JPH0314127B2 - - Google Patents

Info

Publication number
JPH0314127B2
JPH0314127B2 JP58221217A JP22121783A JPH0314127B2 JP H0314127 B2 JPH0314127 B2 JP H0314127B2 JP 58221217 A JP58221217 A JP 58221217A JP 22121783 A JP22121783 A JP 22121783A JP H0314127 B2 JPH0314127 B2 JP H0314127B2
Authority
JP
Japan
Prior art keywords
state
body movement
signal
sleep
brain wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58221217A
Other languages
Japanese (ja)
Other versions
JPS60113111A (en
Inventor
Akishi Azuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP58221217A priority Critical patent/JPS60113111A/en
Publication of JPS60113111A publication Critical patent/JPS60113111A/en
Publication of JPH0314127B2 publication Critical patent/JPH0314127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1104Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs
    • A61B5/1105Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs of laboratory animals, e.g. activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/384Recording apparatus or displays specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/42Evaluating a particular growth phase or type of persons or animals for laboratory research

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Psychology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PURPOSE:To analyze the action state for a long time by discriminating and binarizing respective levels of action and non-action of a body motion signal and respective levels of deep sleep and nondeep sleep of a brain wave signal and specifying an REM sleep state from the external to generate 4-state time series data. CONSTITUTION:A maximum amplitude BM1 at every one second and an integral value D1 of 2-4Hz components at every one second are given to a recording meter 19 from a body motion detecting transducer 10 and a brain wave detecting electrode 11 which are provided on a small animal 9 for medicine and pharmacology, and they are inputted to the first analyzing block 25 also through an A/D converter 18 and an input data storage device 23 together with a reference value obtained from a monitor display device 22 and are binarized and are classified to an active state, a deep sleep state, and a still state. Further, the REM sleep state is read and interrupted from the recording meter 19 to generate 4- state time series data, and a relative body motion state is set by the second analyzing block 26, and the still state is classified into small groups in accordance with states before and after the still state by the third analyzing block 27 and is recorded.

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は、医学、薬学の分野で利用される小動
物の行動状態分析装置に関する。新薬開発の初期
段階で、薬剤の原型となる化合物や類似化合物を
小動物に投与して、広範囲な全身症状、行動など
が観察され、化合物の薬理活性の主作用ならびに
急性毒性の大よその程度が評価されている。また
医薬品や食品等に関しては長期に亘る安全性試験
と称される動物実験が義務づけられている。本発
明装置は、上記の新薬のスクリーニング及び安全
性試験において、動物実験の省力化機器として使
用される。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a small animal behavioral state analyzer used in the medical and pharmaceutical fields. In the early stages of new drug development, a prototype drug compound or a similar compound is administered to small animals, and a wide range of systemic symptoms and behaviors are observed, and the main effect of the compound's pharmacological activity and the approximate degree of acute toxicity are determined. It is evaluated. In addition, animal experiments called long-term safety tests are required for pharmaceuticals and foods. The device of the present invention is used as a labor-saving device for animal experiments in the above-mentioned screening and safety testing of new drugs.

(2) 発明の技術的背景 脳の構造と機能を微小電極を用いて研究する分
野を神経生理学といい、過去数十年の生理学の主
流であつた。この分野の著しい進歩はその実験技
術すなわち脳内中枢神経細胞に電極を直接接触さ
せる技術の確立によつて可能になつた。この技術
とは実験動物の脳を機械的に固定し、微小電極を
脳内に刺入する精巧な機器と、測定すべき中枢神
経細胞の解剖学的位置を頭蓋骨の外部から推測す
る技法から成るものである。
(2) Technical background of the invention The field of studying the structure and function of the brain using microelectrodes is called neurophysiology, and has been the mainstream of physiology for the past several decades. Significant progress in this field has been made possible by the establishment of experimental techniques, namely techniques that bring electrodes into direct contact with central nerve cells in the brain. This technology consists of a sophisticated device that mechanically fixes the brain of a laboratory animal and inserts a microelectrode into the brain, and a technique that estimates the anatomical location of the central nerve cells to be measured from outside the skull. It is something.

実験に職人的技術の熟練を必要とするため、対
象となる実験動物は体重に比して脳の大きい猫が
用いられ、中枢神経生理学は猫の脳を中心にして
国際的共通認識が形成され、順次猿やラツトに拡
張されていつた。
Because the experiments require skilled craftsmanship, the experimental animals used are cats, which have large brains relative to their body weight, and an international common understanding of central nervous physiology has been formed centering on the cat brain. , which was gradually extended to monkeys and rats.

このような歴史の中で、マウスは実験動物の中
で最小であり、脳も小さく、中枢の電気生理学で
は無視されていた動物であり、付属的な実験機器
の開発も体系的には行われなかつた。
Throughout this history, mice were the smallest experimental animals, with small brains, and were ignored in central electrophysiology, and the development of ancillary experimental equipment was not carried out systematically. Nakatsuta.

しかるに急性実験による脳の構造と機能に関す
る知識の集積が進むにつれ、次第に長期計測(慢
性実験)による脳の機能の解析が指向されるよう
になり、一方では生化学的ミクロ技術の確立とそ
れに供なう脳の構造と機能に関連する物質代謝の
知見に著しい進歩があつた。加えて遺伝子情報を
人為的に操作する技術が確立され、実験動物のマ
ウスを中心にして生命科学は劇的な進歩をとげつ
つある。
However, as knowledge about brain structure and function has been accumulated through acute experiments, there has been a gradual shift towards analysis of brain functions through long-term measurements (chronic experiments), while the establishment of biochemical microtechniques and their associated Significant progress has been made in the knowledge of substance metabolism related to the structure and function of the modern brain. In addition, technology for artificially manipulating genetic information has been established, and life science is making dramatic progress, centering on experimental animals such as mice.

このような生命科学の進歩を背景として、脳の
精神機能や個体機能を長期に亘つて計測する技術
の必要性が急激に高まつてきた。これに応えられ
る有力な技術の1つはマウスを用いて長期間個体
の状態解析を可能にする電気生理学的・心理学的
測定・分析技術の確立である。即ち、マウスに遺
伝子操作を行ないつつ脳の生理活性物質の代謝を
究明し、かつ電子顕微鏡によつて構造との関連を
裏付けられた分析結果とマウスの個体の状態変化
(個体機能)を対照して始めて新しい生命科学の
知見が期待される段階に達したといえよう。
Against the background of such progress in life sciences, the need for technology to measure the mental and individual functions of the brain over long periods of time has rapidly increased. One of the promising technologies that can meet this demand is the establishment of electrophysiological and psychological measurement and analysis techniques that make it possible to analyze the condition of individuals over long periods of time using mice. In other words, we investigated the metabolism of physiologically active substances in the brain while genetically manipulating mice, and compared the results of analysis using electron microscopy, which confirmed the relationship with structure, with changes in the state of individual mice (individual functions). It can be said that we have reached a stage where new life science knowledge is expected for the first time.

動物個体機能の発見状態の解析には、睡眠の解
析は必須であり、睡眠状態の定量にはまた脳波の
解析が必須である。しかるに睡眠解析に必要にし
て充分な脳波の解析が記録紙に記録された脳波像
のパターン認識(視察)を原点にして行われてお
り、大量かつ長期の実験と分析は膨大な人手と時
間を消費しない限り不可能であつた。すなわち測
定と分析のオンライン技術が確立されていないた
めに、コンピユーターの進歩とは無縁の存在であ
つたといつて過言ではない。
Sleep analysis is essential for the analysis of the state of discovery of individual animal functions, and brain wave analysis is also essential for quantifying the sleep state. However, the analysis of brain waves necessary and sufficient for sleep analysis is based on pattern recognition (inspection) of brain wave images recorded on recording paper, and large-scale and long-term experiments and analyzes require a huge amount of manpower and time. It was impossible without consumption. In other words, it is no exaggeration to say that because online technology for measurement and analysis had not been established, it remained unrelated to advances in computers.

(3) 従来技術と問題点 過去において、小動物の行動計測と睡眠計測を
併用して、小動物の単位時間毎の覚醒状態や睡眠
状態などの細部状態を高精度に自動分類する行動
状態分析装置は存在していない。
(3) Conventional technology and problems In the past, behavioral state analysis devices that use both behavior measurement and sleep measurement of small animals to automatically classify detailed states of small animals such as wakefulness and sleep states for each unit of time have not been developed. Doesn't exist.

従来は、ポリグラフイーといわれるように、
種々の動物の生理機能を電気信号に変換して、記
録紙に平行して記録し、研究者がこれらの信号を
読みとり、相互に比較して計数化し、現象を診断
する方法が用いられていた。
Traditionally, it was called polygraphy,
A method was used in which the physiological functions of various animals were converted into electrical signals, recorded in parallel on recording paper, and researchers read these signals, compared them, quantified them, and diagnosed the phenomenon. .

現在、動物の単一生理機能の測定に関しては、
各種の測定装置が市販されている。また動物の行
動計測に関しては、動物の動きを検出する方法と
して、動物の動きに伴なつて回転する飼育ケージ
を用い、その回転数をカウントする方法、飼育ケ
ージの振動を検出して間接的に動物の動きを知る
方法、動物に微小な加速度計等のトランスジユー
サを直接装着して体動を検出する方法、飼育ケー
ジに電場ないし磁場をつくり、微小な電流変化を
検出する方法等が用いられている。
Currently, when it comes to measuring single physiological functions in animals,
Various measuring devices are commercially available. Regarding the measurement of animal behavior, methods for detecting animal movement include methods that use a breeding cage that rotates with the movement of the animal and count the number of rotations, and methods that indirectly detect the vibrations of the breeding cage. Methods used include detecting animal movements, directly attaching transducers such as minute accelerometers to animals to detect body movements, and creating electric or magnetic fields in breeding cages to detect minute changes in current. It is being

第1図aは回転する飼育ケージを用いる方法の
例を示し、第1図bはトランスジユーサを小動物
に直接装着する方法の例を示す。
FIG. 1a shows an example of a method using a rotating rearing cage, and FIG. 1b shows an example of a method of attaching a transducer directly to a small animal.

上記飼育ケージを回転させる方法に除いて、他
の方法はトランスジユーサやセンサから出力され
る電気的信号を増幅し、一定基準の信号より大き
い部分を動物の活動状態として、単位時間毎に数
量化し、定量する自動分析器として市販されてい
る。しかし、このような機器においては、動物の
活動量の増減しか測定できず、非活動時の動物の
詳細な状態、たとえば睡眠状態なのか、又は覚醒
した静止状態であるかなどの相異を判定すること
はできなかつた。
In addition to the above-mentioned method of rotating the breeding cage, other methods amplify the electrical signals output from transducers and sensors, and determine the animal's activity state when the signal is larger than a certain standard. It is commercially available as an automatic analyzer for quantification and analysis. However, such devices can only measure increases and decreases in the animal's activity level, and cannot determine the detailed state of the animal when it is inactive, such as whether it is sleeping or awake and resting. I couldn't do it.

一方、実験動物の睡眠状態の判定には、動物の
脳波、筋電位および眼球運動の3要素が計測さ
れ、記録紙に書かれ、これらの記録された脳波
像、筋電位像および眼球運動電位像を研究者が相
互に比較して読みとり、研究者が国際的慣行であ
るヒトの睡眠状態分類法に準じて単位時間(10〜
30秒)毎に判定する方法が用いられている。
On the other hand, to determine the sleeping state of experimental animals, the three elements of the animal's brain waves, myoelectric potential, and eye movement are measured and written on recording paper, and these recorded electroencephalogram images, myoelectric potential images, and eye movement potential images are recorded. The researchers read the data and compare them with each other, and the researchers compare them with each other and read them for a unit time (10~
A method is used in which the determination is made every 30 seconds).

一般的にヒトの場合、記録された現像波形の読
みとり方は観察者の主観に左右されやすく、研究
者間の共通認識が得られないために、1960年代の
終りに、国際的なテキストが作成された。これは
ヒトから実測された約20秒間の脳波、筋電位およ
び眼球運動の記録像のうち、睡眠深度に対応した
典型的な記録像を示し、その特徴を併記し、「こ
のような記録像が得られたら、睡眠深度のどのレ
ベルと表現することにしよう」という国際的な取
り決めであり、第2図にその1例を示す。
In general, in the case of humans, how to read recorded development waveforms is easily influenced by the subjectivity of the observer, and because a common understanding among researchers could not be achieved, an international text was created at the end of the 1960s. It was done. This shows a typical recorded image corresponding to the depth of sleep among recorded images of brain waves, myoelectric potentials, and eye movements for about 20 seconds actually measured in humans, and also describes its characteristics. This is an international agreement that states, ``Once we have obtained this level, we will express it as the level of sleep depth.'' An example of this is shown in Figure 2.

第2図aは段階1睡眠の記録像を示し、第2図
bは段階2睡眠の記録像を示す。図中、○…任郎鹸
Figure 2a shows a recorded image of stage 1 sleep, and Figure 2b shows a recorded image of stage 2 sleep. In the diagram, ○...Ninroken

Claims (1)

【特許請求の範囲】 1 小動物から検出される体動信号の単位時間毎
のピーク値を入力する手段と、その小動物から検
出される脳波信号のうち深睡眠時に優勢に出現す
る特定周波数帯域の脳波信号の積分値を上記体動
信号と同一の単位時間に入力する手段と、入力さ
れた上記の体動信号および脳波信号の各々につい
て、その大きさと出現頻度との関係を座標軸上に
関数グラフ化する手段と、入力された体動信号を
上記関数グラフの極小点に対応する体動信号の大
きさを基準値として活動レベルと非活動レベルと
に2値化(BM11,BM10)する手段と、同じく
入力された脳波信号を上記関数グラフの極小点に
対応する脳波信号の積分値の大きさを基準値とし
て深睡眠レベルと非深睡眠レベルとに2値化
(D11,D10)する手段と、これら2値化された体
動信号および脳波信号に基づいて単位時間毎の小
動物の状態を、活動状態(BM11,D10,D11
と、深睡眠状態(BM10,D11)と、静止状態
(BM10,D10)とに順次分類して単一の時系列デ
ータを生成する手段と、入力された体動信号およ
び脳波信号から、不規則な微小体動信号と脳波信
号の減少とが同期して10〜180秒間出現するREM
睡眠状態を検出する手段と、上記4つの状態を要
素とする時系列データにおいて、静止状態を、そ
の前後がともに活動状態の場合を覚醒相の静止状
態に、また、それ以外の場合を浅睡状態に細分類
する手段とを備えていることを特徴とする小動物
の行動状態分析装置。 2 特許請求の範囲第1項において、時系列デー
タ中の深睡眠状態あるいはREM睡眠状態に挾ま
れた活動状態を抽出して相動的体動状態として特
定し分類する手段をそなえていることを特徴とす
る小動物の行動状態分析装置。
[Claims] 1. Means for inputting the peak value for each unit time of a body movement signal detected from a small animal, and brain waves in a specific frequency band that predominantly appears during deep sleep among the brain wave signals detected from the small animal. A means for inputting the integral value of the signal in the same unit time as the body movement signal, and a function graph of the relationship between the magnitude and appearance frequency of each of the input body movement signal and brain wave signal on a coordinate axis. and means for binarizing the input body movement signal into an activity level and an inactivity level (BM 11 , BM 10 ) using the magnitude of the body movement signal corresponding to the minimum point of the function graph as a reference value. Then, the similarly input electroencephalogram signal is binarized into deep sleep level and non-deep sleep level using the magnitude of the integral value of the electroencephalogram signal corresponding to the minimum point of the above function graph as a reference value (D 11 , D 10 ) Based on these binarized body movement signals and brain wave signals, the state of the small animal per unit time is determined as the active state (BM 11 , D 10 , D 11 ).
, a means for sequentially classifying into a deep sleep state (BM 10 , D 11 ) and a resting state (BM 10 , D 10 ) to generate a single time series data, and an input body movement signal and an electroencephalogram signal. REM, in which irregular microbody movement signals and a decrease in brain wave signals appear in synchronization for 10 to 180 seconds.
In the time-series data that includes means for detecting a sleep state and the above four states, a resting state is classified as a resting state when both the preceding and following states are active states, and a resting state in an awake phase, and a light sleep in other cases. 1. A behavioral state analysis device for a small animal, comprising means for subdividing into states. 2. Claim 1 states that the invention includes a means for extracting an active state interposed in a deep sleep state or a REM sleep state from time-series data, and identifying and classifying it as a phasic body movement state. Features: Small animal behavior analysis device.
JP58221217A 1983-11-24 1983-11-24 Analyzer for action state of small animal Granted JPS60113111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58221217A JPS60113111A (en) 1983-11-24 1983-11-24 Analyzer for action state of small animal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58221217A JPS60113111A (en) 1983-11-24 1983-11-24 Analyzer for action state of small animal

Publications (2)

Publication Number Publication Date
JPS60113111A JPS60113111A (en) 1985-06-19
JPH0314127B2 true JPH0314127B2 (en) 1991-02-26

Family

ID=16763296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58221217A Granted JPS60113111A (en) 1983-11-24 1983-11-24 Analyzer for action state of small animal

Country Status (1)

Country Link
JP (1) JPS60113111A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319588A (en) * 1986-07-14 1988-01-27 Matsushita Electric Works Ltd Awaking device
US5047930A (en) * 1987-06-26 1991-09-10 Nicolet Instrument Corporation Method and system for analysis of long term physiological polygraphic recordings
JPH0652180B2 (en) * 1988-01-14 1994-07-06 ダイキン工業株式会社 Human activity amount calculator
JP2712671B2 (en) * 1989-12-13 1998-02-16 松下電器産業株式会社 Sleep state determination device
JP5720295B2 (en) * 2011-02-22 2015-05-20 オムロンヘルスケア株式会社 Sleep evaluation apparatus and display method in sleep evaluation apparatus
CN114469005B (en) * 2022-02-17 2023-10-24 珠海格力电器股份有限公司 Sleep state monitoring method and device and computer readable storage medium

Also Published As

Publication number Publication date
JPS60113111A (en) 1985-06-19

Similar Documents

Publication Publication Date Title
Trettel et al. Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors
Liu et al. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations
Andrillon et al. Sleep spindles in humans: insights from intracranial EEG and unit recordings
Dooley et al. Self-generated whisker movements drive state-dependent sensory input to developing barrel cortex
Logothetis The underpinnings of the BOLD functional magnetic resonance imaging signal
McMahon et al. One month in the life of a neuron: longitudinal single-unit electrophysiology in the monkey visual system
Lebedev et al. Experience-dependent plasticity of rat barrel cortex: redistribution of activity across barrel-columns
Nghiem et al. Cholinergic switch between two types of slow waves in cerebral cortex
JP4997115B2 (en) Brain stem disorder diagnosis system and method
US8396545B2 (en) Electrophysiological screens for cognitive modulators
Nguyen et al. A frontal cortex event-related potential driven by the basal forebrain
JP2010504105A (en) Apparatus and method
Jarosiewicz et al. Hippocampal population activity during the small-amplitude irregular activity state in the rat
Logothetis Intracortical recordings and fMRI: an attempt to study operational modules and networks simultaneously
Colombi et al. A simplified in vitro experimental model encompasses the essential features of sleep
Roeder Responses of the less sensitive acoustic sense cells in the tympanic organs of some noctuid and geometrid moths
Hernan et al. Methodological standards and functional correlates of depth in vivo electrophysiological recordings in control rodents. A TASK 1‐WG 3 report of the AES/ILAE Translational Task Force of the ILAE
JPH0314127B2 (en)
Tazawa et al. Noncontact measurements of avian embryo heart rate by means of the laser speckle: comparison with contact measurements
Tóth et al. Neuronal coding of auditory sensorimotor gating in medial prefrontal cortex
Djakow et al. MoviBed-sleep analysis using capacitive sensors
Singhal et al. The differential effects of Sternberg short-and long-term memory scanning on the late Nd and P300 in a dual-task paradigm
JP2006521550A (en) Method and system for analyzing compounds
Febo Firing patterns of maternal rat prelimbic neurons during spontaneous contact with pups
Osanai et al. Extracting electromyographic signals from multi-channel LFPs using independent component analysis without direct muscular recording