JPH03141621A - Pulse circuit element - Google Patents

Pulse circuit element

Info

Publication number
JPH03141621A
JPH03141621A JP27850189A JP27850189A JPH03141621A JP H03141621 A JPH03141621 A JP H03141621A JP 27850189 A JP27850189 A JP 27850189A JP 27850189 A JP27850189 A JP 27850189A JP H03141621 A JPH03141621 A JP H03141621A
Authority
JP
Japan
Prior art keywords
magnetic core
core
cooling
duct
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27850189A
Other languages
Japanese (ja)
Other versions
JPH0547967B2 (en
Inventor
Mitsuo Inoue
満夫 井上
Hitoshi Wakata
若田 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP27850189A priority Critical patent/JPH03141621A/en
Publication of JPH03141621A publication Critical patent/JPH03141621A/en
Publication of JPH0547967B2 publication Critical patent/JPH0547967B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve cooling capacity by providing ducts in which refrigerants flow independently at each core end parallel with the direction of the lamination of a race-truck-shaped magnetic core and flow independently in the circumferential direction, respectively, by the half circuits of the magnetic core. CONSTITUTION:A saturable reactor is made by putting an insulating member 2 and winding a conductor winding 3 around a race-truck-shaped magnetic core 1, in which an insulating layer and a magnetic substance layer are laminated alternately from the inner periphery to outer periphery and which is molded in flat shape different in long diameter and short diameter. Ducts 5a and 5b for cooling are provided between the upper side of the magnetic core, parallel with the direction of the lamination of the magnetic substance layer and the insulating layer, and the insulating member 2, and ducts 6a and 6b for cooling are provided between the under side of the magnetic core, parallel with the direction of lamination of the magnetic substance layer and the insulating layer, and the insulating member 2. The ducts 5a and 5b and 6a and 6b for cooling are provided each independently. Moreover, the duct 5 for cooling and the duct 5b for cooling, and the duct 6a for cooling and the duct 6b for cooling are provided independently in the circumferential direction, respectively, by the half circuits of the magnetic core.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はパルス回路素子、とくに高電圧の短パルスを
発生するパルス回路素子に用いる可飽和リアクトルに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a saturable reactor used in a pulse circuit element, particularly a pulse circuit element that generates short pulses of high voltage.

〔従来の技術〕[Conventional technology]

第4図(a) (b)は各々、例えば雑誌(W、S、M
ELVILLE; RADIO5ECTION、Pap
er Na 1034(1951) p185 )に示
された、従来のパルス回路素子を示す一部切り欠き平面
図及び側面図である。図において、(1)は絶縁層と磁
性1−が、内局より外局に向かって交互に積層され、長
径と短径が異なる偏平形状に成型されたレーストラック
状山気コア、(2)は絶縁部材、(3)は導体巻線、(
4)はコア外局側面と絶縁部材(2)との間に設けられ
た冷却用ダクトである。
Figures 4(a) and 4(b) each show, for example, a magazine (W, S, M
ELVILLE; RADIO5ECTION, Pap
er Na 1034 (1951) p185), showing a partially cutaway plan view and a side view of a conventional pulse circuit element. In the figure, (1) is a racetrack-shaped mountain core in which insulating layers and magnetic layers are alternately laminated from the inner core toward the outer core, and is formed into a flat shape with different major and minor axes; (2) is an insulating member, (3) is a conductor winding, (
4) is a cooling duct provided between the outer side of the core and the insulating member (2).

次に動作について説明する。Next, the operation will be explained.

第4図において、レーストラック状磁気コア(1)は磁
性体である薄い金属テープと絶縁物テープを重ねて、多
層に巻きつけた物で、そのまわりに絶縁部材(2)をお
き、それに導体巻線(3)を巻くことにより可飽和リア
クトルを形成する。磁気コアの冷却は磁気コア(1)の
側面と絶縁部材(2)との間に空隙を設けてダクト(4
)を形成し、冷却媒質をこのダクト(4)に沿って流し
、磁気コア(1)の側面に接する冷却媒質が磁気コア(
1ンの熱を奪うことにより行う。
In Figure 4, the racetrack-shaped magnetic core (1) is made by overlapping a thin magnetic metal tape and an insulating tape and wrapping it in multiple layers. A saturable reactor is formed by winding the winding (3). The magnetic core is cooled by creating a gap between the side surface of the magnetic core (1) and the insulating member (2), and using a duct (4
), the cooling medium flows along this duct (4), and the cooling medium in contact with the side surface of the magnetic core (1) flows through the magnetic core (
This is done by removing the heat of 1 hour.

第5図は可飽和リアクトルに使用する磁気コアの磁気特
性を示したものである。磁気コアは、最初逆電流で飽和
させた状態B”−Br、)(=Qの点(a)にある。そ
こで導体巻線(3)に電流Iを流して行くと磁気コア(
11には、コアの磁路長をlとすると、電流Iに比例し
た磁化力H(=2πI/1 )が発生し、レーストラッ
ク状[気コアの磁性体は磁化力Hに対応して磁化され、
磁性体の性質で決まる磁束密度Bが生じ、磁性体と動作
周波数で決まる保磁力HCを経由して、(b)点までほ
ぼ直線的に増加する。この時、磁気コアのインダクタン
スLusは磁気コアの比透磁率μ8=dB/dHに比例
し、磁気コアが保持する電圧はV=LusX(dI /
dt)となる、Bが飽和磁束密度Bsの(b)点に達す
ると、それ以上Hを増加させてもほとんど増加せず、磁
気コアの比透磁率μSは1となるため、磁気コアのイン
ダクタンスL3は激減し、レーストラック状磁気コアが
保持する電圧はほとんどOとなり、負荷に電圧が発生す
る。このように可飽和リアクトルはインダクタンスが急
速に低下する一種のスイッチとして働く。この時、磁気
コアの損失とじて保磁力HCと飽和磁束密度BSとの積
の約2倍の鉄損が生じ、この損失により磁気コアは発熱
する。
FIG. 5 shows the magnetic characteristics of the magnetic core used in the saturable reactor. The magnetic core is initially saturated with a reverse current at point (a) of B''-Br, ) (=Q. Then, when a current I is passed through the conductor winding (3), the magnetic core (
11, when the magnetic path length of the core is l, a magnetizing force H (=2πI/1) proportional to the current I is generated, and the magnetic body of the core is magnetized in response to the magnetizing force H in a racetrack shape. is,
A magnetic flux density B determined by the properties of the magnetic material is generated, and increases almost linearly to point (b) via the coercive force HC determined by the magnetic material and the operating frequency. At this time, the inductance Lus of the magnetic core is proportional to the relative magnetic permeability μ8=dB/dH of the magnetic core, and the voltage held by the magnetic core is V=LusX(dI/dH).
dt), and when B reaches point (b) of the saturation magnetic flux density Bs, increasing H hardly increases any further, and the relative permeability μS of the magnetic core becomes 1, so the inductance of the magnetic core L3 decreases drastically, the voltage held by the racetrack magnetic core becomes almost O, and a voltage is generated in the load. In this way, the saturable reactor acts as a kind of switch whose inductance drops rapidly. At this time, an iron loss approximately twice the product of the coercive force HC and the saturation magnetic flux density BS occurs as a loss in the magnetic core, and the magnetic core generates heat due to this loss.

HCは動作周波数領域が高くなるに従い増加するため、
 TEA−CO2レーザやエキシマレーザ等に用いる、
高速のスイッチングを必要とする可飽和リアクトルでは
発熱域が非常に大きくなる。
Since HC increases as the operating frequency range increases,
Used for TEA-CO2 laser, excimer laser, etc.
A saturable reactor that requires high-speed switching has a very large heat generation area.

このように可飽和リアクトルの磁気コアは鉄損による発
熱が生じてコア湿度が上昇するため、冷却媒質により冷
却して、コア温度が磁性体により決まるある一定温度以
下に保持する必要がある。
In this way, the magnetic core of the saturable reactor generates heat due to iron loss and the core humidity increases, so it is necessary to cool it with a cooling medium to maintain the core temperature below a certain temperature determined by the magnetic material.

第4図に示される従来の可飽和リアクトIしの磁気コア
は、コアの外局側面(および内局側面)にダクトを設け
、そこに冷却媒質を流すことにより磁気コア全体を冷却
していた。
The conventional saturable reactor I magnetic core shown in Figure 4 cools the entire magnetic core by providing a duct on the outer side (and inner side) of the core and flowing a cooling medium through it. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のパルス回路素子の可飽和リアクトルは、以上のよ
うな構成であったので、冷却媒質と接するコア巻層の一
番外側(及び内側)からしか熱がとれず、中心に近いコ
ア巻層で生じた熱は外側(及び内側)への、gi性体の
金属テープと絶縁物テープを介した、径方向の熱伝導に
より取ることになる。一般に絶縁物テープの熱伝導は悪
く、従って、これらの熱伝導により、冷却効率が制限さ
れる。また、コアの巻11に沿って(即ち、絶縁層と磁
性層が偵;1する積j一方向に沿って)、磁気コア(1
)の上、下端面に冷却媒質を直列に流し、冷却する方法
では、冷却媒質のダクトの全長がコア磁路長の2倍と長
くなり、冷却媒質が流れるに従い、冷却媒質の温度が上
昇して冷却効果が低下するため、冷却媒質の入口部と出
口部のコア温度に大きな温度不均一が生ずるといった問
題点があった。
The saturable reactor of the conventional pulse circuit element has the above-mentioned configuration, so heat can only be removed from the outermost (and inner) core winding layer that is in contact with the cooling medium, and heat is removed from the core winding layer near the center. The generated heat is removed by radial heat conduction to the outside (and inside) through the gi metal tape and the insulating tape. Insulating tapes generally have poor thermal conductivity, and therefore their thermal conductivity limits cooling efficiency. Also, along the winding 11 of the core (that is, along one direction where the insulating layer and the magnetic layer are
), the total length of the cooling medium duct is twice as long as the core magnetic path length, and as the cooling medium flows, the temperature of the cooling medium increases. As a result, the cooling effect is reduced, resulting in a large temperature non-uniformity between the core temperature at the inlet and outlet of the cooling medium.

速い立上がりのパルスを発生するパルス回路素子に用い
るような、高周波領域で動作する可飽和リアクトルでは
、特に、磁気コアを充分に冷却することができず、繰返
し動作を高くできない等の問題点があった。
Saturable reactors that operate in a high frequency range, such as those used in pulse circuit elements that generate fast-rising pulses, have particular problems, such as the inability to cool the magnetic core sufficiently and the inability to achieve high repetition rates. Ta.

この発明は上記のような問題点を解瀦するためになされ
たもので、冷却能力を飛躍的に向上させて、高繰返し、
かつ高速スイッチングの可飽和リアクトルを得ることが
出来るパルス回路素子を実現することを目的とする。
This invention was made to solve the above-mentioned problems, and it dramatically improves the cooling capacity and allows for high-repetition,
The present invention also aims to realize a pulse circuit element that can obtain a saturable reactor with high-speed switching.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わるパルス回路素子の可飽和リアクトルは
、レーストラック状磁気コアの、積層方向と平行な各コ
ア端面をそれぞれ冷却媒質が独立して流れ、かつ上記レ
ーストラック状磁気コアの半局ずつをそれぞれ周方向に
独立して冷却媒質が流れるようなダクトを設けたもので
ある。
In the saturable reactor of the pulse circuit element according to the present invention, a cooling medium flows independently through each core end face parallel to the stacking direction of the racetrack-shaped magnetic core, and each half of the racetrack-shaped magnetic core is Each duct is provided with a cooling medium flowing independently in the circumferential direction.

〔作 用〕[For production]

この発明におけるパルス回路素子の可飽和リアクトルは
、コアの長手方向にコアを半局し、かつコアの端面を流
れるようなダクトをコアの、ヒ下端面に独立して設けた
ので、このダクトに冷却媒質を流して、磁気コアの端面
から絶縁層を介さずに熱を取るとともに、1つのダクト
をコアの磁路長の半分と短くできるので、冷却能力が飛
躍的に向上する。
In the saturable reactor of the pulse circuit element according to the present invention, the core is semicircular in the longitudinal direction of the core, and a duct that flows through the end face of the core is provided independently on the lower end face of the core. By flowing a cooling medium, heat can be removed from the end face of the magnetic core without going through the insulating layer, and since one duct can be shortened to half the magnetic path length of the core, cooling capacity is dramatically improved.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図(a) (b)において、(1)〜(3)に第4図と
同等である# (52X5b)は、金属テープと絶縁物
テープの積層方向と平行な磁気コア上端面と、絶縁部材
(2)との間に設けられた冷却用ダクト、(6aX6b
)は、金属テープと絶縁物テープの積層方向と平行な磁
気コア下端面と、絶縁部材(2)との間に設けられた冷
却用ダクトであり、冷却ダクト(5a)(5b)と冷却
ダクト(6a)(6b)は各々独立している。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In Figures (a) and (b), # (52X5b), which is the same as in Figure 4 in (1) to (3), indicates the upper end surface of the magnetic core parallel to the lamination direction of the metal tape and insulating tape, and the insulating member. (2) Cooling duct provided between (6aX6b
) is a cooling duct provided between the lower end surface of the magnetic core parallel to the lamination direction of the metal tape and the insulating tape and the insulating member (2), and the cooling duct (5a) (5b) and the cooling duct (6a) and (6b) are each independent.

また、冷却ダクト(5a)と冷却ダクト(5b) %及
び冷却ダクト(6a)と冷却ダクト(6b)は、各々磁
気コアの半局ずつをそれぞれ局方向に独立して設けられ
ている。
Further, the cooling duct (5a), the cooling duct (5b) and the cooling duct (6a) and the cooling duct (6b) are provided independently in the direction of each half of the magnetic core.

次に動作について説明する。Next, the operation will be explained.

可飽和リアクトルの磁気コアは、スイッチングに伴い、
鉄損による発熱が生じてコア温度が上昇するため、冷却
媒質により冷却してコア温度が磁性体により決まるある
一定湿度以下に作詩する必要があることは既に述べた。
The magnetic core of the saturable reactor, with switching,
It has already been mentioned that since heat generation occurs due to iron loss and the core temperature rises, it is necessary to cool the core with a cooling medium to keep the core temperature below a certain humidity determined by the magnetic material.

そこで、冷却媒質を磁気コアの巻層に沿って上下端面を
それぞれ、コアを半局するように流し、コアを冷却する
わけであるが、この時、冷却媒質はコア端面との接触面
から熱を奪いとる。ここで上記コア端面は、絶縁テープ
と金属テープが積層する積層方向に平行な端面であるの
で、コア内部の熱は絶縁物テープを介さず、金属テープ
内の熱伝導によってのみ奪いとられる。また、1つの冷
却媒質の流れは、コアに沿って半固するだけなので、冷
却媒質の流れに伴う冷却媒質の温度上昇は少なくて済み
、これらが相俟って冷却能力が飛躍的に向上する。
Therefore, the core is cooled by flowing the cooling medium along the winding layer of the magnetic core, so that the upper and lower end faces are half-circular, but at this time, the cooling medium releases heat from the contact surface with the core end face. take away. Here, since the core end face is an end face parallel to the lamination direction in which the insulating tape and the metal tape are laminated, the heat inside the core is removed only by heat conduction within the metal tape, without passing through the insulating tape. In addition, since the flow of one cooling medium only becomes semi-solid along the core, the temperature rise of the cooling medium due to the flow of the cooling medium is small, and together these factors dramatically improve the cooling capacity. .

なお、上記実施例では、レーストラック状磁気コアとし
て、金属テープと絶縁物テープとを多数層型巻したもの
について示したが、レーストラック状磁気コアとして金
属テープに絶縁物をコーティングしたものを用いても良
い。また、それら磁気コアを複数個セットで用いる場合
には、各コアの間に隙間を設け、コアの間をダクトとす
れば良い。
In the above embodiments, the racetrack-shaped magnetic core is formed by winding multiple layers of metal tape and insulating tape. It's okay. Furthermore, when a plurality of these magnetic cores are used as a set, gaps may be provided between each core, and a duct may be formed between the cores.

さらに、上記実施例では、導体巻線(3)を巻く絶縁部
材(2)を冷却媒質を流すダクトとして用いたが、導体
巻線(3)が1ターンの高速スイッチング用可飽和リア
クトルでは、第2図(a) (b)に示すように、内部
導体(7)、あるいは外部導体(8)、またはその両方
をダクト壁として用いて、容易にコンパクトな構造がと
れる。ここで第2図(a) (b)は各々この発明の他
の実施例によるパルス回路素子を示す縦断面図及び横断
面図であり、第2図(a)は第2図(b)のA−A線で
の断面図、第2図(b)は第2図(a)のB−B線での
断面図である。
Furthermore, in the above embodiment, the insulating member (2) around which the conductor winding (3) is wound is used as a duct through which the cooling medium flows. As shown in FIGS. 2(a) and 2(b), a compact structure can be easily achieved by using the inner conductor (7), the outer conductor (8), or both as the duct wall. Here, FIGS. 2(a) and 2(b) are a vertical cross-sectional view and a cross-sectional view, respectively, showing a pulse circuit element according to another embodiment of the present invention, and FIG. 2(a) is a diagram of FIG. 2(b) is a sectional view taken along line AA. FIG. 2(b) is a sectional view taken along line BB in FIG. 2(a).

さらに、高電圧で用いる場合には第3図(a) (b)
に示すように、内部導体(7)あるいは外部導体(8)
と磁気コア(1)との間に挿入した絶縁物03 Q4を
ダクト壁として用いても良い。
Furthermore, when used at high voltage, Fig. 3 (a) (b)
The inner conductor (7) or the outer conductor (8) as shown in
An insulator 03Q4 inserted between the magnetic core (1) and the magnetic core (1) may be used as a duct wall.

なお、第2図(a) (b)および第3図(a) (b
)において01)は冷却媒質の導入口、(6)は冷却媒
質の導出口、矢印は冷却媒質の流れを示す。
In addition, Fig. 2 (a) (b) and Fig. 3 (a) (b)
), 01) is the inlet of the cooling medium, (6) is the outlet of the cooling medium, and the arrows indicate the flow of the cooling medium.

方向と平行な、各コア端面をそれぞれ冷却媒質が独立し
て流れ、かつ上記レーストラック状磁気コアの半固ずつ
をそれぞれ局方向に独立して冷却媒質が流れるようなダ
クトを設けて、パルス回路素子の可飽和リアクトルを構
成したので、冷却能力が飛躍的に向上し、短パルスを発
生させるため、高周波領域で動作する可飽和リアクトル
を持つパルス回路素子を、高い繰返しで動作させること
ができる効果がある。
A pulse circuit is constructed by providing a duct in which a cooling medium flows independently through each core end face parallel to the direction, and through which a cooling medium flows independently in the local direction through each of the semi-solid racetrack-shaped magnetic cores. By configuring a saturable reactor for the element, the cooling capacity is dramatically improved, and because short pulses are generated, a pulse circuit element with a saturable reactor that operates in a high frequency region can be operated at high repetition rates. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は各々この発明の一実施例による
パルス回路素子を示す一部切り欠き平面図及び側面図、
第2図(a) (b)は各々この発明の他の実施例によ
るパルス回路素子を示す縦断面図及び横断面図、第3図
(a) (b)は各々この発明のさらに他の実施例によ
るパルス回路素子を示す縦断面図及び横断面図、第4図
(a) (b)は各々従来のパルス回路素子を示す一部
切り欠き平面図及び側面図、並びに第5図は可飽和リア
クトルに使用する磁気コアの磁気特性を示す特性図であ
る。 図において、(1)はレーストラック状磁気コア、(5
a) (5bX6a)(6b)は冷却用ダクトである。 なお、図中、同一符号は同一または相当部分を示す。
FIGS. 1(a) and 1(b) are a partially cutaway plan view and a side view showing a pulse circuit element according to an embodiment of the present invention, respectively;
FIGS. 2(a) and 2(b) are longitudinal sectional views and horizontal sectional views showing pulse circuit elements according to other embodiments of the present invention, and FIGS. 3(a) and 3(b) are respectively illustrative of still other embodiments of the present invention. A vertical cross-sectional view and a cross-sectional view showing a pulse circuit element according to an example, FIGS. 4(a) and 4(b) are a partially cutaway plan view and a side view showing a conventional pulse circuit element, respectively, and FIG. 5 is a saturable FIG. 2 is a characteristic diagram showing the magnetic characteristics of a magnetic core used in a reactor. In the figure, (1) is a racetrack magnetic core, (5
a) (5bX6a) (6b) is a cooling duct. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  絶縁層と磁性層が、内局より外局に向かつて交互に積
層され、長径と短径が異なる偏平形状に成型されたレー
ストラツク状磁気コアを可飽和リアクトル用コアとして
用いるパルス回路素子において、上記レーストラツク状
磁気コアの、積層方向と平行な各コア端面をそれぞれ冷
却媒質が独立して流れ、かつ上記レーストラツク状磁気
コアの半局ずつをそれぞれ局方向に独立して冷却媒質が
流れるようなダクトを設けたことを特徴とするパルス回
路素子。
In a pulse circuit element that uses a racetrack-shaped magnetic core as a core for a saturable reactor, in which insulating layers and magnetic layers are laminated alternately from the inner station toward the outer station, and the racetrack-shaped magnetic core is formed into a flat shape with different major and minor axes. A cooling medium flows independently through each core end face parallel to the lamination direction of the racetrack-shaped magnetic core, and a cooling medium flows independently in each half of the racetrack-shaped magnetic core in the direction. A pulse circuit element characterized by being provided with a duct.
JP27850189A 1989-10-27 1989-10-27 Pulse circuit element Granted JPH03141621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27850189A JPH03141621A (en) 1989-10-27 1989-10-27 Pulse circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27850189A JPH03141621A (en) 1989-10-27 1989-10-27 Pulse circuit element

Publications (2)

Publication Number Publication Date
JPH03141621A true JPH03141621A (en) 1991-06-17
JPH0547967B2 JPH0547967B2 (en) 1993-07-20

Family

ID=17598194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27850189A Granted JPH03141621A (en) 1989-10-27 1989-10-27 Pulse circuit element

Country Status (1)

Country Link
JP (1) JPH03141621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107174A1 (en) * 1990-03-06 1991-09-12 Mitsubishi Electric Corp COIL ARRANGEMENT AND LASER DEVICE WITH A COIL ARRANGEMENT
WO2016143033A1 (en) * 2015-03-09 2016-09-15 ギガフォトン株式会社 High-voltage pulse generating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198206A (en) * 1987-06-11 1989-04-17 Hitachi Metals Ltd Magnetic component for high-voltage pulse generator
JPH0258811A (en) * 1988-08-25 1990-02-28 Hitachi Metals Ltd Magnetic component for high voltage pulse generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198206A (en) * 1987-06-11 1989-04-17 Hitachi Metals Ltd Magnetic component for high-voltage pulse generator
JPH0258811A (en) * 1988-08-25 1990-02-28 Hitachi Metals Ltd Magnetic component for high voltage pulse generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107174A1 (en) * 1990-03-06 1991-09-12 Mitsubishi Electric Corp COIL ARRANGEMENT AND LASER DEVICE WITH A COIL ARRANGEMENT
US5177762A (en) * 1990-03-06 1993-01-05 Mitsubishi Denki Kabushiki Kaisha Saturable reactor
WO2016143033A1 (en) * 2015-03-09 2016-09-15 ギガフォトン株式会社 High-voltage pulse generating device
JPWO2016143033A1 (en) * 2015-03-09 2018-02-01 ギガフォトン株式会社 High voltage pulse generator

Also Published As

Publication number Publication date
JPH0547967B2 (en) 1993-07-20

Similar Documents

Publication Publication Date Title
JPH01503264A (en) Transformers for intermittent power supply circuits and intermittent power supply circuits containing such transformers
JPH0366015A (en) Composite thin film magnetic head
US4896130A (en) Magnetic system
JPH03141621A (en) Pulse circuit element
US3859615A (en) Torus windings having asymmetric magnet coils
JP2023502403A (en) Electromagnetic induction device
Yamada et al. A high-performance and low-profile moving-magnet actuator for disk drives
JPH03129804A (en) Inductor and transformer
JPH0766459A (en) Superconducting converter
JPS638602B2 (en)
US3777369A (en) Method of making a magnetic recording head
JPH04211185A (en) Laser oscillator and saturable reactor
JPH0278003A (en) Perpendicular recording magnetic head
US3242447A (en) Saturable reactor core structure
JPS59178711A (en) Wound core
JPS60154510A (en) Tape-wound magnet core for high frequency
BG62541B1 (en) Transformer winding for electric resistance welding
JP2001257120A (en) Multiple cylindrical choke coil
JP2778708B2 (en) Magnetic components for high-voltage pulse generation
JPH01281510A (en) High magnetic field generating device
JPS55142408A (en) Magnetic head
JPH02105309A (en) Thin film magnetic head
JPH01307906A (en) Magnetic head
JPS61151819A (en) Thin film magnetic head
JPS6218005Y2 (en)