JPH03141242A - Production of carboxylic acid ester and formamide - Google Patents

Production of carboxylic acid ester and formamide

Info

Publication number
JPH03141242A
JPH03141242A JP27835089A JP27835089A JPH03141242A JP H03141242 A JPH03141242 A JP H03141242A JP 27835089 A JP27835089 A JP 27835089A JP 27835089 A JP27835089 A JP 27835089A JP H03141242 A JPH03141242 A JP H03141242A
Authority
JP
Japan
Prior art keywords
carboxylic acid
acid ester
catalyst
formamide
acid amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27835089A
Other languages
Japanese (ja)
Inventor
Jiro Ishikawa
次郎 石川
Takafumi Abe
崇文 阿部
Hirobumi Higuchi
博文 樋口
Koichi Kida
木田 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP27835089A priority Critical patent/JPH03141242A/en
Publication of JPH03141242A publication Critical patent/JPH03141242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To facilitate separation and recovery of a catalyst and enable reuse thereof by electrolyzing a reaction product solution in reacting a carboxamide with a formic acid ester, etc., in the presence of a metal alcoholate catalyst and producing a carboxylic acid ester and formamide. CONSTITUTION:A carboxamide is reacted with a formic acid ester in the presence of a metal alcoholate or the carboxamide is reacted with an alcohol and carbon monoxide to produce an industrially important carboxylic acid ester and formamide useful as solvents, various treating agents, electrolytes, antifreezing agents, etc. In the process, the reaction product solution is electrolyzed using an electrolytic cell preferably divided into the cathode compartment and the anode compartment with a cation exchange membrane at 0.005-10A/cm<2>, preferably 0.01-5A/cm<2> current density to readily separate and recover the catalyst, which is then reused for the reaction. Thereby, catalyst cost is remarkably reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、カルボン酸アミドとギ酸エステル、又はカル
ボン酸アミドとアルコールと一酸化炭素(以下、これら
二つの場合を合わせてカルボン酸アミドとギ酸エステル
等と云う)の反応により、効率良くカルボン酸エステル
とホルムアミドを製造する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the production of carboxylic acid amide and formic acid ester, or carboxylic acid amide and alcohol and carbon monoxide (hereinafter, these two cases are combined). The present invention relates to a method for efficiently producing carboxylic acid esters and formamide by reaction of esters, etc.).

カルボン酸エステルは、工業的に重要な化合物であり、
カルボン酸アミドからのカルボン酸エステルの製造法と
しては、酢酸アミドがらの酢酸メチル製造、メタクリル
酸アミドからのメタクリル酸メチル製造、アクリル酸ア
ミドからのアクリル酸メチル製造、又はα−ヒドロキシ
イソ酪酸アミドからのα−ヒドロキシイソ酪酸メチル製
造等がある。
Carboxylic acid esters are industrially important compounds,
Methods for producing carboxylic acid esters from carboxylic acid amide include production of methyl acetate from acetate amide, production of methyl methacrylate from methacrylic acid amide, production of methyl acrylate from acryl amide, or production of methyl acrylate from α-hydroxyisobutyric acid amide. production of methyl α-hydroxyisobutyrate, etc.

一方ホルムアミドは、溶剤、各種処理剤、電解液、及び
凍結防止剤としての用途、或いは染料、顔料、医薬品等
の有機合成用の中間原料として用途があり、更にはシア
ン化水素の製造用の原料にもなる重要な基礎化学品であ
る。
Formamide, on the other hand, is used as a solvent, various processing agents, electrolyte, and antifreeze agent, or as an intermediate raw material for organic synthesis of dyes, pigments, pharmaceuticals, etc., and is also used as a raw material for the production of hydrogen cyanide. It is an important basic chemical product.

(従来の技術) カルボン酸アミドからのカルボン酸エステルの製造法と
しては、従来、硫酸の存在下においてカルボン酸アミド
とアルコールを反応させる方法が知られており、メタク
リル酸メチルの工業的製造法として広〈実施されている
(Prior art) As a method for producing a carboxylic acid ester from a carboxylic acid amide, a method in which a carboxylic acid amide and an alcohol are reacted in the presence of sulfuric acid is conventionally known, and as an industrial method for producing methyl methacrylate. Widely implemented.

しかしながら、この方法では膨大な量の酸性硫安が副生
じ、その処理に多大の費用を要すること及び高価な耐蝕
性の製造装置を必要とすること等の問題がある。
However, in this method, a huge amount of acidic ammonium sulfate is generated as a by-product, and there are problems such as a large amount of processing cost is required and an expensive corrosion-resistant manufacturing equipment is required.

これらの欠点を解消する方法として、硫酸を使用せずに
カルボン酸アミドとアルコールを接触的に反応させてカ
ルボン酸エステルを製造する方法が提案されている。し
かしながら、目的とするカルボン酸エステルの収率及び
選択率が低いことに加えて、多量のアンモニアが生成し
、その分離回収が必要なこと、及びカルボン酸のアンモ
ニウム塩を生ずること等の問題があり、工業的には満足
できるものではない。
As a method to overcome these drawbacks, a method has been proposed in which a carboxylic acid ester is produced by catalytically reacting a carboxylic acid amide and an alcohol without using sulfuric acid. However, in addition to the low yield and selectivity of the desired carboxylic acid ester, there are problems such as the generation of a large amount of ammonia, which requires separation and recovery, and the formation of ammonium salts of carboxylic acid. , which is not industrially satisfactory.

一方、アンモニアが生成しない方法としては、特開昭5
8−55444、及び特開昭60−78937において
、有機酸や無機酸の金属塩、又は金属カルボニル化合物
に、窒素又はリンを含む有機化合物等を組合せた触媒を
使用して、カルボン酸アミドとギ酸エステルの反応によ
りカルボン酸エステルとホルムアミドを製造する方法が
提案されている。しかしながら、これらの方法では触媒
系が複雑で高価なこと、及び触媒回収の費用が嵩むこと
等の問題がある。
On the other hand, as a method that does not generate ammonia,
No. 8-55444 and JP-A No. 60-78937, a catalyst in which a metal salt of an organic acid or an inorganic acid, or a metal carbonyl compound is combined with an organic compound containing nitrogen or phosphorus, is used to prepare a carboxylic acid amide and formic acid. A method of producing a carboxylic acid ester and formamide by reaction of esters has been proposed. However, these methods have problems such as the catalyst system being complex and expensive, and the cost of recovering the catalyst increasing.

そこで、特願昭63−116970において、アルカリ
金属アルコラード触媒の存在下でカルボン酸アミドとギ
酸エステルを反応させ、カルボン酸エステルとホルムア
ミドを製造する方法が提案されている。この方法では温
和な条件で高選択率でカルボン酸エステルとホルムアミ
ドが得られる。
Therefore, Japanese Patent Application No. 63-116970 proposes a method of producing a carboxylic acid ester and formamide by reacting a carboxylic acid amide and a formate in the presence of an alkali metal alcoholic catalyst. In this method, carboxylic acid esters and formamide can be obtained with high selectivity under mild conditions.

しかしながら、均一系触媒のため触媒の回収が難しく、
又回収無しでは触媒費が嵩むなどの問題があった。
However, it is difficult to recover the catalyst because it is a homogeneous catalyst.
In addition, there were problems such as increased catalyst costs without recovery.

(問題点を解決するための手段) 本発明者らは、カルボン酸アミドとギ酸エステル等から
カルボン酸エステルとホルムアミドを製造する改良法に
ついて鋭意検討を重ね、本発明に到達した。
(Means for Solving the Problems) The present inventors have conducted intensive studies on improved methods for producing carboxylic acid esters and formamide from carboxylic acid amide, formic acid ester, etc., and have arrived at the present invention.

即ち、金属アルコラード触媒の存在下でカルボン酸アミ
ドとギ酸エステル等を反応させて、カルボン酸エステル
とホルムアミドを製造する方法において、当該反応液を
電解することにより触媒を回収する方法を見出し、本発
明を完成させるに至った。
That is, in a method for producing a carboxylic acid ester and formamide by reacting a carboxylic acid amide with a formic acid ester, etc. in the presence of a metal alcoholade catalyst, a method for recovering the catalyst by electrolyzing the reaction solution was discovered, and the present invention was completed.

以下に、本発明について説明する。The present invention will be explained below.

本発明の方法に使用されるカルボン酸アミドは脂肪族又
は芳香族のカルボン酸アミド、α−ヒドロキシカルボン
酸アミド、或いはα−アミノカルボン酸アミドであり、
ニトリルの水和反応やアミンと一酸化炭素の反応等で合
成されるものである即ち、カルボン酸アミドについて例
示すると、アセトアミド、乳酸アミド、アクリル酸アミ
ド、メタクリル酸アミド、ベンズアミド、α−ヒドロキ
シイソ酪酸アミド、及びアラニンアミド等がある。
The carboxylic acid amide used in the method of the present invention is an aliphatic or aromatic carboxylic acid amide, an α-hydroxycarboxylic acid amide, or an α-aminocarboxylic acid amide,
Examples of carboxylic acid amides that are synthesized by the hydration reaction of nitrile or the reaction between amines and carbon monoxide include acetamide, lactic acid amide, acryl amide, methacrylic amide, benzamide, and α-hydroxyisobutyric acid. There are amides, alanine amides, etc.

本発明の方法に使用されるアルコール、又はギ酸エステ
ルは、炭素数1〜10の脂肪族アルコール、又は該アル
コールとギ酸とのエステルである。
The alcohol or formic acid ester used in the method of the present invention is an aliphatic alcohol having 1 to 10 carbon atoms, or an ester of the alcohol and formic acid.

又、脂肪族アルコールの例としては、メタノール、エタ
ノール、l−プロパツール、2−プロパツール、1−ブ
タノール、2−ブタノール、1−ペンタノール等がある
。又、ギ酸エステルの例としては、ギ酸メチル、ギ酸エ
チル、ギ酸プロピル、ギ酸イソプロピル、ギ酸n−ブチ
ル、ギ酸S−ブチル、ギ酸n−ペンチル等がある。
Further, examples of aliphatic alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, and the like. Examples of formic acid esters include methyl formate, ethyl formate, propyl formate, isopropyl formate, n-butyl formate, S-butyl formate, and n-pentyl formate.

本発明で云う金属アルコラードとは、リチウム、ナトリ
ウム、カリウム等のアルカリ金属、又はマグネシウム、
カルシウム、バリウム等のアルカリ土類金属の内、その
一種又は二種以上と脂肪族アルコールから合成されるも
のであり、その代表例としては、ナトリウムメチラート
、ナトリウムエチラート、ナトリウムブチラード、カリ
ウムメチラート、リチウムメチラート、マグネシウムメ
チラート、カルシウムメチラート、バリウムメチラート
等が挙げられる。
The metal alcoholades used in the present invention are alkali metals such as lithium, sodium, and potassium, or magnesium,
It is synthesized from one or more alkaline earth metals such as calcium and barium and an aliphatic alcohol. Typical examples include sodium methylate, sodium ethylate, sodium butylade, and potassium methylate. Examples include methylate, lithium methylate, magnesium methylate, calcium methylate, barium methylate, and the like.

又、これらの金属アルコラードは、アルコールの存在下
において、安価な金属水酸化物又は金属塩を電解槽を用
いて電解することにより合成することができる。このと
きの金属塩としては、ギ酸塩、酢酸塩等の有機酸塩や、
塩酸塩、硝酸塩等の無機酸塩等が使用される。
Further, these metal alcoholades can be synthesized by electrolyzing inexpensive metal hydroxides or metal salts using an electrolytic bath in the presence of alcohol. At this time, the metal salts include organic acid salts such as formates and acetates,
Inorganic acid salts such as hydrochloride and nitrate are used.

本発明に用いられる電極は、陽極として例えばTi板に
Pt−1r、Rub、 、PdOを被覆したもの及びP
tメツキしたもの等、又陰極として例えば鉄、ステンレ
ス、及びNiメツキしたもの等、の通常使用されるもの
から適宜選択される。
The electrode used in the present invention includes, for example, a Ti plate coated with Pt-1r, Rub, PdO, and PdO as an anode.
The material is suitably selected from commonly used materials such as T-plated materials, and iron, stainless steel, and Ni-plated materials for cathodes.

本発明に使用する電解槽は、陽極室と陰極室とが隔膜で
仕切られた二室型電解槽が好適である。
The electrolytic cell used in the present invention is preferably a two-chamber type electrolytic cell in which an anode chamber and a cathode chamber are separated by a diaphragm.

又、電解槽の隔膜としては、石綿、セラミクス等の濾隔
膜、β−アルミナ等の密隔膜、或いはイオン交換膜等が
挙げられる。両極室の生成物の拡散混合を防ぐにはどの
隔膜を用いても良いが、電解効率の点において、特に陽
イオン交換膜の使用が好ましい。
Examples of the diaphragm of the electrolytic cell include a filter diaphragm made of asbestos or ceramics, a dense diaphragm made of β-alumina, or an ion exchange membrane. Although any diaphragm may be used to prevent diffusion and mixing of the products in the bipolar chambers, it is particularly preferable to use a cation exchange membrane in terms of electrolysis efficiency.

以下に、本発明の方法を更に詳しく説明する。The method of the present invention will be explained in more detail below.

原料としてギ酸エステルを用いる場合には、−般にカル
ボン酸アミドは常温で固体であることがら、適当な溶媒
を使用するのが望ましい。
When using a formic acid ester as a raw material, it is desirable to use an appropriate solvent since carboxylic acid amides are generally solid at room temperature.

溶媒としては、アルコール等の極性溶媒が好ましく、ギ
酸エステルを構成しているアルコールを選択するのが特
に好ましい。
As the solvent, a polar solvent such as alcohol is preferred, and it is particularly preferred to select an alcohol that constitutes a formic acid ester.

又、原料としてギ酸エステルの代わりにアルコールと一
酸化炭素を使用する場合には、アルコールを過剰に用い
てカルボン酸アミドの溶媒も兼ねるのが好ましい。
Further, when alcohol and carbon monoxide are used as raw materials instead of formic acid ester, it is preferable to use an excess of alcohol to also serve as a solvent for the carboxylic acid amide.

本発明におけるカルボン酸アミドとギ酸エステルの反応
の場合には、カルボン酸アミド1モル当りのギ酸エステ
ルの使用量は、0.5〜20モルであり、好ましくは1
.5〜8モルの範囲である。
In the case of the reaction between carboxylic acid amide and formic acid ester in the present invention, the amount of formic acid ester used per mole of carboxylic acid amide is 0.5 to 20 moles, preferably 1 mole.
.. It is in the range of 5 to 8 moles.

これ以下の量では、カルボン酸アミドの転化率が低く、
又これ以上の量では未反応のギ酸エステルの回収量が増
大し実用上不利である。
If the amount is less than this, the conversion rate of carboxylic acid amide is low;
Moreover, if the amount is more than this, the amount of unreacted formic acid ester recovered increases, which is disadvantageous in practice.

又、本発明におけるカルボン酸アミドとアルコールと一
酸化炭素の反応の場合には、カルボン酸アミド1モル当
りのアルコールの使用量は、1〜30モルであり、好ま
しくは2〜20モルの範囲である。これ以下の量では、
カルボン酸アミドが溶解せず、又これ以上の量では反応
液からのアルコールの回収量が増大し実際的ではない。
In addition, in the case of the reaction of carboxylic acid amide, alcohol, and carbon monoxide in the present invention, the amount of alcohol used per 1 mole of carboxylic acid amide is in the range of 1 to 30 moles, preferably in the range of 2 to 20 moles. be. In amounts less than this,
The carboxylic acid amide will not dissolve, and if the amount exceeds this amount, the amount of alcohol recovered from the reaction solution will increase, which is not practical.

又、本発明においては、カルボン酸アミドに、ギ酸エス
テル、アルコール、及び−酸化炭素を反応させることも
できる。この場合には、カルボン酸アミド1モル当りの
ギ酸エステル、及びアルコールの使用量は、それぞれ0
.5〜15モル、及び0.5〜30モルであり、好まし
くは1〜8モル、及び2〜15モルの範囲である。
Further, in the present invention, a carboxylic acid amide can be reacted with a formic acid ester, an alcohol, and a carbon oxide. In this case, the amounts of formic acid ester and alcohol used per mole of carboxylic acid amide are each 0.
.. The range is 5 to 15 mol, and 0.5 to 30 mol, preferably 1 to 8 mol, and 2 to 15 mol.

本発明のカルボン酸アミドとギ酸エステル等の反応にお
いては、カルボン酸アミド1モルに対する金属アルコラ
ードの量が、o、ooi〜0.3モル、好ましくは0.
003〜0.1モルである。
In the reaction of carboxylic acid amide and formic acid ester of the present invention, the amount of metal alcoholade per mole of carboxylic acid amide is from o.ooi to 0.3 mole, preferably from 0.00 mole to 0.3 mole.
003 to 0.1 mole.

又、本発明に使用される金属アルコラードは、最初から
安価な金属水酸化物又は塩を用い、アルコール中にて電
解して調製し、次回からはカルボン酸アミドとギ酸エス
テル等の反応液を電解して回収した金属アルコラードを
循環使用するのが経済的に有利である。
In addition, the metal alcoholade used in the present invention is prepared by electrolyzing in alcohol using an inexpensive metal hydroxide or salt from the beginning, and from the next time, the reaction solution of carboxylic acid amide and formate ester is electrolyzed. It is economically advantageous to recycle the metal alcoholade recovered.

本発明による最初の金属アルコラード調製の具体的態様
は、まず電解槽の陽極室に金属水酸化物又は塩の溶液を
仕込む、この際の溶媒は金属水酸化物又は塩を溶解する
ものであればよい。金属水酸化物又は塩の濃度は、金属
水酸化物又は塩及び溶媒の種類によって異なるが、金属
水酸化物又は塩を溶解し且つ電解するのに十分な電気伝
導度が得られる濃度であればよい、陰極室には適当なア
ルコール溶媒等を仕込む0以上を陰極室及び陽極室に仕
込んだ後、両極間に直流電圧を印加することにより電解
が起こり、陰極室に金属アルコラードを生成させること
ができる。
A specific embodiment of the first metal alcoholade preparation according to the present invention is that a solution of a metal hydroxide or salt is first charged into the anode chamber of an electrolytic cell, and the solvent at this time is one that dissolves the metal hydroxide or salt. good. The concentration of the metal hydroxide or salt varies depending on the metal hydroxide or salt and the type of solvent, but as long as it has sufficient electrical conductivity to dissolve the metal hydroxide or salt and electrolyze it. After filling the cathode chamber and the anode chamber with a suitable alcohol solvent, etc., electrolysis occurs by applying a DC voltage between the two electrodes, and metal alcoholade can be generated in the cathode chamber. can.

本発明において、カルボン酸アミドとギ酸エステルの反
応に際しての反応温度と反応時間は、原料の種類及び触
媒の仕込量、更には目標反応率によって広い範囲を選び
得るが、−船釣な反応条件としては、反応温度は0〜2
00°C1特に20〜150℃の範囲が好ましい、これ
以下の温度では実用的な反応速度が得られず、又これ以
上の温度ではホルムアミドの分解や触媒の失活を生じや
すく不利である。反応時間は0.1〜20hr、特に0
、2〜10hrの範囲が好ましい。
In the present invention, the reaction temperature and reaction time for the reaction between carboxylic acid amide and formate ester can be selected from a wide range depending on the type of raw materials, the amount of catalyst charged, and the target reaction rate. , the reaction temperature is 0-2
00 DEG C. The range of 20 to 150 DEG C. is particularly preferred; temperatures below this range do not provide a practical reaction rate, and temperatures higher than this are disadvantageous as they tend to cause decomposition of formamide and deactivation of the catalyst. The reaction time is 0.1 to 20 hr, especially 0
, a range of 2 to 10 hours is preferred.

反応圧力は、その反応温度で示す蒸気圧下で反応させて
も良いが、ギ酸エステルの分解を抑制する為、−酸化炭
素加圧下で反応させることもできる。具体的には反応圧
力は常圧〜300atmであり、経済的には常圧〜lo
oatmの範囲が好ましい。
The reaction may be carried out under a vapor pressure indicated by the reaction temperature, but in order to suppress the decomposition of the formate ester, the reaction may also be carried out under a -carbon oxide pressure. Specifically, the reaction pressure is from normal pressure to 300 atm, and economically from normal pressure to lo
A range of oatm is preferred.

又、カルボン酸アミドとアルコール及び−酸化炭素の反
応に際しての反応圧力は、−酸化炭素の分圧として10
〜500atm、好ましくは30〜200a tmの範
囲である。
In addition, the reaction pressure during the reaction of carboxylic acid amide, alcohol and -carbon oxide is 10 as the partial pressure of -carbon oxide.
-500 atm, preferably 30-200 atm.

本発明の方法は、反応形式として回分式、連続式の何れ
の方法も可能であるが、工業的には連続式での態様が好
ましい。
Although the method of the present invention can be carried out either batchwise or continuously, industrially preferred is a continuous mode.

本発明における金属アルコラード触媒の回収は、カルボ
ン酸アミドとギ酸エステル等の反応液を隔膜で陽極室と
陰極室とに仕切られた電解槽内で電解することによって
実施される。
Recovery of the metal alcoholade catalyst in the present invention is carried out by electrolyzing a reaction solution of carboxylic acid amide, formate, etc. in an electrolytic cell partitioned into an anode chamber and a cathode chamber by a diaphragm.

即ち、当該反応液を電解槽の陽極室に、アルコールを陰
極室に仕込み、両極間に直流電圧を印加すると電解が起
こり、生成したアルカリ金属又はアルカリ土類金属の陽
イオンが陽極室から隔膜を通り陰極室に移動することに
より、陽極室では触媒が除去され、陰極室に金属アルコ
ラードを再生させることができる。
That is, when the reaction solution is placed in the anode chamber of the electrolytic cell and the alcohol is placed in the cathode chamber, and a DC voltage is applied between the two electrodes, electrolysis occurs, and the generated alkali metal or alkaline earth metal cations pass through the diaphragm from the anode chamber. By moving the catalyst directly to the cathode chamber, the catalyst is removed from the anode chamber and the metal alcoholade can be regenerated into the cathode chamber.

本発明の方法における電流密度は、O,OO5〜10 
A/cm” 、好まし2くは0.01〜5 A / c
m”の範囲である。電解温度は低温でも高温でも可能で
あるが、室温で行うのが経済的である。
The current density in the method of the present invention is O, OO5-10
A/cm", preferably 0.01-5 A/c
The electrolysis temperature can be low or high, but it is economical to perform it at room temperature.

本発明の方法によって回収した触媒や電解合成した触媒
は、電解槽から取出して別の反応器中でカルボン酸アミ
ドとギ酸エステル等の反応に使用しても良いし、又電解
槽中で直接反応させることもできる。即ち後者の方法に
ついては、当該反応液、又は金属水酸化物又は塩の溶液
を電解槽の陽極室に、カルボン酸アミドとギ酸エステル
等の反応の原料液を陰極室に仕込み、両極間に直流電圧
を印加すると電解がおこり、陰極室中に触媒を回収又は
生成させると同時にカルボン酸アミドとギ酸エステル等
の反応を行うことができるものであり、本発明方法の大
きな特徴の一つである。
The catalyst recovered by the method of the present invention or the catalyst electrolytically synthesized may be taken out from the electrolytic cell and used for the reaction of carboxylic acid amide and formate, etc. in another reactor, or it may be directly reacted in the electrolytic cell. You can also do it. That is, for the latter method, the reaction solution or a solution of metal hydroxide or salt is charged into the anode chamber of the electrolytic cell, and the raw material solution for the reaction of carboxylic acid amide and formate ester is charged into the cathode chamber, and a direct current is applied between the two electrodes. When a voltage is applied, electrolysis occurs, and the catalyst can be recovered or produced in the cathode chamber, and at the same time, a reaction between carboxylic acid amide and formate can be carried out, which is one of the major features of the method of the present invention.

〔実施例〕〔Example〕

以下に、実施例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

尚、本発明はこれらの実施例に制限されるものではない
Note that the present invention is not limited to these examples.

尖隻拠上 陽イオン交換膜(デュポン社製、商品名ナフィヨン32
4)によって陽極室と陰極室に区画された有効膜面積6
.8c+w”、電極間距離811111の二室型電解槽
を用いた。
Point-based cation exchange membrane (manufactured by DuPont, trade name Nafyon 32)
4) Effective membrane area divided into anode chamber and cathode chamber by 6
.. A two-chamber electrolytic cell with an electrode distance of 811111 was used.

陽極室にはPt、メツキしたTi板を陽極とし、水酸化
ナトリウム1重量%メタノール溶液12g(水酸化ナト
リウム3ミリモル)を入れ、陰極室にはNi板を陰極と
し、α−ヒドロキシイソ酪酸アミド10.3g(0,1
モル)、ギ酸メチル12g(0,2モル)、メタノール
9.6g(0,3モル)を入れた。陽極−陰極間に0.
3 Aの直流電流を1時間印加した。このときの電圧は
約30Vであった。
In the anode chamber, a Pt-plated Ti plate was used as an anode, and 12 g of a 1% by weight methanol solution of sodium hydroxide (3 mmol of sodium hydroxide) was placed in the anode chamber. In the cathode chamber, a Ni plate was used as a cathode, and α-hydroxyisobutyric acid amide 10 .3g (0,1
mol), 12 g (0.2 mol) of methyl formate, and 9.6 g (0.3 mol) of methanol were added. 0 between anode and cathode.
A direct current of 3 A was applied for 1 hour. The voltage at this time was about 30V.

電解後、陽極室中のナトリウムは0.08ミリモル、陰
極室中のナトリウムは2.7ミリモルであり、ナトリウ
ムの移動率は97%であった。
After electrolysis, the sodium in the anode chamber was 0.08 mmol, the sodium in the cathode chamber was 2.7 mmol, and the sodium transfer rate was 97%.

得られた陰極室液を内容積70m1のステンレス製オー
トクレーブに移し、60℃で2時間反応させた。オート
クレーブを10″Cまで冷却後、生成物を取り出し、ガ
スクロマトグラフ分析を行った。その結果、α−ヒドロ
キシイソ酪酸アミドの反応率は63%であり、α−ヒド
ロキシイソ酪酸メチルへの選択率は98%、ホルムアミ
ドへの選択率は99%であった。
The obtained cathode chamber solution was transferred to a stainless steel autoclave with an internal volume of 70 ml, and reacted at 60° C. for 2 hours. After cooling the autoclave to 10"C, the product was taken out and analyzed by gas chromatography. As a result, the reaction rate of α-hydroxyisobutyric acid amide was 63%, and the selectivity to methyl α-hydroxyisobutyrate was The selectivity to formamide was 98% and 99%.

叉扇■叉 実施例1と同様の電解槽を用い、陽極室には実施例1で
得られた反応液(ナトリウム2.6ミリモル)を、陰極
室には実施例1と同じくα−ヒドロキシイソ酪酸アミド
10.3g(0,1モル)、ギ酸メチル12g(0,2
モル)、陽極−陰極間に0.3Aの直流電流を1時間印
加した。このときの電圧は約30Vであった。電解後、
陰極室中のナトリウムは0.07ミリモル、陰極室中の
、ナトリウムは2.3ミリモルであり、ナトリウムの移
動率は97%であった。
Using the same electrolytic cell as in Example 1, the reaction solution obtained in Example 1 (2.6 mmol of sodium) was placed in the anode chamber, and α-hydroxyisomer as in Example 1 was placed in the cathode chamber. Butyric acid amide 10.3g (0.1 mol), methyl formate 12g (0.2
mol), and a direct current of 0.3 A was applied between the anode and cathode for 1 hour. The voltage at this time was about 30V. After electrolysis,
The sodium content in the cathode compartment was 0.07 mmol, the sodium content in the cathode compartment was 2.3 mmol, and the sodium transfer rate was 97%.

得られた陰極室液をオートクレーブに移し、実施例1と
同様に反応させ分析したところ、α−ヒドロキシイソ酪
酸アミドの反応率は62%であり、α−ヒドロキシイソ
酪酸メチルへの選択率は98%、ホルムアミドへの選択
率は98%であった。
The obtained cathode chamber solution was transferred to an autoclave, reacted and analyzed in the same manner as in Example 1, and the reaction rate of α-hydroxyisobutyric acid amide was 62%, and the selectivity to methyl α-hydroxyisobutyrate was 98%. %, and the selectivity to formamide was 98%.

尖旌炎ユ 実施例1と同様の電解槽を用い、陽極室には水酸化ナト
リウム10重量%メタノール溶液23g(水酸化ナトリ
ウム57.5ミリモル)を、陰極室にはメタノール20
g(0,625モル)を入れた。
Using the same electrolytic cell as in Example 1, 23 g of a 10% by weight methanol solution of sodium hydroxide (57.5 mmol of sodium hydroxide) was placed in the anode chamber, and 20 g of methanol was placed in the cathode chamber.
g (0,625 mol) was added.

陽極−陰極間にIAの直流電流を1時間印加した。A direct current of IA was applied between the anode and the cathode for 1 hour.

このときの電圧は約10Vであった。電解後の陰極室中
のナトリウムは52.7ミリモルであり、ナトリウムの
移動率は92%であった。
The voltage at this time was about 10V. The sodium content in the cathode chamber after electrolysis was 52.7 mmol, and the sodium transfer rate was 92%.

得られた陰極室液10gを、電磁撹拌機、−酸化炭素導
入管、圧力計、及び排気管を取り付けた500IIll
のステンレス製オートクレーブに移し、引き続きα−ヒ
ドロキシイソ酪酸アミド51.5 g(0,5モル)、
メタノール150g(4,7モル)を加えた後、−酸化
炭素で40atmに加圧し、撹拌加熱した。
10 g of the obtained cathode chamber liquid was transferred to a 500IIll equipped with an electromagnetic stirrer, a carbon oxide inlet pipe, a pressure gauge, and an exhaust pipe.
51.5 g (0.5 mol) of α-hydroxyisobutyric acid amide,
After adding 150 g (4.7 mol) of methanol, the mixture was pressurized to 40 atm with carbon oxide and heated with stirring.

オートクレーブ内の温度が80℃に達したら、反応圧力
を40atmに維持するように一酸化炭素ガスを導入し
ながら3時間反応を続けた。
When the temperature inside the autoclave reached 80° C., the reaction was continued for 3 hours while introducing carbon monoxide gas to maintain the reaction pressure at 40 atm.

その後、オートクレーブを10℃迄冷却し、内圧を徐々
に下げて常圧に戻した後、生成物を取出し分析を行った
Thereafter, the autoclave was cooled to 10° C., and the internal pressure was gradually lowered to normal pressure, after which the product was taken out and analyzed.

その結果、α−ヒドロキシイソ酪酸アミドの反応率は8
6%であり、α−ヒドロキシイソ酪酸メチルへの選択率
は97%、ホルムアミドへの選択率は95%であった。
As a result, the reaction rate of α-hydroxyisobutyric acid amide was 8
6%, the selectivity to methyl α-hydroxyisobutyrate was 97%, and the selectivity to formamide was 95%.

(発明の効果) 本発明の方法によれば、金属アルコラード触媒の存在下
、カルボン酸アミドとギ酸エステル等を反応させてカル
ボン酸エステルとホルムアミドを製造する方法において
、反応生成液の電解により触媒の分離回収が容易になさ
れ、反応に再使用できる。 この為に触媒費の大幅な削
減が可能となり、その工業的な意義は掻めて大きい。
(Effects of the Invention) According to the method of the present invention, in the method of producing a carboxylic acid ester and formamide by reacting a carboxylic acid amide with a formic acid ester, etc. in the presence of a metal alcoholic catalyst, the catalyst is removed by electrolysis of the reaction product liquid. It can be easily separated and recovered and reused for reactions. This makes it possible to significantly reduce catalyst costs, which has great industrial significance.

Claims (2)

【特許請求の範囲】[Claims] (1)金属アルコラード触媒の存在下で、カルボン酸ア
ミドとギ酸エステル、又はカルボン酸アミドとアルコー
ルと一酸化炭素を反応させて、カルボン酸エステルとホ
ルムアミドを製造する方法において、当該反応液を電解
することにより上記触媒を回収することを特徴とするカ
ルボン酸エステルとホルムアミドの製造法。
(1) In the method of producing a carboxylic acid ester and formamide by reacting a carboxylic acid amide and a formate ester, or a carboxylic acid amide, an alcohol, and carbon monoxide in the presence of a metal alcoholade catalyst, the reaction solution is electrolyzed. A method for producing a carboxylic acid ester and formamide, which comprises recovering the catalyst.
(2)陽イオン交換膜によって陽極室と陰極室とに区画
された電解槽を用いる特許請求の範囲第(1)項記載の
方法。
(2) The method according to claim (1), which uses an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane.
JP27835089A 1989-10-27 1989-10-27 Production of carboxylic acid ester and formamide Pending JPH03141242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27835089A JPH03141242A (en) 1989-10-27 1989-10-27 Production of carboxylic acid ester and formamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27835089A JPH03141242A (en) 1989-10-27 1989-10-27 Production of carboxylic acid ester and formamide

Publications (1)

Publication Number Publication Date
JPH03141242A true JPH03141242A (en) 1991-06-17

Family

ID=17596111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27835089A Pending JPH03141242A (en) 1989-10-27 1989-10-27 Production of carboxylic acid ester and formamide

Country Status (1)

Country Link
JP (1) JPH03141242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387382A (en) * 2002-03-19 2003-10-15 Univ Hull Amide synthesis by reaction of an activated carboxylic acid with an amine in a liquid to which an electrical voltage is applied

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387382A (en) * 2002-03-19 2003-10-15 Univ Hull Amide synthesis by reaction of an activated carboxylic acid with an amine in a liquid to which an electrical voltage is applied

Similar Documents

Publication Publication Date Title
RU2237655C2 (en) Method for preparing l-phenylephrine hydrochloride
Tascedda et al. Nickel‐catalyzed electrochemical carboxylation of epoxides: mechanistic aspects
JP2633244B2 (en) Oxidation of organic compounds using cerium methanesulfonate in aqueous organic solutions
JPH03141242A (en) Production of carboxylic acid ester and formamide
EP0392361B1 (en) Process for production of carboxylic acid esters and formamide
US5312966A (en) Process for production of carboxylic acid ester and formamide
JP2754763B2 (en) Process for producing carboxylic esters and formamides
JPS6342713B2 (en)
JP2604826B2 (en) Highly selective oxidation of primary alcohols to aldehydes
RU2135458C1 (en) Method of synthesis of succinic acid
JP3622790B2 (en) Method for producing alkali alkoxide by electrolytic reaction
CN113979854B (en) Method for electrochemically preparing 2-phenylpropionic acid
US11661661B2 (en) Method for synthesizing beta-cyano ketone compound
WO1994029498A1 (en) Process for producing 1,4-dihydroperfluorobutane
JP3478893B2 (en) Method for producing high-purity choline
CN110511134B (en) Preparation method of 3-hydroxypropionic acid
CN111945181B (en) Electrochemical synthesis method of 3-alkylselenoquinolinone compound
CN106928083A (en) The method that metallic sodium catalysis ester aminating reaction prepares acid amides
JPH02255640A (en) Production of carboxylic acid ester
JP2632832B2 (en) Method for producing polyfluorobenzyl alcohol
CN117486781A (en) Method for synthesizing 6, 6-dimethyl-3-azabicyclo [3.1.0] hexane
US4035252A (en) Process for producing 2-aminomethyl-1-ethylpyrrolidine
JP3282633B2 (en) Method for producing quaternary ammonium hydroxide aqueous solution
JP2004250544A (en) Method for recovering terephthalic acid from poly(terephthalic acid ester)
CN117758285A (en) Electrochemical oxidation method for producing DMF (dimethyl formamide) by TMA (time stamp oxidation)