JPH03140785A - Refrigerator equipped with defrosting chamber - Google Patents

Refrigerator equipped with defrosting chamber

Info

Publication number
JPH03140785A
JPH03140785A JP27886689A JP27886689A JPH03140785A JP H03140785 A JPH03140785 A JP H03140785A JP 27886689 A JP27886689 A JP 27886689A JP 27886689 A JP27886689 A JP 27886689A JP H03140785 A JPH03140785 A JP H03140785A
Authority
JP
Japan
Prior art keywords
temperature
thawing
time
heater
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27886689A
Other languages
Japanese (ja)
Inventor
Kenji Onishi
賢二 大西
Yoshinori Ohashi
大橋 祥記
Mikiko Sakaguchi
坂口 美樹子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP27886689A priority Critical patent/JPH03140785A/en
Publication of JPH03140785A publication Critical patent/JPH03140785A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE:To provide a refrigerator with a defrosting chamber, capable of defrosting in a short period of time, especially in the refrigerator by a method wherein a heater is conducted continuously from the starting of defrosting to a time when the temperature of a bottom plate is risen to a predetermined temperature and when the same temperature has risen to the predetermined temperature, the rate of conduction of the heater is reduced for a period of time obtained by multiplying a time, required for rising to the predetermined temperature, by a first magnification and, thereafter, the rate of conduction of the heater is reduced further for a time obtained by multiplying the time, required for rising to the predetermined temperature, by a second magnification. CONSTITUTION:Foods 45 to be defrosted are put on a defrosting tray 44 and the tray 44 is arranged on a bottom plate 41 in a defrosting chamber 15, then, a defrosting switch is thown. Then, a far-infrared ray heater 34 and a heater 42 are conducted continuously. When the defrosting operation is advanced and a temperature, detected by a temperature detector 43, has risen to a predetermined temperature, the heat generating capacity of the far-infrared heater 34 is reduced to the rate of conduction of 80% for a time (t1) after the continuous conduction time (to), then, the rate of conduction is reduced to 40% for a successive time (t2) and, thus, the rate of conduction is reduced stepwisely in accordance with the elapse of time. On the other hand, the rate of conduction of the heater 42 is 80% for a time (t1') after the continuous conduction time (to) and the same rate is reduced to 0% in a successive time (t2').

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷凍食品を解凍する解凍室付冷蔵庫に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigerator with a thawing chamber for thawing frozen foods.

従来の技術 従来より冷凍食品の解凍に対して加熱ヒータを用いる例
が知られている。例えば、特公昭48−25414号公
報に示される例がそれであり、以下第7図、第8図に従
い説明する。
2. Description of the Related Art Conventionally, examples of using a heater to defrost frozen foods have been known. For example, an example is shown in Japanese Patent Publication No. 48-25414, and will be explained below with reference to FIGS. 7 and 8.

1は解凍箱であり、金属又は合成樹脂等で箱状に形成し
た外箱2と、前記外箱2の内側に適当な間隙を配して設
けた熱伝導率の良好なアルミ等の金属製の内箱3で構成
されている。4は線状の加熱ヒータであり、前記解凍箱
1の底面部は疎に、上面部は密になるようにしてアルミ
箔6によって前記内箱3に熱伝導的に密接されている。
Reference numeral 1 denotes a thawing box, which includes an outer box 2 formed into a box shape of metal or synthetic resin, and an outer box 2 made of metal such as aluminum with good thermal conductivity and provided with an appropriate gap inside the outer box 2. It consists of an inner box 3. Reference numeral 4 denotes a linear heater, which is closely connected to the inner box 3 by means of aluminum foil 6 so that the bottom surface of the thawing box 1 is sparse and the top surface is densely packed.

6は前記外箱2.アルミ箔6間に介在させた断熱材であ
る。
6 is the outer box 2. This is a heat insulating material interposed between aluminum foils 6.

かかる構成において、解凍箱1の底面に被解凍食品7を
載置して解凍作用を開始すると、加熱ヒータ4の加熱に
よって内箱3の全周より熱が加えられ、はぼ均一に被解
凍食品7を加熱し、解凍を行なわせることが特徴となっ
ている。
In this configuration, when the food 7 to be thawed is placed on the bottom of the thawing box 1 and the thawing action is started, heat is applied from the entire circumference of the inner box 3 by the heating of the heater 4, and the food to be thawed is almost uniformly heated. 7 is heated to thaw it.

発明が解決しようとする課題 しかし、この様な構成では解凍箱1の底面部からは、熱
伝導により被解凍食品7の底面部に熱が伝わり底面部の
解凍は可能であるものの、解凍箱1の上面及び側面部か
らの被解凍食品7への放射熱の効果は、加熱ヒータ4か
ら内箱3を介しての熱線波長が6μm以下の近遠赤外線
域であるためほとんどなく、解凍箱1内の暖められた空
気の対流による伝熱によってのみ加熱が行なわれる。こ
のため、被解凍食品7の中心部と表面部との解凍むらが
大きくなり易く又、解凍時間も長くかかるという欠点や
、解凍終了後そのまま食品を放置しておくと、特に魚肉
等の生ものでは雰囲気温度が高いことによる変質が生じ
るため、解凍終了を使用者が監視して処理する必要があ
り、安心して使用出来ないという欠点があった。
Problems to be Solved by the Invention However, with such a configuration, heat is transmitted from the bottom of the thawing box 1 to the bottom of the food to be thawed 7 by thermal conduction, and although it is possible to thaw the bottom of the food 7, the thawing box 1 The effect of radiant heat on the food to be thawed 7 from the top and side surfaces is almost negligible because the heat ray wavelength from the heater 4 through the inner box 3 is in the near-far infrared range of 6 μm or less, Heating occurs only by heat transfer by convection of warmed air. For this reason, there are disadvantages that the unevenness of thawing between the center and surface of the food to be thawed 7 tends to become large, and that it takes a long time to thaw. Since deterioration occurs due to the high ambient temperature, the user has to monitor the completion of defrosting before processing, which has the disadvantage that it cannot be used with confidence.

本発明は上述した課題を解消するものであり、解凍むら
が少なく、短時間で解凍可能な解凍室を特に冷蔵庫内に
付与することを目的としている。
The present invention solves the above-mentioned problems, and aims to provide a thawing chamber, especially in a refrigerator, that is less uneven in thawing and can be thawed in a short time.

課題を解決するための手段 上記課題を解決するために本発明の解凍室付冷蔵庫は、
解凍室内の上面に遠赤外線ヒータとその上部をドーム状
に覆う反射板、底面に加熱ヒータ及び温度検知器を密着
させた底面板を設けて、その底面板の上に被解凍食品を
載置した解凍皿を設置する構成とする。そして、反射板
の裏面空間には通風路を形成して解凍室の冷気の入口に
設けた冷気流入量調節用のダンパーサーモに連通させ、
反射板には多数の通風孔を形成する。そしてこのような
構成に対して、解凍中はダンパーサーモを強制開放、送
風機を強制運転させるとともに、解凍開始から底面板の
温度検知器の温度が所定温度に上昇するまでは遠赤外線
ヒータ、加熱ヒータを連続通電させ、温度検知器の温度
が所定温度に上昇すると、温度検知器の温度が所定温度
に上昇するまでに要した時間に第1の一定倍率をかけた
時間両ヒータへの通電率を低減させ、その後、温度検知
器の温度が所定温度に上昇するまでに要した時間に第2
の一定倍率をかけた時間両ヒータへの通電率をさらに低
減させ、非解凍時は解凍室を冷蔵温度と冷凍温度の間の
第3の温度帯に維持させる解凍制御装置を設けるもので
ある。
Means for Solving the Problems In order to solve the above problems, the refrigerator with a defrosting chamber of the present invention has the following features:
A far-infrared heater and a reflector plate covering the top in a dome shape are installed on the top surface of the thawing chamber, and a bottom plate with a heating heater and a temperature sensor attached to the bottom surface is installed, and the food to be thawed is placed on the bottom plate. The configuration is such that a thawing dish is installed. Then, a ventilation path is formed in the space on the back side of the reflector plate and communicated with a damper thermometer for adjusting the amount of cold air inflow, which is installed at the cold air inlet of the thawing chamber.
A large number of ventilation holes are formed in the reflection plate. For such a configuration, during thawing, the damper thermo is forced open and the blower is forced into operation, and the far-infrared heater and heating heater are turned on from the start of thawing until the temperature of the temperature sensor on the bottom plate rises to a predetermined temperature. is continuously energized, and when the temperature of the temperature sensor rises to a predetermined temperature, the energization rate to both heaters is set to the time required for the temperature of the temperature sensor to rise to the predetermined temperature multiplied by the first constant multiplier. After that, the second
A thawing control device is provided which further reduces the energization rate to both heaters for a certain time multiplied by a certain factor of , and maintains the thawing chamber in a third temperature range between the refrigeration temperature and the freezing temperature when not thawing.

作  用 本発明は上記した構成によって、被解凍食品の上面及び
側面より遠赤外線ヒータによる遠赤外線の直接放射及び
反射板を介しての間接放射が行なわれるとともに底面の
加熱ヒータからの伝熱加熱が行なわれて熱吸収される。
Effect of the present invention With the above-described configuration, far-infrared rays are directly radiated by the far-infrared heater and indirectly radiated through the reflector from the top and side surfaces of the food to be thawed, and conductive heating is performed from the bottom heater. heat is absorbed.

又、底面の温度検知器が所定温度に上昇するまでは両ヒ
ータが連続通電されて急激に被解凍食品の温度が上昇す
る。その後側ヒータの通電率を2段階に下げその通電時
間を前記温度検知器の温度が所定温度迄上昇する行する
。ダンパーサ−七を介して反射板に形成した上面の多数
の通風孔より被解凍食品に対して均等に冷気が供給され
て食品表面の温度上昇を抑制する。更に解凍終了後はダ
ンパーサーモの温調作用により食品温度は自動的に冷蔵
温度と冷凍温度の間の第3の温度帯に維持されて保冷さ
れるものである。
Further, until the temperature sensor on the bottom rises to a predetermined temperature, both heaters are continuously energized and the temperature of the food to be thawed increases rapidly. The energization rate of the rear heater is reduced to two levels and the energization time is set until the temperature of the temperature sensor rises to a predetermined temperature. Cold air is evenly supplied to the food to be thawed through the many ventilation holes formed on the upper surface of the reflector via the damper 7, thereby suppressing the temperature rise on the food surface. Further, after thawing is completed, the temperature of the food is automatically maintained at a third temperature range between the refrigeration temperature and the freezing temperature by the temperature control function of the damper thermo, and the food is kept cold.

実施例 以下本発明の一実施例の解凍室付冷蔵庫について第1図
から第6図に従い説明する。
EXAMPLE A refrigerator with a defrosting chamber according to an example of the present invention will be described below with reference to FIGS. 1 to 6.

8は冷蔵庫本体で外箱9.内箱1o及びこれら両箱9.
10間に充填された断熱材11により構成されている。
8 is the refrigerator itself and the outer box 9. Inner box 1o and both boxes 9.
It is composed of a heat insulating material 11 filled between 10 and 10.

12は冷蔵庫本体8内を上下に区画する区画壁であυ、
前記区画壁12の上部に冷凍室13、下部に冷蔵室14
が区画形成されている。16は前記冷蔵室14内の上部
の一区画に設けた解凍室である。16は前記冷蔵庫本体
8の底部後方に設けた冷凍サイクルの圧縮機、17は前
記冷凍室13の背面に収めた冷却器である。18は前記
冷却器17で冷却された冷気を前記冷凍室13、冷蔵室
14.解凍室15内に強制通風させるための送風機、1
9 、20は前記冷蔵室14゜解凍室16の入口に設け
て電気的入力で冷気流入量を調節するダンパーサーモで
あシ、その構成を解凍室16用のダンパーサーモ2oを
例にとって説明すると、21は電磁コイル、22は前記
電磁コイ1v21の内心部を電磁作用の有無によって上
下するプランジャー、23は前記プランジャー22に接
合されたロッド、24は冷気通路を開閉するダンパーで
あり、前記電磁コイA/21への通電時に電磁作用で前
記ロッド23が押し上げられて前記ダンパー24が開放
され、通電が断たれると前記ロッド23は下方に落下し
て前記ダンパー24が閉成する様に構成されている。尚
、図示しないが後の説明の便宜上、同一構成の冷蔵室用
のダンパーサーモ19の電磁コイルを21′、ダンハー
ヲ24′とする。
12 is a partition wall υ that partitions the inside of the refrigerator main body 8 into upper and lower parts;
A freezing compartment 13 is provided in the upper part of the partition wall 12, and a refrigerator compartment 14 is provided in the lower part.
are divided into sections. Reference numeral 16 denotes a thawing chamber provided in an upper section of the refrigerator compartment 14. 16 is a compressor of a refrigeration cycle provided at the rear of the bottom of the refrigerator main body 8, and 17 is a cooler housed in the back of the freezer compartment 13. Reference numeral 18 supplies the cold air cooled by the cooler 17 to the freezer compartment 13, refrigerator compartment 14. A blower for forcing air into the thawing chamber 15, 1
Damper thermos 9 and 20 are provided at the entrances of the refrigerator compartment 14 and the thawing compartment 16 to adjust the amount of cold air flowing in through electrical input.The structure of the damper thermos 2o for the thawing compartment 16 will be explained as an example. 21 is an electromagnetic coil; 22 is a plunger that moves the inner core of the electromagnetic coil 1v21 up and down depending on the presence or absence of electromagnetic action; 23 is a rod connected to the plunger 22; 24 is a damper that opens and closes the cold air passage; When the coil A/21 is energized, the rod 23 is pushed up by electromagnetic action and the damper 24 is opened, and when the energization is cut off, the rod 23 falls downward and the damper 24 is closed. has been done. Although not shown in the drawings, for convenience of later explanation, the electromagnetic coil of the damper thermometer 19 for the refrigerator compartment having the same structure will be referred to as 21' and the damper thermometer 24'.

2ES 、26は前記送風機18からの冷気を前記冷蔵
室14.解凍室16に導く吐出ダクト、27゜28は夫
々前記冷蔵室14.解凍室16内を冷却した冷気を前記
冷却器17に戻すための吸込ダクトである。又、29,
30.31は夫々前記冷凍室13.冷蔵室14.解凍室
16内の温度を検知する温度検知器である。
2ES, 26 sends cold air from the blower 18 to the refrigerator compartment 14. Discharge ducts 27 and 28 leading to the thawing chamber 16 are respectively connected to the refrigerating chamber 14. This is a suction duct for returning the cold air that has cooled the inside of the thawing chamber 16 to the cooler 17. Also, 29,
30 and 31 are respectively the freezer compartments 13. Refrigerator room 14. This is a temperature detector that detects the temperature inside the thawing chamber 16.

次に前記解凍室15の詳細構成について説明する。32
は合成樹脂製の外箱、33は前記外箱32の内面に設置
して外周を囲む断熱材である。34は前記解凍室15内
の上部に設けた遠赤外線ヒータであシ、ヒータ線35を
封入したガラス管36の表面に硅素等を主成分とするセ
ラミック塗料層37を焼付は塗装し約6μm以上の遠赤
外線を有効に放射する様構成されている。この遠赤外線
ヒータ34は耐熱性の高い合成樹脂製のホルダー38を
介してドーム状に形成したアルミニウム等の金属製の反
射板39より垂下支持されている。また前記反射板39
は解凍室16内の両側壁、奥壁を構成する内箱部分も一
体に形成したものとしており、更に天面ドーム部両側の
平面部には多数の通風孔4oを形成している。次に、4
1はアルミニウム等金属製の底面板であシ、42は前記
底面板41の裏面にアルミ箔等で熱伝導的に固定された
線状の加熱ヒータであシ、43は前記底面板41の裏面
中央部付近に熱伝導的に密着させた温度検知器である。
Next, the detailed configuration of the defrosting chamber 15 will be explained. 32
33 is a heat insulating material installed on the inner surface of the outer box 32 and surrounding the outer periphery thereof. 34 is a far-infrared heater installed in the upper part of the thawing chamber 15. A ceramic paint layer 37 mainly composed of silicon or the like is baked on the surface of a glass tube 36 in which a heater wire 35 is enclosed to a thickness of about 6 μm or more. It is configured to effectively radiate far-infrared rays. This far-infrared heater 34 is suspended and supported by a dome-shaped reflector plate 39 made of metal such as aluminum through a holder 38 made of synthetic resin with high heat resistance. Further, the reflective plate 39
The inner box portions constituting both side walls and the back wall of the thawing chamber 16 are also integrally formed, and a large number of ventilation holes 4o are formed in the flat portions on both sides of the top dome portion. Next, 4
1 is a bottom plate made of metal such as aluminum, 42 is a linear heater fixed to the back surface of the bottom plate 41 with aluminum foil or the like for thermal conduction, and 43 is the back surface of the bottom plate 41. This is a temperature sensor placed close to the center for thermal conduction.

44は前記底面板41上に着脱自在に設置される解凍皿
であり、被解凍食品46を載置するアルミニウム等金属
製の皿4eと外周を囲む合成樹脂製の枠体47により構
成されている。
A thawing tray 44 is detachably installed on the bottom plate 41, and is composed of a tray 4e made of metal such as aluminum on which the food to be thawed 46 is placed, and a frame 47 made of synthetic resin surrounding the outer periphery. .

48は前記反射板39の下方に一定の間隔をおいて固定
設置した火傷防止用の防護網であシ、49は解凍室16
の前面開口部を開閉する扉である。
48 is a protective net for preventing burns that is fixedly installed below the reflecting plate 39 at a certain interval; 49 is a thawing chamber 16;
This is a door that opens and closes the front opening of the

また、6oは前記反射板39の裏面空間に形成した通風
路であシ、吐出口61を介して前記ダンパーサーモ2o
に連通している。62は解凍室16内の奥壁に形成した
吸込口であシ前記吸込ダクト28に連通している。63
は前記冷蔵庫本体8の外殻前面に設けた解凍スイッチで
ある。
Further, 6o is a ventilation passage formed in the space on the back surface of the reflector plate 39, and the damper thermometer 2o is connected through the discharge port 61.
is connected to. Reference numeral 62 denotes a suction port formed in the back wall of the thawing chamber 16, which communicates with the suction duct 28. 63
is a defrost switch provided on the front surface of the outer shell of the refrigerator main body 8.

次に電気回路及び制御回路について説明する。Next, the electric circuit and control circuit will be explained.

圧縮機18はリレー接点64を介して、送風機18はリ
レー接点66を介して夫々電源に接続されている。遠赤
外線ヒータ34はリレー接点56を介して、加熱ヒータ
42はリレー接点67を介して夫々電源に接続されてい
る。又、解凍室用のダンパーサーモの電磁コイ/L/2
1.冷蔵室用のダンパーサーモの電磁コイル21は夫々
リレー接点58゜69を介して電源に接続されている。
The compressor 18 and the blower 18 are connected to a power source through a relay contact 64 and a relay contact 66, respectively. The far-infrared heater 34 and the heater 42 are connected to a power source via a relay contact 56 and a relay contact 67, respectively. Also, electromagnetic carp / L / 2 of damper thermo for thawing room.
1. The electromagnetic coils 21 of the damper thermos for the refrigerator compartment are connected to the power supply via relay contacts 58 and 69, respectively.

60は冷凍室温度制御装置で、サーミスタ等の温度検知
器29.抵抗R1,R2,R3,コンパレータ61を備
えた比較回路、トランジスタ62.リレーコイル63を
備えておシ、前記コンパレータ61の出力は前記トラン
ジスタe2のベースに接続されている。又、トランジス
タ62のコレクタには前記リレー接点54を開閉させる
吸引用の前記リレーコイル63が接続されている。64
は冷蔵室温度制御装置で、サーミスタ等の温度検知器3
0、抵抗R4,R6,R6,コニyパV−夕f35を備
えた比較回路、トランジスタ66、リレーコイル67を
備えており、前記コンパレータ66の出力は前記トラン
ジスタ66のベースに接続されている。トランジスタ6
6のコレクタには前記リレー接点69を開閉させる吸引
用の前記リレーコイル67が接続されている。68は解
凍室温度制御装置で、サーミスタ等の温度検知器31.
抵抗R7゜R8,R9,コンパレータ69を備えた比較
回路、OR回路70.)ランジスタフ1.リレーコイル
72を備えており、通常冷却時は前記解凍室15の室内
が約−3℃のパーシャ!レフリージング温度に温調され
るよう抵抗構成されている。前記コンパレータ69の出
力は前記OR回路7oの一方の入力に接続されている。
60 is a freezing room temperature control device, which includes a temperature sensor 29 such as a thermistor. A comparison circuit including resistors R1, R2, R3, a comparator 61, and a transistor 62. A relay coil 63 is provided, and the output of the comparator 61 is connected to the base of the transistor e2. Further, the collector of the transistor 62 is connected to the relay coil 63 for attraction, which opens and closes the relay contact 54 . 64
is a refrigerator room temperature control device, and a temperature sensor such as a thermistor 3
0, resistors R4, R6, R6, a comparator circuit including a comparator V35, a transistor 66, and a relay coil 67, and the output of the comparator 66 is connected to the base of the transistor 66. transistor 6
The relay coil 67 for suction, which opens and closes the relay contact 69, is connected to the collector 6. 68 is a thawing chamber temperature control device, which includes a temperature sensor 31 such as a thermistor.
A comparison circuit including a resistor R7°R8, R9 and a comparator 69, and an OR circuit 70. ) Ranjstav 1. Equipped with a relay coil 72, the temperature inside the defrosting chamber 15 is about -3°C during normal cooling! A resistor is constructed so that the temperature is regulated to the reefing temperature. The output of the comparator 69 is connected to one input of the OR circuit 7o.

またOR回路70の出力は前記トランジスタ71のベー
スに接続され、前記トランジスタ71のコレクタには前
記リレー接慨68を開閉させる吸引用の前記リレーコイ
ル72が接続されている。
Further, the output of the OR circuit 70 is connected to the base of the transistor 71, and the collector of the transistor 71 is connected to the relay coil 72 for attraction, which opens and closes the relay connection 68.

73は解凍制御装置で、前記解凍室16の底面板41に
密着させた温度検知器43.抵抗R1゜。
73 is a thawing control device, which includes a temperature sensor 43. Resistance R1°.

R111R12’コンパレータ74を備えた比較回路と
タイマー75.76.77、AND回路78゜了9.O
R回路80,81,82、前記OR回路70、インバー
タ83.トランジスタ84 、85 。
R111R12' Comparison circuit with comparator 74, timer 75, 76, 77, AND circuit 78°9. O
R circuits 80, 81, 82, the OR circuit 70, inverter 83. Transistors 84, 85.

86、リレーコイル87.88.89及び前記解凍スイ
ッチ63を備えている。
86, relay coils 87, 88, 89, and the defrosting switch 63.

そして、前記解凍スイッチ63の出力は前記タイマー7
6の入力に接続されておシ、前記タイマー75(D出力
は前記AND回路78,79.OR回路70.82の夫
々一方の入力及びタイマー76゜7了の入カフ6b、7
7bに接続されている。前記コンパレータ74の出力は
前記インバータ83を介して前記AND回路78のもう
一方の入力に接続されると同時に前記AND回路79の
もう一方の入力に接続されている。前記AND回路78
の出力はOR回路80.81の一方に接続されており、
前記AND回路79の出力は前記タイマー76.77の
入カフ6a、77aに接続されている。そして前記タイ
マー76.77の出力は前記OR回路80.81の夫々
のもう一方の入力に接続されておシ、OR回路80.8
1の出力は夫々前記トランジスタ84.86のベースに
接続されている。前記トランジスタ84.85のコレク
タには前記リレー接点56.57を開閉させる吸引用の
前記リレーコイIv87,88が接続されている。また
、前記OR回路82のもう一方の入力には前記冷凍室温
度制御装置60のコンパレータ61の出力が接続されて
おシ、前記OR回路82の出力は前記トランジスタ86
のベースに接続されている。そして前記トランジスタ8
6のコレクタには前記リレー接点66を開閉させる吸引
用のりレーコイ/L/89が接続されている。
The output of the defrosting switch 63 is the output of the timer 7.
6 is connected to the input of the timer 75 (D output is the AND circuit 78, 79, one input of the OR circuit 70, 82, respectively, and the input cuff 6b, 7 of the timer 76.
7b. The output of the comparator 74 is connected via the inverter 83 to the other input of the AND circuit 78 and at the same time to the other input of the AND circuit 79. The AND circuit 78
The output of is connected to one side of the OR circuit 80.81,
The output of the AND circuit 79 is connected to the input cuffs 6a, 77a of the timer 76, 77. The output of the timer 76.77 is connected to the other input of each of the OR circuits 80.81.
The outputs of 1 are connected to the bases of the transistors 84 and 86, respectively. The relay coils Iv87 and 88 for attraction are connected to the collectors of the transistors 84 and 85 for opening and closing the relay contacts 56 and 57, respectively. Further, the output of the comparator 61 of the freezer compartment temperature control device 60 is connected to the other input of the OR circuit 82, and the output of the OR circuit 82 is connected to the output of the transistor 86.
connected to the base of. and the transistor 8
A suction glue L/89 for opening and closing the relay contact 66 is connected to the collector 6.

尚ここで、前記タイマー76は入力に一旦”High”
(以後単に“H”と呼ぶ)の信号が入ると所定時間tの
間″′H”信号を出力しつづけ、その後″’Low”(
以後単にL”と呼ぶ)の信号に切換わるよう構成されて
いる。また前記タイマー76.77は入カフ6a 、7
7aにH”信号が入力されると′H″ L”の信号を所
定時間づつ交互に時間t1 の間出力するが時間t1は
タイマ76.77の入カフ7b、76bがL”からH”
になり、入カフ6a 、76aがL”から′H”に変る
迄の時間t を計数し七〇に一定倍率を掛けた値とする
。次に出力率を下げて時間t2だけ出力し時間t2もt
に一定倍率を掛けたものとする。例えば具体的には前記
タイマ76の出力は最初の時間tはH”の出力率が80
%でt1=2t、次の出力率が40%でt2.1.5と
する。
Here, the timer 76 is set to "High" once for the input.
(hereinafter referred to simply as "H"), the "'H" signal continues to be output for a predetermined time t, and then becomes "'Low" (
The timers 76 and 77 are configured to switch to a signal of the input cuffs 6a and 7.
When an H" signal is input to 7a, the signals of 'H" and "L" are output alternately for a predetermined period of time for a time t1, but at time t1, the input cuffs 7b and 76b of the timer 76.77 change from L" to H".
Then, the time t until the inlet cuffs 6a and 76a change from L'' to 'H'' is counted and the value is 70 multiplied by a certain multiplier. Next, lower the output rate and output for time t2, and time t2 is also t.
is multiplied by a certain magnification. For example, specifically, the output rate of the timer 76 is 80 at the first time t.
%, t1=2t, and the next output rate is 40%, t2.1.5.

又前記タイマ77の出力は最初の時間が出力率80%で
出力時間t 1’ =2 tとする。次に出力率0%で
t2′=1.6となる様に構成されている。尚、前記タ
イマー76.77の動作時間はt1+t2=t1′+t
2′となるよう構成され、前記タイマー76の所定時間
tは解凍作用のタイムセーフ的な役割をさせることも含
めて、前記タイマー76.77の動作時間t1+t2=
t1′+t2′より十分長くなるよう設定されている。
Further, the output of the timer 77 is assumed to have an output rate of 80% for the first time and an output time t 1' =2 t. Next, the configuration is such that t2'=1.6 at an output rate of 0%. The operating time of the timers 76 and 77 is t1+t2=t1'+t
2', and the predetermined time t of the timer 76 is the operating time of the timers 76 and 77, t1+t2=
It is set to be sufficiently longer than t1'+t2'.

かかる構成において、冷凍室13の温度が所定値より高
い場合は、温度検知器29の抵抗値が小さくなっておシ
コンパレータ61の出力力”L″となるためトランジス
タ62がONしてリレーコイル63が導通する。このた
めリレー接点64が閉成して圧縮機16が運転される。
In this configuration, when the temperature of the freezer compartment 13 is higher than a predetermined value, the resistance value of the temperature detector 29 becomes small and the output force of the comparator 61 becomes "L", so the transistor 62 is turned on and the relay coil 63 is turned on. conducts. Therefore, relay contact 64 is closed and compressor 16 is operated.

又、これと同時にOR回路82の出力もH”となってい
るためトランジスタ86がONしてリレーコイル89が
導通する。このため、リレー接点56が閉成して送風機
18も運転され冷凍室13.冷蔵室14゜解凍室15へ
冷気を強制通風して冷却を行なう。
At the same time, the output of the OR circuit 82 is also high, so the transistor 86 is turned on and the relay coil 89 becomes conductive. Therefore, the relay contact 56 is closed and the blower 18 is also operated and the freezer compartment 13 is turned on. .Cold air is forced into the refrigerator compartment 14° and the thawing compartment 15 for cooling.

その後、冷凍室13が所定温度にまで冷却されれば温度
検知器29の抵抗値が大きくなシコンパレータ6の出力
が”L″となる。このため、トランジスタ62は○FF
L、又OR回路82の出力もL”となるためトランジス
タ86もOFFしてリレーコイ1V63.B9への通電
が断たれる。このためリレー接点54.55はいづれも
開放した圧縮機16.送風機18が停止する。以後この
作用を繰り返して冷凍室13内は所定温度(例えば−2
0℃)に温調維持される。
Thereafter, when the freezer compartment 13 is cooled to a predetermined temperature, the output of the comparator 6, which has a large resistance value, of the temperature detector 29 becomes "L". Therefore, the transistor 62 is ○FF
Since the output of the OR circuit 82 also becomes L, the transistor 86 is also turned off and the power to the relay coil 1V63.B9 is cut off. Therefore, the relay contacts 54 and 55 are both open to the compressor 16 and the blower 18. After that, this action is repeated until the inside of the freezer compartment 13 reaches a predetermined temperature (for example, -2
The temperature is maintained at 0℃).

次に冷蔵室14の温度が所定値より高い場合は、温度検
知器30の抵抗値が小さくなっておシ、コンパレータ6
5の出力がH”となるためトランジスタ66がONして
リレーコイル67が導通する。このため、リレー接点5
9が閉成して電磁コイル21′に通電されてダンパーサ
ーモ19のダンパー24′が開放されて冷蔵室14内へ
冷気が導入され冷却作用を行なう。その後、冷蔵室14
が所定温度にまで冷却されれば温度検知器30の抵抗値
が大きくなってコンパレータ66の出力がL”となる。
Next, when the temperature of the refrigerator compartment 14 is higher than a predetermined value, the resistance value of the temperature detector 30 becomes small and the comparator 6
5 becomes H", transistor 66 turns on and relay coil 67 becomes conductive. Therefore, relay contact 5
9 is closed, the electromagnetic coil 21' is energized, the damper 24' of the damper thermostat 19 is opened, and cold air is introduced into the refrigerator compartment 14 to perform a cooling effect. After that, the refrigerator compartment 14
When the temperature sensor 30 is cooled down to a predetermined temperature, the resistance value of the temperature sensor 30 increases and the output of the comparator 66 becomes L''.

このため、トランジスタ66はOFFしてリレーコイA
/67への通電が断たれてリレー接弘69が開放し、電
磁コイル21′への通電も断たれる。そしてダンパーサ
ーモ19のダンパー24′が閉成されて冷蔵室14内へ
の冷気の流入が阻止される。以後、この作用を繰り返し
て冷蔵室14内は所定温度(例えば6℃)に温調維持さ
れる。
Therefore, the transistor 66 is turned off and the relay coil A
The energization to /67 is cut off, the relay contact 69 is opened, and the energization to the electromagnetic coil 21' is also cut off. Then, the damper 24' of the damper thermostat 19 is closed to prevent cold air from flowing into the refrigerator compartment 14. Thereafter, this action is repeated to maintain the temperature inside the refrigerator compartment 14 at a predetermined temperature (for example, 6° C.).

また、非解凍時において解凍室16の温度が所定値より
高い場合は、温度検出器31の抵抗値が小さくなってお
り、コンパレータθ9の出力がH”となるためOR回路
70の出力がH”となシトランジスタフ1がONしてリ
レーコイル72が導通する。このため、リレー接点68
が閉成して電磁コイ/l/21に通電されてダンパーサ
ーモ2゜のダンパー24が開放されて解凍室16内へ冷
気が導入され冷却作用を行なう。その後、解凍室15が
所定温度にまで冷却されれば温度検知器31の抵抗値が
大きくなってコンパレータ69の出力がL”となる。こ
のため、OR回路70の出力がL”となってトランジス
タ71はOFFしてリレーコイル72への通電が断たれ
てリレー接点58が開放し、電磁コイル21への通電も
断たれる。
In addition, when the temperature of the thawing chamber 16 is higher than a predetermined value when not defrosting, the resistance value of the temperature detector 31 is small and the output of the comparator θ9 becomes H'', so the output of the OR circuit 70 becomes H''. Then, the transistor OFF 1 turns on and the relay coil 72 becomes conductive. For this reason, relay contact 68
is closed, the electromagnetic coil /l/21 is energized, the damper 24 of the damper thermostat 2° is opened, and cold air is introduced into the thawing chamber 16 to perform a cooling action. Thereafter, when the thawing chamber 15 is cooled to a predetermined temperature, the resistance value of the temperature detector 31 becomes large and the output of the comparator 69 becomes L''. Therefore, the output of the OR circuit 70 becomes L'' and the transistor 71 is turned off, the current to the relay coil 72 is cut off, the relay contact 58 is opened, and the current to the electromagnetic coil 21 is also cut off.

そしてダンパーサーモ2oのダンパー24が閉成されて
解凍室16内への冷気流入が阻止される。
Then, the damper 24 of the damper thermostat 2o is closed to prevent cold air from flowing into the thawing chamber 16.

以後、この作用を繰や返して解凍室16内は前述の様に
生鮮食品の保存に適した冷凍温度と冷蔵温度の間の第3
の温度帯、即ち約−3℃のパーシャ!レフリージング温
度帯に温調維持される。
Thereafter, by repeating this action, the interior of the thawing chamber 16 reaches the third temperature between the freezing temperature and the refrigeration temperature suitable for preserving fresh foods, as described above.
temperature range, i.e. approximately -3℃ Parsha! The temperature is maintained within the refereeing temperature range.

次に解凍時の作用について述べる。先ず、解凍しようと
する被解凍食品46を解凍トレイ44上に載置して解凍
室15内の底面板41上に設置した上で解凍スイッチ6
3を投入する。投入と同時にタイマー76が”H”信号
の出力を開始し、AND回路78.了9の一方の入力が
H”となる。この時、解凍室16の底面板41は冷凍状
態の温度の低い(例えば−2CI)の被解凍食品46を
載置した解凍皿44との熱伝導で温度が低下している。
Next, we will discuss the action during thawing. First, the food to be thawed 46 to be thawed is placed on the thawing tray 44 and placed on the bottom plate 41 in the thawing chamber 15, and then the thawing switch 6 is turned on.
Insert 3. At the same time as the input, the timer 76 starts outputting an "H" signal, and the AND circuit 78. At this time, one input of the thawing chamber 16 becomes H". At this time, the bottom plate 41 of the thawing chamber 16 conducts heat with the thawing tray 44 on which the frozen food 46 of low temperature (for example, -2CI) is placed. The temperature is decreasing.

即ち、温度検知器43は十分温度の低い状態にある。こ
のためコンパレータ了4の出力はL”となっておシ、イ
ンバータ83で”H”に反転された信号がAND回路7
8のもう一方の入力に入力される。一方、AND回路7
9にはインバーク83を介さない”L”の信号がそのま
ま入力される。このためAND回路78の出力はH”A
ND回路79の出力は“L”となるため、タイマー76
.77は動作せず、OR回路80.81の出力が”H”
となってトランジスタ84 、85がONする。そして
リレーコイ)VS2.BBに通電され、リレー接点56
.57が閉成して遠赤外線ヒータ34.加熱ヒータ42
に連続通電される。
That is, the temperature sensor 43 is in a sufficiently low temperature state. Therefore, the output of the comparator 4 becomes "L", and the signal inverted to "H" by the inverter 83 is output to the AND circuit 7.
8 is input to the other input. On the other hand, AND circuit 7
9, the "L" signal without passing through the inverter 83 is input as is. Therefore, the output of the AND circuit 78 is H”A
Since the output of the ND circuit 79 becomes “L”, the timer 76
.. 77 does not operate and the output of OR circuit 80.81 is “H”
As a result, transistors 84 and 85 are turned on. And relay carp) VS2. BB is energized and relay contact 56
.. 57 is closed and the far infrared heater 34. Heater 42
is continuously energized.

そして、解凍作用が進行して温度検知器43が予め定め
た所定温度(例えば3o’c )にまで上昇すると(こ
れに要する時間をt。とする)コンパレータ74の出力
がH”となり、インバータ83を介して”L″の信号が
AND回路78に入力されてAND回路78の出力がL
″となる。一方、AND回路79の入カフ5a、77a
にはH′の信号が入力されるためAND回路78.77
が所定の断続率によp”H”I、”の信号を交互に繰シ
返して出力する。このため、それに応じた断続出力率で
OR回路80.81を介してトランジスタ84.85が
○N/○FFする。そして、リレーコイル87,88へ
の通電が断続されてリレー接点56.67が断続的に開
閉する。その結果、遠赤外線ヒータ34は前記連続通電
の時間t。に続く時間t1  は通電率80%、次の時
間t2は通電率40%と時間経過とともに段階的に発熱
容量が低下していくように制御される。ここで11=2
to 、t2=1.st○ になる様タイマー76゜7
7は通電時間を設定する。また加熱ヒータ42は前記連
続通電の時間t。に続く時間t1′は通電率80%、次
の時間t2′は通電Q%と通電率が低下していく様に制
御される。又通電時間t ’=2to。
When the thawing action progresses and the temperature sensor 43 rises to a predetermined temperature (for example, 3 o'c) (the time required for this is t), the output of the comparator 74 becomes H'', and the inverter 83 The “L” signal is input to the AND circuit 78 through the
''.On the other hand, the input cuffs 5a and 77a of the AND circuit 79
Since the H' signal is input to the AND circuit 78.77
outputs p"H"I," signals alternately and repeatedly at a predetermined intermittent rate. Therefore, the transistor 84.85 outputs ○ via the OR circuit 80.81 at the corresponding intermittent output rate. Then, the relay coils 87, 88 are de-energized and the relay contacts 56, 67 are intermittently opened and closed.As a result, the far-infrared heater 34 is activated for a period of time following the continuous energization time t. At time t1, the energization rate is 80%, and at the next time t2, the energization rate is 40%, and the heat generation capacity is controlled to gradually decrease as time passes.Here, 11=2
to, t2=1. Timer 76°7 to become st○
7 sets the energization time. Further, the heater 42 is continuously energized for the time t. During the subsequent time t1', the energization rate is controlled to be 80%, and during the next time t2', the energization rate is decreased to Q%. Also, the energization time t'=2to.

t2=1.5t0の関係にある。ここで、通電時間t1
1 t21 t1’ l t2’は実験的に求めたもの
で連続通電のあとの通電率を定めておき種々の重量の食
品を実際解凍して丁度良い解凍状態になる様に倍率を定
めたものである。この様に、被解凍食品間の温度が低い
解凍初期は温度検知器43の温度が所定温度に上昇する
までの時間上〇遠赤外線ヒータ34.加熱ヒータ42の
両ヒータが連続通電されその後2段階で通電率を低減さ
せその通電時間をtoに一定の倍率を掛けて決めるため
、被解凍食品45の重量が様々に変化しても、温度検知
器43の温度上昇の度合で、夫々の重量に適した時間だ
け過不足なく解凍が進められることになり解凍時間の短
縮も図れる。そして、時間経過とともに発熱容量が段階
的に低下するので被解凍食品45の表面温度の上昇を抑
制しながらの解凍が進行する。解凍中は被解凍食品45
に対して、上面からは遠赤外線ヒータ34からの放射加
熱が反射板39の反射作用とも相まって均2等に行なわ
れ、底面からは加熱ヒータ42による伝熱加熱が同時に
行なわれることになる。ここで、遠赤外線ヒータ34の
加熱においては5μm以上の長波長の遠赤外線が被解凍
食品46に対して放射されるため、遠赤外線波長域に吸
収波長帯を持つ一般的な食品類では効率よく遠赤外線が
吸収され、被解凍食品46の比較的内部にまで浸透して
表面部と中心部との温度むらが比較的大きくならない状
態で解凍が進行する。又、加熱ヒータ42による加熱に
おいては、遠赤外線ヒータ34で十分に加熱しきれない
被解凍食品46の底面部を解凍皿44を介しての伝熱加
熱で解凍することができる。
The relationship is t2=1.5t0. Here, the energization time t1
1 t21 t1' l t2' was obtained experimentally, and the energization rate after continuous energization was determined, and the magnification was determined so that food of various weights could actually be thawed and the thawing state would be just right. be. In this way, in the early stages of thawing when the temperature of the food to be thawed is low, it takes a long time for the temperature of the temperature sensor 43 to rise to a predetermined temperature. Both heaters of the heater 42 are continuously energized, and then the energization rate is reduced in two stages, and the energization time is determined by multiplying to by a certain multiplier, so even if the weight of the food to be thawed 45 varies, the temperature can be detected. Depending on the degree of temperature rise in the container 43, thawing can proceed for just the right amount of time for each weight, and the thawing time can also be shortened. Since the heat generating capacity gradually decreases over time, thawing proceeds while suppressing a rise in the surface temperature of the food 45 to be thawed. During thawing, the food to be thawed 45
On the other hand, from the top surface, radiant heating from the far-infrared heater 34 is performed evenly in combination with the reflection action of the reflecting plate 39, and from the bottom surface, conductive heating by the heating heater 42 is performed simultaneously. Here, when heating the far-infrared heater 34, far-infrared rays with a long wavelength of 5 μm or more are radiated to the food to be thawed 46. The far infrared rays are absorbed and penetrate relatively far into the interior of the food to be thawed 46, so that thawing proceeds in a state where the temperature unevenness between the surface and the center does not become relatively large. Furthermore, in heating by the heater 42, the bottom surface of the food 46 to be thawed, which cannot be sufficiently heated by the far-infrared heater 34, can be thawed by heat conduction heating via the thawing plate 44.

一方、これら遠赤外線ヒータ34.加熱ヒータ42によ
る加熱作用と同時に、解凍中即ちタイマー76の出力が
”H”信号を発生し続ける間は、OR回路70.82の
出力もH″となり、トランシフ、1i71,8975Z
ONし、’)V−コイ/I/72゜89が導通する。こ
のため、リレー接点58 、55が閉成して解凍室温度
制御装置68の出力の如何にかかわらず電磁コイル21
に通電され、解凍室用のダンパーサーモ2oのダンパー
24が強制的に開放され、冷凍室温度制御装置6Qの出
力の如何に関わらず送風機18が強制的に運転される。
On the other hand, these far infrared heaters 34. Simultaneously with the heating action by the heater 42, during defrosting, that is, while the output of the timer 76 continues to generate an "H" signal, the output of the OR circuit 70.
Turns ON and ') V-Coy/I/72°89 becomes conductive. Therefore, the relay contacts 58 and 55 are closed and the electromagnetic coil 21 is closed regardless of the output of the defrosting chamber temperature control device 68.
is energized, the damper 24 of the damper thermometer 2o for the thawing chamber is forcibly opened, and the blower 18 is forcibly operated regardless of the output of the freezing chamber temperature control device 6Q.

こうして開放されたダンパー24を介して送風機18で
強制通風された冷気が吐出ダクト26を介して吐出口6
1より解凍室15内上部の通風路60内に流入する。通
風路5o内に流入した冷気は反射板39に形成した多数
の通風孔より下方へ吐出さ、れ、被解凍食品45の表面
を均等に冷却する。
The cool air forced through the damper 24 by the blower 18 is passed through the discharge duct 26 to the discharge port 6.
1 and flows into the ventilation passage 60 in the upper part of the thawing chamber 15. The cold air that has flowed into the ventilation path 5o is discharged downward from a large number of ventilation holes formed in the reflection plate 39, and uniformly cools the surface of the food to be thawed 45.

この作用によって、被解凍食品46は主として遠赤外線
ヒータ34の遠赤外線放射効果と、遠赤外線ヒータ34
及び加熱ヒータ42の発熱容量を段階的に低下させる制
御の効果に加えて更に表面部の温度上昇が抑制されるこ
とになり、結果として中心部と表面部との温度差の小さ
い解凍むらの少ない解凍が実現できる(解凍中の被解凍
食品46の温度特性及びタイムチャートを第6図に示す
)。
Due to this action, the food to be thawed 46 is mainly affected by the far-infrared radiation effect of the far-infrared heater 34 and the far-infrared radiation effect of the far-infrared heater 34.
In addition to the control effect of gradually reducing the heat generation capacity of the heater 42, the temperature rise at the surface is further suppressed, resulting in less uneven thawing with a small temperature difference between the center and the surface. Thawing can be realized (the temperature characteristics and time chart of the food 46 to be thawed during thawing are shown in FIG. 6).

また解凍時間についても遠赤外線の内部浸透効果と解凍
初期の連続加熱制御により、比較的短時間の解凍(例え
ば重量500g、厚さ251fiのマグロで約3om)
が可能となるほか、反射板39が通風路6Q内に露出し
ているため本来相当な高温となる反射板39自体や周辺
部材の温度が冷却されて低下し安全上も好都合となる。
In addition, the thawing time is relatively short due to the internal penetration effect of far infrared rays and continuous heating control in the initial stage of thawing (for example, thawing is about 3 ohm for a tuna weighing 500 g and 251 fi thick).
In addition, since the reflector plate 39 is exposed in the ventilation path 6Q, the temperature of the reflector plate 39 itself and surrounding members, which would normally reach a considerably high temperature, is cooled and lowered, which is advantageous in terms of safety.

尚、解凍室16内に流入した冷気は冷却作用後、奥面に
開口した吸込口62より吸込ダクト28を介して冷却器
17の方に回収される。
The cold air that has flowed into the thawing chamber 16 is collected into the cooler 17 through the suction duct 28 from the suction port 62 opened at the rear surface after the cooling effect.

このような解凍作用が進行して時間t0+t1+t2=
t0+t1′+t2′が経過するとタイマー76.77
の出力が′L”になるとともに、タイマー76よりタイ
マー76のリセント端子に入力されてタイマー76の出
力も′″L”となる。このため、トランジスタ84.8
5が夫々OFFしてリレーコイ/L’87.88への通
電が断たれてリレー接点66゜57が開放し、遠赤外線
ヒータ34.加熱ヒータ42への通電が断たれて解凍が
終了する。またこれと同時にOR回路70.82の一方
の入力が”L”となるため送風機18の強制運転状態及
び解凍室用ダンパーサーモ20のダンパー24の強制開
放状態が解除される。
As this thawing action progresses, time t0+t1+t2=
When t0+t1'+t2' elapses, timer 76.77
At the same time, the output of the transistor 84.
5 are turned off, the power to relay coils/L'87 and 88 is cut off, relay contacts 66 and 57 are opened, and far infrared heaters 34 and 34 are turned off. The power supply to the heater 42 is cut off and thawing is completed. At the same time, one input of the OR circuit 70.82 becomes "L", so the forced operation state of the blower 18 and the forced open state of the damper 24 of the damper thermos 20 for the thawing chamber are canceled.

そして、解凍終了後は通常冷却時と同様に温度検知器3
1の検知温度に基づき、解凍室16内は温度制御される
。このため解凍後の被解凍食品46は約−3℃のパーシ
ャルフリージング温度帯に安定するよう直ちに冷却され
ることになシ、余熱で更に温度上昇することがない。そ
して、解凍終了後そのまま放置しておいても魚、肉類等
生ものの保存に適した約−3℃のパーシャルフリージン
グ温度帯で保冷されているため従来のように使用者が解
凍の終了を監視して即座に処理する手間もなく安心して
解凍が行なえ、また解凍終了後任意の時間に被解凍食品
45を利用できることにな#)極めて使い勝手がよい。
After thawing, the temperature sensor 3
The temperature inside the defrosting chamber 16 is controlled based on the detected temperature. Therefore, the food to be thawed 46 after thawing is immediately cooled to stabilize in the partial freezing temperature range of about -3°C, and the temperature does not rise further due to residual heat. Even if you leave it as it is after thawing, it is kept cool at a partial freezing temperature range of approximately -3°C, which is suitable for preserving perishables such as fish and meat, so the user does not have to monitor the end of thawing as usual. The food 45 can be thawed safely without the need for immediate processing, and the food 45 to be thawed can be used at any time after thawing is completed, making it extremely convenient to use.

発明の効果 以上の様に本発明の解凍室付冷蔵庫によると次の様な効
果が得られる。
Effects of the Invention As described above, the refrigerator with a defrosting chamber of the present invention provides the following effects.

(1)上面より遠赤外線ヒータによる遠赤外線放射加熱
、底面より加熱ヒータによる熱伝導加熱の両面より効率
的に加熱でき、しかも解凍中は両ヒータの発熱容量が2
段階で低下してゆくこと及び遠赤外線の被解凍食品内部
への浸透効果とも合わせて中心部と表面部の温度むらの
少ない解凍が可能となる。
(1) Efficient heating can be achieved from both sides: far-infrared radiant heating using a far-infrared heater from the top and conductive heating using a heating heater from the bottom. Moreover, during thawing, the heat generation capacity of both heaters is 2
Combined with the gradual decrease in temperature and the effect of far infrared rays penetrating into the food to be thawed, thawing with less temperature unevenness between the center and surface becomes possible.

(2)解凍室底面板に設けた温度検知器が所定温度に上
昇するまでは遠赤外線ヒータ、加熱ヒータを連接通電さ
せ、その後2段階で通電率を低減させるが、その通電時
間を温度検知器が所定温度に上る迄の時間に予め決めた
一定倍率を掛けて決めるため、被解凍食品の重量が変化
しても夫々に適した時間だけ最大容量のヒータで急速な
加熱が行なえ、適切な解凍状態で解凍を終了させる事が
できる。
(2) The far-infrared heater and heating heater are continuously energized until the temperature sensor installed on the bottom plate of the thawing chamber rises to a predetermined temperature, and then the energization rate is reduced in two steps, but the energization time is determined by the temperature sensor. The time it takes for the food to reach the specified temperature is determined by multiplying it by a predetermined fixed factor, so even if the weight of the food to be thawed changes, the maximum capacity heater can rapidly heat it for the appropriate time, ensuring proper thawing. You can finish defrosting in the current state.

(3)解凍中は解凍室用のダンパーサーモを強制的に開
放させるとともに送風機を強制的に連続運転させて、反
射板の裏面空間に形成した通風路より被解凍食品に対し
て冷気を降下流入させるため被解凍食品の表面部が均等
に冷却され更に温度上昇が抑制されて解凍むらの少ない
解凍が実現できる。
(3) During thawing, the damper thermo for the thawing chamber is forcibly opened, and the blower is forced to operate continuously, allowing cold air to descend and flow into the food to be thawed through the ventilation path formed in the space on the back of the reflector. As a result, the surface of the food to be thawed is evenly cooled, temperature rise is further suppressed, and thawing with less unevenness can be achieved.

(→ 解凍中、本来なら高温になる反射板その他周辺部
材も反射板が通風路に露出して冷却されるため温度低下
し安全上も好都合である。
(→ During thawing, the reflector and other surrounding parts, which would normally become hot, are exposed to the ventilation path and cooled, which lowers the temperature, which is also convenient for safety.

(6)解凍終了後は解凍室内が冷凍室温度と冷蔵室温度
の間の第3の温度帯(例えば約−3℃のパー7ヤルフリ
ージング温度帯)に保冷されるため、解凍終了直後の余
熱で被解凍食品の温度が更に上昇することがなく、その
まま放置しておいても魚肉等の生ものに適した温度で鮮
度が保持され任意の時間に食品を利用することが出来る
(6) After thawing is completed, the interior of the thawing chamber is kept cool at the third temperature range between the freezing and refrigerator temperatures (for example, the par 7 Yalf freezing temperature range of approximately -3°C), so the residual heat immediately after thawing is The temperature of the food to be thawed does not rise further, and even if it is left as is, its freshness is maintained at a temperature suitable for raw food such as fish meat, and the food can be used at any time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の解凍室付冷蔵庫の解凍室の
斜視図、第2図は同第1図の解凍室のAA/線断面図、
第3図は同第1図の解凍室を備えた解凍室付冷蔵庫の縦
断面図、第4図は同第1図の解凍室の入口に設けたダン
パーサーモの拡大断り 面図、第5図は同第3図の解凍室付冷蔵庫の電気回路及
び制御回路図、第6図は解凍中のタイムチャート及び被
解凍食品の温度特性図、第7図は従来例を示す解凍箱の
斜視図、第8図は同第7図の解凍箱のE−B’線断面図
である。 13・・・・・・冷凍室、14・・・・・・冷蔵室、1
6・・・・・・解凍室、16・・・・・・圧縮機、17
・・・・・・冷却器、18・・・・・・送風機、2o・
・・・・・ダンパーサーモ、34・・・・・・遠赤外線
ヒータ、39・・・・・・反射板、4o・・・・・・通
風孔、41・・・・・・底面板、42・・・・・・加熱
ヒータ、43・・・・・・温度検知器、44・・・・・
・解凍皿、45・・・・・・被解凍食品、49・・・・
・・扉、60・・・・−・通風路、73・・・・・・解
凍制御装置。
FIG. 1 is a perspective view of a thawing chamber of a refrigerator with a thawing chamber according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA/A of the thawing chamber of FIG.
Figure 3 is a longitudinal sectional view of the refrigerator with a thawing chamber shown in Figure 1, Figure 4 is an enlarged cross-sectional view of the damper thermometer installed at the entrance of the thawing chamber shown in Figure 1, and Figure 5. is an electric circuit and control circuit diagram of the refrigerator with a thawing chamber shown in Fig. 3, Fig. 6 is a time chart during thawing and a temperature characteristic diagram of the food to be thawed, and Fig. 7 is a perspective view of a thawing box showing a conventional example. FIG. 8 is a sectional view taken along the line EB' of the thawing box shown in FIG. 7. 13... Freezer room, 14... Refrigerator room, 1
6... Thawing chamber, 16... Compressor, 17
...Cooler, 18...Blower, 2o.
... Damper thermo, 34 ... Far infrared heater, 39 ... Reflector, 4o ... Ventilation hole, 41 ... Bottom plate, 42 ... Heater, 43 ... Temperature detector, 44 ...
- Thawing dish, 45...Food to be thawed, 49...
...door, 60...--ventilation duct, 73...defrosting control device.

Claims (1)

【特許請求の範囲】[Claims] 冷凍室と、冷蔵室と、外周を断熱材で囲み、前面開口部
に開閉自在の扉を設けた解凍室と、冷凍サイクルの圧縮
機及び冷却器と、前記冷却器により冷却された空気を前
記冷凍室、冷蔵室、解凍室に強制通風させる送風機と、
前記解凍室の上部に設けた遠赤外線ヒータと、前記解凍
室の底面に設けた金属製の底面板と、前記底面板の裏面
に熱伝導的に密着された加熱ヒータと、前記底面板の裏
面の略中央に熱伝導的に密着させた温度検知器と、前記
遠赤外線ヒータの上面をドーム状に覆う金属製の反射板
と、被解凍食品を載置して前記底面板上に熱伝導的、且
つ着脱自在に設置される解凍皿と、前記解凍室の冷気の
入口に設けた電気的入力で冷気流入量を調節するダンパ
ーサーモと、前記ダンパーサーモより連通し、前記反射
板の裏面上部空間に形成した通風路と、前記反射板に設
けた前記通風路と解凍室内を連通さす多数の通風孔と、
解凍中は前記ダンパーサーモを強制開放させ、前記送風
機を強制運転させるとともに、解凍開始から前記温度検
知器の温度が所定温度に上昇するまでの時間は前記遠赤
外線ヒータ及び前記加熱ヒータを連続通電させ、前記温
度検知器の温度が所定温度に上昇すると、前記温度検知
器の温度が所定温度に上昇するまでに要した時間に第1
の一定倍率をかけた時間前記両ヒータへの通電率を低減
させ、その後、前記温度検知器の温度が所定温度に上昇
するまでに要した時間に第2の一定倍率をかけた時間前
記両ヒータへの通電率をさらに低減させ、以後は前記両
ヒータへの通電率を2段階に分けて低減させ各々の通電
時間を前記温度検知器の温度が所定温度に上昇するまで
の時間に一定倍率を掛けて決め、又非解凍時は前記解凍
室と冷蔵温度と冷凍温度の間の第3の温度帯に維持させ
る解凍制御装置とより成る解凍室付冷蔵庫。
A freezing room, a refrigerator room, a thawing room whose outer periphery is surrounded by a heat insulating material and a front opening provided with a door that can be opened and closed, a compressor and a cooler for the refrigeration cycle, and air cooled by the cooler. A blower that provides forced ventilation in the freezer, refrigerator, and thawing rooms;
a far-infrared heater provided at the top of the thawing chamber; a metal bottom plate provided at the bottom of the thawing chamber; a heater thermally conductively adhered to the back surface of the bottom plate; and a back surface of the bottom plate. A temperature sensor is placed in thermally conductive contact approximately at the center of the heater, a metal reflector plate covers the top surface of the far-infrared heater in a dome shape, and the food to be thawed is placed on the bottom plate in a thermally conductive manner. , and a thawing tray that is detachably installed, a damper thermo that is provided at the inlet of the cold air of the thawing chamber and that adjusts the amount of cold air inflow by an electrical input, and a space above the back surface of the reflector that communicates with the damper thermo. a ventilation passage formed in the reflector, and a large number of ventilation holes that communicate the ventilation passage with the inside of the thawing chamber, and
During thawing, the damper thermo is forcibly opened and the blower is forced to operate, and the far-infrared heater and the heating heater are continuously energized for the time from the start of thawing until the temperature of the temperature sensor rises to a predetermined temperature. , when the temperature of the temperature sensor rises to a predetermined temperature, a first
Reduce the energization rate to the two heaters for a time multiplied by a certain multiplier, and then reduce the energization rate to the two heaters for a time multiplied by a second fixed multiplier by the time required for the temperature of the temperature sensor to rise to a predetermined temperature. Thereafter, the energization rate to both heaters is reduced in two stages, and each energization time is set by a fixed multiplier to the time until the temperature of the temperature sensor rises to a predetermined temperature. The refrigerator is equipped with a thawing chamber, and the thawing control device maintains the temperature in a third temperature range between the thawing chamber and the refrigerating temperature and the freezing temperature when not thawing.
JP27886689A 1989-10-25 1989-10-25 Refrigerator equipped with defrosting chamber Pending JPH03140785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27886689A JPH03140785A (en) 1989-10-25 1989-10-25 Refrigerator equipped with defrosting chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27886689A JPH03140785A (en) 1989-10-25 1989-10-25 Refrigerator equipped with defrosting chamber

Publications (1)

Publication Number Publication Date
JPH03140785A true JPH03140785A (en) 1991-06-14

Family

ID=17603217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27886689A Pending JPH03140785A (en) 1989-10-25 1989-10-25 Refrigerator equipped with defrosting chamber

Country Status (1)

Country Link
JP (1) JPH03140785A (en)

Similar Documents

Publication Publication Date Title
JPH0755319A (en) Refrigerator
JP2763622B2 (en) Refrigerator with thawing room
JP2763623B2 (en) Refrigerator with thawing room
JPH05141858A (en) Refrigerator with thawing chamber
JPH03140785A (en) Refrigerator equipped with defrosting chamber
JPH0428990A (en) Electric refrigerator
JPH0452475A (en) Refrigerator with thawing chamber
JP2851688B2 (en) Refrigerator with thawing room
JP2892710B2 (en) Refrigerator with thawing room
JP2809830B2 (en) Refrigerator with thawing room
JP2851683B2 (en) Refrigerator with thawing room
JPH03175252A (en) Refrigerator with thawing compartment
JPH0445379A (en) Refrigerator with defreezing chamber
JPH051880A (en) Refrigerator equipped with defrosting chamber
JP2863302B2 (en) Refrigerator with thawing room
JPH049585A (en) Refrigerator with thawing chamber
JPH0445380A (en) Refrigerator with defreezing chamber
JP2815459B2 (en) Refrigerator with thawing room
JPH03129282A (en) Refrigerator with deferring chamber
JPH0593569A (en) Refrigerator with defreezing chamber
JPH03134476A (en) Refrigerator having thawing chamber
JPH03129283A (en) Refrigerator with defreezing chamber
JPH0526571A (en) Refrigerator equipped with defrosting chamber
JP2809813B2 (en) Refrigerator with thawing room
JPH03129281A (en) Refrigerator with defreezing chamber