電位に合わせた上で転写電界を与え、
次いで絶縁層表面電荷を除去することにより次回
プロセスに突入する前の、非露光部電位の上昇、
換言れば、露光部、非露光部の各電位の差の上昇
を防止できることを見い出し本発明を完成した。 従つて、本発明の目的は、感光体の非画像部
(背影部)残留電位が複写サイクルに伴つて、上
昇するのを防止でき、感光体上の残留電荷が局部
的にばらつかない電子写真方法を提供することに
ある。 本発明の目的は、表面に絶縁層を有する感光体
を用いて、第1コロナ帯電器と第2コロナ帯電器
の各々の、シールド電極、放電電極及びこれら帯
電器に直流もしくは交流電圧を印加する電源を他
の装置から電気的に絶縁し、かつ第1コロナ帯電
器と第2コロナ帯電器のシールド電極とを電気的
に結合すると共に、電源の一端を放電電極と他端
をシールド電極とに電気的に結合した帯電装置に
より帯電した後に画像露光を行う静電潜像形成工
程、現像工程及び転写工程を順次繰返す電子写真
方法において、現像後転写に先立つて感光体表面
を一様露光する工程と転写後再帯電に先立つて感
光体表面電荷を除去する工程とを有することを特
徴とする電子写真方法により達成することができ
る。 複写を連続的に繰返すためには静電潜像の形
成、現像及び転写を行なつた後次の複写サイクル
に備える為、感光体の電荷を除電する。表面に絶
縁層を有する感光体は、感光体内部の電荷のみな
らず絶縁層上の電荷をも除電しなければならな
い。この為、従来の除電方法は第3図に示すよう
に除電器6と除電ランプ7とから成る除電装置1
4を転写コロトロン5と感光体表面の残留トナー
を除去するクリーニング装置8との間に配設した
ものであつた。第1帯電器2及び帯電器3として
は、第4図に示したようにシールド電極22及び
32を電気的に結合すると共に電源23及び33
に電気的に結合し、かつ帯電装置全体を電気的に
絶縁した帯電装置が用いられる。この帯電装置に
より前述の除電装置により除電した感光体1を再
帯電した場合には、平均的には等値であつても局
部的にバランスのくずれた再帯電がなされてしま
つた。そこで本発明では従来法の除電装置に代え
て、除電ランプと除電器とを独立して転写工程の
前後に設けたものである。 第5図に本発明方法で使用する装置の概略断面
図を示す。すなわちこの装置では、除電ランプ1
5を現像装置9と転写コロトロン5との間に配設
し、かつ除電器16をクリーニング装置8と転写
コロトロン5との間に配設したものである。本発
明による方法では、現像装置9による現像後、転
写コロトロンによる転写に先立つて感光層中の電
荷を除去すると共に、転写後再帯電に先立つて除
電器16により絶縁層上の電荷を除去して感光体
の除電を行うものである。 このようにして除電した後再帯電を行うと、均
等で局部的にばらつきのない帯電が得られ、前画
像効果のない複写物を得ることができる。 第3図に示した従来法に用いられる除電装置1
4の場合、除電領域においては、一様露光によつ
て光導電体内部の電荷が消失し、それから徐々に
絶縁体層上の電荷が除電されるが、完全に均一に
ならないうちに感光体がこの領域を通過するた
め、絶縁体層表面の電荷を均一に除去することが
困難となり、絶縁体層表面に前回プロセスの不均
等な残留電荷を保持した状態のままとなつてい
る。この状態では第4図に示す帯電装置で再帯電
を行ない、コロトロンワイヤー21及び31から
の流入電流の絶対値が等しくなるよう帯電したと
しても、絶縁体層表面に、前回プロセスの残留電
位が存在すると絶縁体層の表面では均一な帯電が
行なわれなくなり、前画像効果等を示すものと考
えられる。本発明方法では、転写前に感光層中の
電荷を除去しているため、このような効果を生じ
ないものと考えられる。 本発明で用いる感光体を一様露光するための除
電ランプ15は感光体内部の電荷を除去できるよ
うに、その波長及び光量を定める。また、絶縁層
表面の電荷を除去するための除電器16として
は、除電コロトロンあるいは除電ローラがあげら
れる。好ましい除電器は交流電圧を印加した除電
コロトロンである。 以下、比較例及び実施例により本発明を説明す
る。 比較例 第3図に示したように、表面に絶縁層13を有
するSe系感光体1を用い、第1次帯電として負
コロナ、第2次帯電として正コロナにより感光体
を帯電した。この時第1次帯電器2及び第3次帯
電器3としては第4図に示した結線状態のものを
用いた。 次いでスリツト4により画像露光をほどこし静
電潜像を形成し、磁気ブラシ現像装置9により現
像した。 転写コロトロン5によりトナー像を転写紙に転
写後、感光体の電荷を、交流を印加した除電器6
(除電コロトロン)及び除電ランプ(タングステ
ンランプ)7からなる除電装置14により除電
し、クリーニング装置8で感光体表面に残留した
トナーを除去した。 この時の感光体の電位変化及び電荷状態をそれ
ぞれ第6−A図及び第7−A図に示す。図中、a
は負帯電、bは正帯電、cは画像露光、dは転
写、及びeは除電を行なつた時のものである。 図中、実線は非露光部Mの、破線は露光部Lの
電位を表わす。 aでマイナス帯電、bでプラス帯電を行ない、
絶縁体層13と光導電性層12との界面近傍の光
導電性層内にプラス電荷を保持したのち、cで像
露光すると、露光部の電荷が消失し、電位が落ち
感光体の露光部と非露光部間の電位が不均一な状
態(6,7−Ac)となる。この状態で、その後
の転写時、非露光部と露光部の各電位をなるべく
揃えるように転写コロトロン5により放電される
ために、露光部へ非露光部より多くの電荷が絶縁
体層表面に供給されてしまう。(第7−A図d)。
その結果、次いで、除電装置16により一様露光
同時除電を施すが、第7−A図eに示した様に、
露光部と非露光部の絶縁体層表面残留電荷は互い
に逆極性となり、かつ、このときの電位は非露光
部がより低い電位になつている。又潜像電位を測
定したところ、第2次帯電後の初期帯電電位は+
900Vであり、除電後の残留電位は露光部で+
50V、未露光部で−70Vを示し、120Vの差があつ
た。 更に再帯電して複写を行なつたころ、得られた
複写物には前画像効果が現われ、又画像濃度及び
背景部濃度にムラが生じた。 実施例 1 本実施例では比較例で述べた従来法の除電器6
及び除電ランプ7からなる除電装置14に代え
て、第5図に示す通り、現像装置9と転写帯電器
5との間に、除電ランプ(タングステンランプ)
15、及び転写コロトロン5とクリーニング装置
8との間に除電器26として交流を印加した除電
コロトロンを設け、他は比較例と同様の装置を用
いた。 現像までは比較例と同様に行なつた。 現像後、感光体表面を除電ランプ15により一
様に露光した後、転写コロトロン5によりトナー
像を転写紙に転写し、次いで感光体の絶縁体層表
面上の電荷を除電器16で除電し、クリーニング
装置8で残留トナーを除去した。 この時の感光体の電位変化及び電荷状態をそれ
ぞれ第6−B図及び第7−B図に示す。 a,b及びcは比較例と同様、fは現像後転写
前における一様露光、d′は転写、e′は除電用コロ
トロンによる除電をそれぞれ行なつた時のもので
ある。これらの図から明らかなように、a〜cま
では従来方式と同一であるが、fで一様露光する
と、非露光部も露光部も共に光導電体内の残留電
位に一致、ほぼOVに近くなる。従つて、次のト
ナー画像転写後、露光部および非露光部には等し
い電荷量が絶縁体層表面に形成される(第7−B
図a′)。従つて、次の除電工程が露光部および非
露光部で均一に実施されるため、除電後の両部は
略同一レベルとなる。即ち、潜像電位を測定した
ところ、初期帯電電位+900Vに対し、残留電位
は露光部+20V、非露光部+10Vで、その差は
10Vしかなかつた。更に、再帯電し複写を行なつ
たところ、得られた複写物には前画像効果はみら
れず、画像濃度及び背景部濃度共均一なものであ
つた。 実施例 2 繰返し複写時の影響を調べるため比較例及び実
施例1の方法によつて10分間連続して複写を行な
つた。 この時の背景部電位は次表の通りであつた。
The present invention relates to an electrophotographic method, more specifically,
This invention relates to an electrophotographic method that can perform stable charging. A photoreceptor in which a photosensitive layer and an insulating layer are successively laminated and integrated on a conductive substrate is considered to be very useful due to its effect of protecting the surface of the photosensitive layer, for example, and many proposals have been made in the past. When the photoreceptor is used repeatedly, the technique for handling the residual charge on the surface of the insulating layer is a key issue, and the process is significantly different from that in the case of using a photoreceptor without an insulating layer. A typical process is, for example, US Patent No.
This is typified by No. 3041167, and below:
The outline will be explained with reference to the drawings. FIG. 1 shows the structure of the photoreceptor. 11 represents a conductive substrate, 12 represents a photoconductive layer, and 13 represents a transparent insulating layer. FIGS. 2a to 2c show a method of forming a latent image using the photoreceptor described above. In FIG. 2a, the surface of the insulating layer of the photoreceptor is primarily charged using a corona charger. The photoreceptor is P like Se.
In the case of a type semiconductor, it is desirable that the primary charge be negative, and in this case the surface of the insulator layer will be negatively charged. When negative charges are placed on the insulator layer, positive charges are injected into the photosensitive layer from the substrate side and captured inside the photoconductive layer near the boundary between the photoconductive layer and the insulator layer, resulting in the state shown in Figure 2a. make. In this case, since there is no injection blocking layer between the conductive substrate and the photosensitive layer, or the injection blocking layer is small, charges are easily injected from the substrate side. On the other hand, if no charge is injected from the substrate side, the photoconductive layer can transport both positive and negative charges, and if light is absorbed by the entire photoconductive layer, the primary charging and the above-mentioned primary charging occur simultaneously. Alternatively, a state similar to the above state can be brought about by immediately uniformly exposing the photoreceptor to light. Next, in order to leave a charge only on the interface between the photoconductive layer and the insulator layer, as shown in Figure 2b, a charger is used in a dark place to charge the polarity opposite to the primary charge, that is, in this case, the positive polarity. At 2
Next, apply electrification. The charge on the surface of the insulator layer is removed by secondary charging, creating the state shown in FIG. 2b. After secondary charging, when image exposure is performed as shown in Figure 2c, the positive charges existing between the photoconductive layer and the insulating layer are discharged due to photoconductivity in the exposed areas, and the positive charges remain in the dark areas, causing latent charges. It becomes a statue. In this method, it is possible to make the charge on the insulator layer positive or negative by appropriately adjusting the strength of the primary and secondary charges, and the electrostatic contrast can be freely selected. . When the photoreceptor is repeatedly used in this method, it is necessary to erase both the charge remaining on the surface of the insulating layer and the charge remaining inside the photoreceptor layer before uniformly charging the photoreceptor. In this case, in the case of a conventional photoreceptor without an insulating layer, it was possible to discharge the photoreceptor only by light irradiation, but in order to eliminate the charge on the surface of the insulating layer, an additional static eliminator is required. It is preferable to eliminate static electricity inside the photoreceptor at the same time as eliminating static electricity from the insulating layer. Even if such static elimination is performed, if the latent image formation static elimination process is repeated for a long period of time, the internal charge of the photoconductor and the surface charge of the insulator layer cannot be sufficiently eliminated, and as a result, In particular, a phenomenon is observed in which the potential of non-image areas (bright areas = exposed areas) gradually increases. If the potential of the non-image area gradually increases, each time the phenomenon cycle is repeated, stains (fogging) will occur in the non-image area and the quality of the image will be significantly degraded. Therefore, in order to prevent the potential of the non-image area from increasing, the applicant has adjusted the strength balance of primary charging and secondary charging.
An application was previously filed for an invention in which correction is automatically made according to each other's intensities without using any detection means (Japanese Patent Application No. 5824/1983). This is done by electrically insulating the shield electrode and discharge electrode of each of the first corona charger and the second corona charger, and the power source that applies DC or AC voltage to these chargers from other devices, and An electrophotographic charging device in which a corona charger and a shield electrode of a second corona charger are electrically coupled, and one end of a power supply is electrically coupled to a discharge electrode and the other end is electrically coupled to a shield electrode. Since the first corona charging current value and the second corona charging current value can be made equal in absolute value with different numbers, a charging device in which the first corona charger and the second corona charger are provided independently. Compared to the above, it is possible to suppress the increase in the potential of the non-image area to a large extent, and stable charging can be performed. However, even if this charging device is used, as long as a method is adopted in which after toner development, the toner image is transferred to paper using an electric field, and then the photoreceptor is uniformly exposed and static electricity is removed at the same time. It is not possible to prevent the increase in the potential of the exposed area immediately before charging due to repeated processes, that is, the increase in the potential difference between the exposed area and the non-exposed area, and as a result, a pre-image effect appears, and this effect is noticeable during continuous copying. As a result, the stability of the copying cycle is impaired and fogging becomes noticeable. The inventors of the present invention have conducted further research and found that when using the above-mentioned charging device, after the development of the previous process is completed,
Applying a transfer electric field after uniformly exposing the unexposed area inside the photosensitive layer to the exposed area potential,
Next, by removing the surface charge of the insulating layer, the potential of the non-exposed area increases before entering the next process.
In other words, the present invention has been completed by discovering that it is possible to prevent the difference in potential between the exposed area and the non-exposed area from increasing. Therefore, an object of the present invention is to provide electrophotography that can prevent the residual potential in the non-image area (background area) of the photoreceptor from increasing with the copying cycle, and in which the residual charge on the photoreceptor does not vary locally. The purpose is to provide a method. An object of the present invention is to use a photoreceptor having an insulating layer on its surface to apply a DC or AC voltage to the shield electrode, discharge electrode, and these chargers of each of a first corona charger and a second corona charger. The power source is electrically insulated from other devices, the shield electrodes of the first corona charger and the second corona charger are electrically coupled, and one end of the power source is connected to a discharge electrode and the other end is connected to a shield electrode. In an electrophotographic method that sequentially repeats an electrostatic latent image forming step, a developing step, and a transfer step in which image exposure is performed after being charged by an electrically coupled charging device, the step of uniformly exposing the surface of a photoreceptor after development and prior to transfer. This can be achieved by an electrophotographic method characterized by comprising the following steps: and a step of removing the surface charge on the photoreceptor prior to recharging after transfer. In order to repeat copying continuously, after forming, developing and transferring an electrostatic latent image, the charge on the photoreceptor is discharged in preparation for the next copying cycle. A photoconductor having an insulating layer on its surface must eliminate not only the charge inside the photoconductor but also the charge on the insulating layer. For this reason, the conventional static elimination method is as shown in FIG.
4 was disposed between the transfer corotron 5 and a cleaning device 8 for removing residual toner from the surface of the photoreceptor. As the first charger 2 and the charger 3, shield electrodes 22 and 32 are electrically coupled together as shown in FIG.
A charging device is used in which the charging device is electrically coupled to the charging device and the entire charging device is electrically insulated. When this charging device recharges the photoreceptor 1 that has been neutralized by the above-described static eliminator, the recharging is locally unbalanced even though the charging value is the same on average. Therefore, in the present invention, instead of the conventional static eliminator, a static eliminator and a static eliminator are provided independently before and after the transfer process. FIG. 5 shows a schematic sectional view of the apparatus used in the method of the present invention. In other words, in this device, the static elimination lamp 1
5 is disposed between the developing device 9 and the transfer corotron 5, and a static eliminator 16 is disposed between the cleaning device 8 and the transfer corotron 5. In the method according to the present invention, after development by the developing device 9, charges in the photosensitive layer are removed prior to transfer by a transfer corotron, and charges on the insulating layer are removed by a static eliminator 16 prior to recharging after transfer. This is to eliminate static electricity from the photoreceptor. By performing recharging after static electricity removal in this manner, uniform charging without local variations can be obtained, and a copy without the foreground image effect can be obtained. Static eliminator 1 used in the conventional method shown in Fig. 3
In case 4, in the static elimination area, the charge inside the photoconductor disappears by uniform exposure, and then the charge on the insulator layer is gradually eliminated, but before it becomes completely uniform, the photoconductor Since it passes through this region, it becomes difficult to uniformly remove the charges on the surface of the insulating layer, and the uneven residual charges from the previous process remain on the surface of the insulating layer. In this state, even if the charging device shown in FIG. 4 performs recharging so that the absolute values of the inflow currents from the corotron wires 21 and 31 are equal, the residual potential from the previous process remains on the surface of the insulator layer. If it exists, the surface of the insulating layer will not be uniformly charged, which is considered to cause a pre-image effect or the like. In the method of the present invention, the charges in the photosensitive layer are removed before transfer, so it is thought that such an effect does not occur. The wavelength and light intensity of the charge eliminating lamp 15 used in the present invention for uniformly exposing the photoreceptor to light are determined so that the charges inside the photoreceptor can be removed. Further, as the static eliminator 16 for removing charges on the surface of the insulating layer, a static eliminating corotron or a static eliminating roller can be used. A preferred static eliminator is a static eliminator corotron to which an alternating current voltage is applied. The present invention will be explained below with reference to comparative examples and examples. Comparative Example As shown in FIG. 3, an Se-based photoreceptor 1 having an insulating layer 13 on its surface was used, and the photoreceptor was charged with negative corona as primary charging and positive corona as secondary charging. At this time, as the primary charger 2 and the tertiary charger 3, those with the wire connections shown in FIG. 4 were used. Next, image exposure was performed through the slit 4 to form an electrostatic latent image, which was developed using the magnetic brush developing device 9. After the toner image is transferred to the transfer paper by the transfer corotron 5, the charge on the photoreceptor is removed by a static eliminator 6 to which an alternating current is applied.
A static eliminator 14 consisting of a static eliminator (a static eliminator corotron) and a static eliminator lamp (tungsten lamp) 7 removed static electricity, and a cleaning device 8 removed toner remaining on the surface of the photoreceptor. The potential change and charge state of the photoreceptor at this time are shown in FIG. 6-A and FIG. 7-A, respectively. In the figure, a
is negative charging, b is positive charging, c is image exposure, d is transfer, and e is charge removal. In the figure, the solid line represents the potential of the non-exposed area M, and the broken line represents the potential of the exposed area L. Negative charging is performed at a, positive charging is performed at b,
After holding a positive charge in the photoconductive layer near the interface between the insulating layer 13 and the photoconductive layer 12, imagewise exposure is performed at c, the charge in the exposed area disappears, and the potential drops. The potential between the non-exposed parts becomes non-uniform (6,7-Ac). In this state, during subsequent transfer, more charge is supplied to the surface of the insulating layer to the exposed area than to the non-exposed area because the transfer corotron 5 discharges so that the potentials of the unexposed area and the exposed area are as equal as possible. It will be done. (Figure 7-A d).
As a result, the charge removal device 16 performs uniform exposure and simultaneous charge removal, but as shown in Fig. 7-A e,
The residual charges on the surface of the insulator layer in the exposed area and the unexposed area have opposite polarities, and the potential at this time is lower in the unexposed area. Also, when the latent image potential was measured, the initial charging potential after the secondary charging was +
900V, and the residual potential after static electricity removal is + at the exposed part.
50V, the unexposed area showed -70V, and there was a difference of 120V. When the copying material was further recharged and copied, a pre-image effect appeared in the obtained copy, and unevenness occurred in the image density and background density. Example 1 This example uses the conventional static eliminator 6 described in the comparative example.
As shown in FIG. 5, instead of the static eliminator 14 consisting of the static eliminator 7 and the static eliminator lamp 7, a static eliminator lamp (tungsten lamp) is installed between the developing device 9 and the transfer charger 5.
15, and a static eliminating corotron to which alternating current was applied was provided as a static eliminating device 26 between the transfer corotron 5 and the cleaning device 8, and the other devices were the same as in the comparative example. The steps up to development were carried out in the same manner as in the comparative example. After development, the surface of the photoreceptor is uniformly exposed to light by a static elimination lamp 15, the toner image is transferred to a transfer paper by a transfer corotron 5, and then the charge on the surface of the insulating layer of the photoreceptor is eliminated by a static eliminator 16, A cleaning device 8 removed residual toner. The potential change and charge state of the photoreceptor at this time are shown in FIG. 6-B and FIG. 7-B, respectively. a, b and c are the same as in the comparative example; f is uniform exposure after development and before transfer; d' is transfer; and e' is charge removal using a corotron for charge removal. As is clear from these figures, a to c are the same as the conventional method, but when exposed uniformly at f, both the non-exposed and exposed areas match the residual potential inside the photoconductor, which is almost close to OV. Become. Therefore, after the next toner image transfer, the same amount of charge is formed on the surface of the insulating layer in the exposed and non-exposed areas (7th-B).
Figure a′). Therefore, the next static elimination process is uniformly performed on the exposed and non-exposed areas, so that both areas are at approximately the same level after static elimination. That is, when the latent image potential was measured, the initial charging potential was +900V, and the residual potential was +20V in the exposed area and +10V in the non-exposed area, and the difference was
There was only 10V. Further, when the copying material was recharged and copied, no foreground effect was observed in the obtained copy, and both the image density and the background density were uniform. Example 2 In order to examine the effects of repeated copying, copies were made continuously for 10 minutes using the methods of Comparative Example and Example 1. The background potential at this time was as shown in the table below.

【表】 この表から明らかな様に、本発明のものは10分
後の背景部電位の上昇は10Vにすぎず、背景部濃
度の変化は殆んど認められなかつた。 以上述べたように本発発明方法では、画像電位
のサイクル安定性がよく、連続コピー時に画質変
動がないという特長がある。更に本発明方法の副
次的効果として、除電器の能力の軽減がはから
れ、複写機設計上の制約が少なくなる。また、転
写前に一様露光を行うことにより、転写電界を少
なくすることができ、その結果転写紙の含水によ
り転写電界が必然的に小さくなることによつて起
る高湿時の転写不良等が解消され、高品位の画像
を得ることができる。
[Table] As is clear from this table, in the case of the present invention, the background potential increased by only 10 V after 10 minutes, and almost no change in the background density was observed. As described above, the method of the present invention has the advantage of good cycle stability of image potential and no fluctuation in image quality during continuous copying. Furthermore, as a side effect of the method of the present invention, the capacity of the static eliminator is reduced, and restrictions on the design of the copying machine are reduced. Furthermore, by performing uniform exposure before transfer, the transfer electric field can be reduced, and as a result, the transfer electric field is inevitably reduced due to water content in the transfer paper, resulting in transfer defects at high humidity. is eliminated, and high-quality images can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は感光体の一部の基本構成を表わす断面
図、第2図は第1図の感光体による画像形成法の
説明図、第3図は従来の電子写真装置の概略断面
図、第4図は本発明方法で用いる帯電器の配線
図、第5図は本発明方法で用いる装置の概略断面
図、第6−A図及び第6−B図はそれぞれ従来法
及び本発明方法による感光体の電位変化を示すグ
ラフ、第7−A図及び第7−B図はそれぞれ従来
法及び本発明方法による感光体の各ステツプにお
ける電荷状態を表わす。 図中符号: 1……感光体;2……第1帯電器;
3……第2帯電器;4……画像露光;5……転写
コロトロン;6……除電器;7……除電ランプ;
8……クリーニング装置;9……現像装置;11
……導電性基板;12……光導電性層;13……
透明絶縁体層;14……除電装置;15……除電
ランプ;16……除電器;21,31……放電ワ
イヤー;22,32……シールド電極;23,3
3……高電圧発生器(電源);M……非露光部;
L……露光部。
FIG. 1 is a sectional view showing the basic structure of a part of a photoreceptor, FIG. 2 is an explanatory diagram of an image forming method using the photoreceptor shown in FIG. 1, and FIG. 3 is a schematic sectional view of a conventional electrophotographic apparatus. Figure 4 is a wiring diagram of the charger used in the method of the present invention, Figure 5 is a schematic cross-sectional view of the device used in the method of the present invention, and Figures 6-A and 6-B are photosensitizers according to the conventional method and the method of the present invention, respectively. Graphs 7-A and 7-B showing changes in the potential of the photoreceptor represent the state of charge at each step of the photoreceptor according to the conventional method and the method of the present invention, respectively. Symbols in the figure: 1...photoreceptor; 2...first charger;
3... Second charger; 4... Image exposure; 5... Transfer corotron; 6... Static eliminator; 7... Static elimination lamp;
8... Cleaning device; 9... Developing device; 11
... Conductive substrate; 12 ... Photoconductive layer; 13 ...
Transparent insulator layer; 14... Static eliminator; 15... Static eliminator; 16... Static eliminator; 21, 31... Discharge wire; 22, 32... Shield electrode; 23, 3
3... High voltage generator (power supply); M... Non-exposed part;
L...Exposed part.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に絶縁層を有する感光体を用いて、第1
コロナ帯電器と第2コロナ帯電器の各々の、シー
ルド電極、放電電極及びこれら帯電器に直流もし
くは交流電圧を印加する電源を他の装置から電気
的に絶縁し、かつ第1コロナ帯電器と第2コロナ
帯電器のシールド電極とを電気的に結合すると共
に、電源の一端を放電電極と他端をシールド電極
とに電気的に結合した帯電装置により帯電した後
に画像露光を行う静電潜像形成工程、現像工程及
び転写工程を順次繰返す電子写真方法において、
現像後転写に先立つて感光体表面を一様露光する
工程と転写後再帯電に先立つて感光体表面電荷を
除去する工程とを有することを特徴とする電子写
真方法。
1 Using a photoreceptor having an insulating layer on the surface, the first
The shield electrode, the discharge electrode, and the power source for applying DC or AC voltage to each of the corona charger and the second corona charger are electrically insulated from other devices, and the first corona charger and the second corona charger are 2 Electrostatic latent image formation that performs image exposure after being charged by a charging device that is electrically connected to the shield electrode of the corona charger, and in which one end of the power source is electrically connected to the discharge electrode and the other end to the shield electrode. In an electrophotographic method that sequentially repeats a process, a development process, and a transfer process,
An electrophotographic method comprising the steps of uniformly exposing the surface of a photoreceptor after development and prior to transfer, and removing charges on the surface of the photoreceptor before recharging after transfer.
JP6114080A 1980-05-08 1980-05-08 Electrophotographic method Granted JPS56156847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6114080A JPS56156847A (en) 1980-05-08 1980-05-08 Electrophotographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6114080A JPS56156847A (en) 1980-05-08 1980-05-08 Electrophotographic method

Publications (2)

Publication Number Publication Date
JPS56156847A JPS56156847A (en) 1981-12-03
JPH0314185B2 true JPH0314185B2 (en) 1991-02-26

Family

ID=13162482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6114080A Granted JPS56156847A (en) 1980-05-08 1980-05-08 Electrophotographic method

Country Status (1)

Country Link
JP (1) JPS56156847A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193571A (en) * 1982-05-07 1983-11-11 Fuji Xerox Co Ltd Destaticizer of copying machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103735A (en) * 1977-02-23 1978-09-09 Hitachi Metals Ltd Magnetic toner image transfering method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103735A (en) * 1977-02-23 1978-09-09 Hitachi Metals Ltd Magnetic toner image transfering method

Also Published As

Publication number Publication date
JPS56156847A (en) 1981-12-03

Similar Documents

Publication Publication Date Title
JPS58139156A (en) Electrifying method
GB1240293A (en) Electrophotographic apparatus and method
KR920009349B1 (en) Color electronic photography method and apparatus
JPH0314185B2 (en)
JPH0255784B2 (en)
JPH0428306B2 (en)
JP2704956B2 (en) Charging method that does not require static elimination of electrophotographic equipment
JP3146272B2 (en) Image forming method
JP3538389B2 (en) Image forming apparatus and image forming method
JPS6221168A (en) Photosensitive body for electrophotographic device
JPH01170974A (en) Laser printer
JPS60195562A (en) Electrifying device
JPS599686A (en) Destaticization method of electrophotographic receptor
JPH0664376B2 (en) Contour image forming method
JPS59214052A (en) Image forming device
JPS6345113B2 (en)
JPS6356999B2 (en)
JPS61251887A (en) Residual charge removing device
JPH0212275A (en) Image forming device
JPS5949583B2 (en) electrophotography
JPS59119365A (en) Electrophotographic method
JPH01274183A (en) Electrophotographic method
JPS59143179A (en) Cleaning device
JPS58168075A (en) Electrophotographic device
JPS5832706B2 (en) Exhaust oil