JPH0445380A - Refrigerator with defreezing chamber - Google Patents

Refrigerator with defreezing chamber

Info

Publication number
JPH0445380A
JPH0445380A JP15328390A JP15328390A JPH0445380A JP H0445380 A JPH0445380 A JP H0445380A JP 15328390 A JP15328390 A JP 15328390A JP 15328390 A JP15328390 A JP 15328390A JP H0445380 A JPH0445380 A JP H0445380A
Authority
JP
Japan
Prior art keywords
thawing
temperature
stage
heater
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15328390A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takayama
高山 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP15328390A priority Critical patent/JPH0445380A/en
Publication of JPH0445380A publication Critical patent/JPH0445380A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a defreezing with little unevenness in temperature at each of a central part and a surface part to be realized within a short period of time and upon completion of the defreezing operation to enable a degree of freshness to be kept at such a temperature as one suitable for a raw food such as fish or meat or the like. CONSTITUTION:During a defreezing operation, a blower 18 is forcedly operated and a defreezing time is divided into three stages. At the first stage, an electrical energization for a far infrared ray heater 34 and a heating heater 42 is continuously carried out within a time period ranging from a starting of defreezing to a time in which a temperature of a temperature sensor 43 is increased up to a predetermined temperature and at the same time a damper thermostat 20 is forcedly released. At the second stage, an electrical energization for a far infrared ray heater 35 and a heating heater 42 is intermittently carried out for a specified period of time after a temperature of the temperature sensor 43 is increased up to a predetermined temperature and at the same time the damper thermostat 20 is forcedly released. At the third stage, after elapsing the second stage, the electrical energization for either the far infra-red ray heater or the heating heater is terminated. A heating capacity of both heaters is decreased from the second stage and then the damper thermostat is forcedly closed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍食品を解凍する解凍室付冷蔵庫に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigerator with a thawing chamber for thawing frozen foods.

[従来の技術] 従来から、冷凍食品の解凍に対して加熱ヒータを用いる
解凍室付冷蔵庫の例は知られている。例えば、特公昭4
8−25414号公報に示される例がそれであり、以下
第7図および第8図に従い説明する。
[Prior Art] Conventionally, examples of refrigerators with a thawing chamber that use a heater to thaw frozen foods have been known. For example,
An example of this is shown in Japanese Patent No. 8-25414, and will be explained below with reference to FIGS. 7 and 8.

1は解凍箱であり、金属又は合成樹脂等で箱状に形成し
た外箱2と、前記外箱2の内側に適当な間隙を配して設
けた熱伝導率の良好なアルミ等の金属製の内箱3で構成
されている。4は線状の加熱ヒータであり、前記解凍箱
1の底面部は疎に、上面部は密になるようにしてアルミ
箔5によって前記内箱3に熱伝導的に密接されている。
Reference numeral 1 denotes a thawing box, which includes an outer box 2 formed into a box shape of metal or synthetic resin, and an outer box 2 made of metal such as aluminum with good thermal conductivity and provided with an appropriate gap inside the outer box 2. It consists of an inner box 3. Reference numeral 4 denotes a linear heater, which is closely connected to the inner box 3 by means of aluminum foil 5 so that the bottom surface of the thawing box 1 is sparse and the top surface is densely packed.

6は前記外箱2、アルミ箔5間に介在させた断熱材であ
る。
6 is a heat insulating material interposed between the outer box 2 and the aluminum foil 5.

かかる構成において、解凍箱1の底面に解凍食品7を載
置して解凍作用を開始すると、加熱ヒータ4の加熱によ
って内箱3の全周より熱が加えられ、はぼ均一に被解凍
食品7を加熱し、解凍を行なわせることが特徴となって
いる。
In this configuration, when the thawed food 7 is placed on the bottom of the thawing box 1 and the thawing action is started, heat is applied from the entire circumference of the inner box 3 by the heater 4, and the food 7 to be thawed is almost uniformly heated. It is characterized by heating and thawing it.

[発明が解決しようとする課題] しかし、前記従来の構成では解凍箱1の底面部からは、
熱伝導により被解凍食品7の底面部に熱が伝わり底面部
の解凍は可能であるものの、解凍箱1の上面及び側面部
からの被解凍食品7への放射熱の効果は、加熱ヒータ4
から内箱3を介しての熱線波長が5μm以下の近赤外線
域であるためほとんどなく、解凍箱1内の暖められた空
気の対流による伝熱によってのみ加熱が行なわれる。こ
のため、被解凍食品7の中心部と表面部との解凍むらが
大きくなり易く、解凍時間も長くかかるという課題があ
った。また同様な理由から、解凍終了後そのまま食品を
放置しておくと、特に魚肉等の生ものでは雰囲気温度が
高いことによる変質が生じるため、解凍終了を使用者が
監視して処理する必要があり、安心して使用できないと
いう課題があった。
[Problems to be Solved by the Invention] However, in the conventional configuration, from the bottom of the thawing box 1,
Although heat is transferred to the bottom of the food 7 to be thawed by thermal conduction and the bottom can be thawed, the effect of radiant heat from the top and side surfaces of the thawing box 1 to the food 7 to be thawed is limited by the heating heater 4.
Since the wavelength of the heat rays transmitted through the inner box 3 is in the near-infrared region of 5 μm or less, there is almost no heat radiation, and heating is performed only by heat transfer due to convection of the warmed air inside the thawing box 1. For this reason, there is a problem that the thawing unevenness between the center and surface of the food 7 to be thawed tends to become large, and the thawing time also takes a long time. In addition, for the same reason, if food is left as is after thawing, especially perishable foods such as fish meat, the high ambient temperature will cause deterioration in quality, so the user must monitor the completion of thawing and dispose of the food. However, there was a problem that it could not be used with confidence.

本発明は、前記従来技術の課題を解決するため、解凍時
および解凍終了後の温度制御を適正なものとなし、解凍
むらが少なく、短時間で解凍可能な解凍室を特に冷蔵庫
内に付与することを目的としている。
In order to solve the problems of the prior art, the present invention properly controls the temperature during and after thawing, and provides a thawing chamber, especially in a refrigerator, that can thaw in a short time with less uneven thawing. The purpose is to

[課題を解決するための手段] 上記目的を達成するため、本発明の解凍室付冷蔵庫は、
冷凍室と、冷蔵室と、解凍室と、冷却器と、前記冷却器
により冷却された空気を前記冷凍室、冷蔵室および解凍
室に強制通風させる送風機と、前記解凍室の内部に設け
た遠赤外“線ヒータと、金属製の底面板の裏面に密着さ
せた加熱ヒータと、前記底面板の裏面の略中央に密着さ
せた温度検知器と、前記解凍室の入口に設けて冷気流入
量を調整するダンパーサーモと、前記ダンパーサーモよ
り連通し、前記解凍室上部空間に形成した通風路とを少
なくとも含む解凍室付冷蔵庫であって、解凍中は前記送
風機を強制運転させるとともに解凍時間を3段階に分割
し、下記の制御手段を備え、非解凍時は解凍室を冷蔵温
度と冷凍温度の間の温度帯に維持させる解凍制御装置を
備えたことを特徴とする。
[Means for Solving the Problem] In order to achieve the above object, the refrigerator with a defrosting chamber of the present invention has the following features:
A freezer compartment, a refrigerator compartment, a thawing compartment, a cooler, a blower for forcing air cooled by the cooler into the freezing compartment, refrigerator compartment, and thawing compartment, and a remote control provided inside the thawing compartment. An infrared ray heater, a heating heater placed in close contact with the back side of the metal bottom plate, a temperature sensor placed in close contact with the back side of the bottom plate approximately in the center, and a temperature sensor provided at the entrance of the thawing chamber to detect the inflow of cold air. A refrigerator with a thawing chamber, which includes at least a damper thermostat that adjusts the damper thermostat, and a ventilation passage formed in the upper space of the thawing chamber, which is communicated with the damper thermos, and during thawing, the blower is forced to operate and the thawing time is 3. It is characterized in that it is divided into stages and includes the following control means, and a thawing control device that maintains the thawing chamber in a temperature range between the refrigerating temperature and the freezing temperature when not thawing.

第1の段階:解凍開始から前記温度検知器の温度が所定
の温度に上昇するまでの間、前記遠赤外線ヒータと加熱
ヒータへの通電を連続的に行うとともに、前記ダンパー
サーモを強制的に解放する。
First stage: From the start of thawing until the temperature of the temperature sensor rises to a predetermined temperature, the far-infrared heater and heating heater are continuously energized, and the damper thermo is forcibly released. do.

第2の段階:前記温度検知器の温度が所定の温度に上昇
した後一定の時間内、前記遠赤外線ヒータと加熱ヒータ
への通電を断続的に行うとともに、前記ダンパーサーモ
を強制的に解放する。
Second stage: After the temperature of the temperature sensor rises to a predetermined temperature, the far-infrared heater and heating heater are intermittently energized and the damper thermo is forcibly released within a certain period of time. .

第3の段階:前記第2の段階経過後、前記遠赤外線ヒー
タ若しくは加熱ヒータの少なくとも一方への通電を停止
するか、または両ヒータの発熱容量を前記第2の段階よ
り低下させるとともに、前記ダンパーサーモを強制的に
閉塞する。
Third stage: After the second stage has passed, the supply of electricity to at least one of the far-infrared heater or the heating heater is stopped, or the heat generation capacity of both heaters is lowered than in the second stage, and the damper Forcibly block the thermostat.

[作用コ 前記した本発明の構成によれば、通常の解凍時は被解凍
食品の上面及び側面より遠赤外線ヒータによる遠赤外線
の直接放射が行なわれるとともに底面の加熱ヒータから
の伝熱加熱が行なわれて熱吸収される。また、底面の温
度検知器が所温度に上昇する第1段階では、両ヒータが
連続通電されて急激に被解凍食品の温度が上昇する。
[Function] According to the configuration of the present invention described above, during normal thawing, far-infrared rays are directly radiated by the far-infrared heater from the top and side surfaces of the food to be thawed, and conductive heating is performed from the bottom heater. heat is absorbed. Further, in the first stage when the temperature sensor on the bottom rises to a predetermined temperature, both heaters are continuously energized and the temperature of the food to be thawed rises rapidly.

その後は両ヒータへの断続通電率が第2.第3段階と段
階的に低下すること、および第1.第2段階では、ダン
パーサーモを介して上面の多数の通風孔より被解凍食品
に対して均等に冷気が供給されて食品表面の温度上昇を
抑制する。
After that, the intermittent energization rate to both heaters is the second. The third stage and gradual decline, and the first stage. In the second stage, cold air is evenly supplied to the food to be thawed from the many ventilation holes on the top surface via the damper thermo, thereby suppressing the temperature rise on the food surface.

そして第3段階では、遠赤外線ヒータ若しくは加熱ヒー
タの少なくとも一方への通電を停止するか、または両ヒ
ータの発熱容量を前記第2の段階よりも低下させるとと
もに、前記ダンパーサーモを強制的に閉塞する。よって
ダンパーサーモが強制的に閉塞して解凍室内の排熱を冷
却器側に回収させない。また誤って被解凍食品を入れず
に解凍開始した際は、両ヒータへの通電が中止され、各
部が異常高温になるのを防ぐ。
Then, in the third stage, power supply to at least one of the far-infrared heater or the heating heater is stopped, or the heat generation capacity of both heaters is lowered than in the second stage, and the damper thermo is forcibly closed. . Therefore, the damper thermo is forcibly closed and the exhaust heat in the thawing chamber is not recovered to the cooler side. Furthermore, if defrosting is started without putting food to be thawed by mistake, the power supply to both heaters is stopped to prevent each part from becoming abnormally high temperature.

更に解凍終了後は、ダンパーサーモの温調作用により、
自動的に食品温度は冷蔵温度と冷凍温度の間の温度帯に
維持されて保冷されるものである。
Furthermore, after thawing, the damper thermostat will control the temperature.
Food temperature is automatically maintained in a temperature range between refrigeration temperature and freezing temperature to keep it cold.

[実施例コ 以下本発明の一実施例の解凍室付冷蔵庫について第1図
〜第6図に従い説明する。
[Embodiment 1] A refrigerator with a defrosting chamber according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

まず第3図において、8は冷蔵庫本体で外箱9、内箱1
0及びこれら両箱9.10間に充填された断熱材11に
より構成されている。12は冷蔵庫本体8内を上下に区
画する区画壁であり、前記区画壁12の上部に冷凍室1
3、下部に冷蔵室14が区画形成されている。15は前
記冷蔵室14内の上部の一区画に設けた解凍室である。
First, in Figure 3, 8 is the refrigerator body, outer box 9, inner box 1
0 and a heat insulating material 11 filled between these two boxes 9 and 10. Reference numeral 12 denotes a partition wall that divides the inside of the refrigerator main body 8 into upper and lower sections, and a freezer compartment 1 is provided in the upper part of the partition wall 12.
3. A refrigerating chamber 14 is defined in the lower part. Reference numeral 15 denotes a thawing chamber provided in an upper section of the refrigerator compartment 14.

16は前記冷蔵室本体8の底部後方に設けた冷凍サイク
ルの圧縮機、17は前記冷凍室13の背面に収めた冷却
器である。18は前記冷却器17で冷却された冷気を前
記冷凍室13、冷蔵室14、解凍室15内の強制通風さ
せるための送風機、19.20は前記冷蔵室14、解凍
室15の入口に設けて電気的入力で冷気流入量を調節す
るダンパーサーモである。
16 is a compressor of a refrigeration cycle provided at the rear of the bottom of the refrigerator compartment main body 8, and 17 is a cooler housed in the back of the freezer compartment 13. 18 is a blower for forcing the cold air cooled by the cooler 17 into the freezing compartment 13, the refrigerator compartment 14, and the thawing compartment 15; 19.20 is provided at the entrance of the refrigerator compartment 14 and the thawing compartment 15; This is a damper thermostat that adjusts the amount of cold air flowing in using electrical input.

その構成を第4図の解凍室15用のダンパーサーモ20
を例にとって説明する。
Its configuration is shown in Fig. 4 as a damper thermometer 20 for the thawing chamber 15.
will be explained using an example.

第4図において、21は電磁コイル、22は前記電磁コ
イル21の内心部を電磁作用の有無によって上下するプ
ランジャー、23は前記プランジャー22に接合された
ロッド、24は冷気通路を開閉するダンパーであり、前
記電磁コイル21への通電時に電磁作用を前記ロッド2
3が押し上げられて前記ダンパー24が開放され、通電
が断たれると前記ロッド23は下方に落下して前記ダン
パー24が閉成する様に構成されている。
In FIG. 4, 21 is an electromagnetic coil, 22 is a plunger that moves the inner core of the electromagnetic coil 21 up and down depending on the presence or absence of electromagnetic action, 23 is a rod connected to the plunger 22, and 24 is a damper that opens and closes the cold air passage. When the electromagnetic coil 21 is energized, the electromagnetic action is applied to the rod 2.
3 is pushed up to open the damper 24, and when the current is cut off, the rod 23 falls downward and the damper 24 is closed.

次に第3図に戻り、25.26は前記送風機18からの
冷気を前記冷蔵室14、解凍室15に導(吐出ダクト、
27.28は夫々前記冷蔵室14、解凍室15内を冷却
した冷気を前記冷却器17に戻すための吸込ダクトであ
る。又、29.30.31は夫々前記冷凍室13、冷蔵
室14、解凍室15内の温度を検知する温度検知手段で
ある。
Next, returning to FIG. 3, 25 and 26 guide the cold air from the blower 18 to the refrigerator compartment 14 and the thawing compartment 15 (discharge duct,
Reference numerals 27 and 28 designate suction ducts for returning the cold air that has cooled the refrigerator compartment 14 and the thawing compartment 15 to the cooler 17, respectively. Further, reference numerals 29, 30, and 31 are temperature detection means for detecting the temperatures in the freezing compartment 13, refrigerator compartment 14, and thawing compartment 15, respectively.

次に前記解凍室15の詳細構成について第1〜2図によ
り説明する。
Next, the detailed structure of the defrosting chamber 15 will be explained with reference to FIGS. 1 and 2.

第1〜2図において、32は合成樹脂製の外箱、33は
前記外箱32の内面に設置して外周を囲む断熱材である
。34は前記解凍室15内の上部に設けた遠赤外線ヒー
タであり、ヒータ線35を封入したガラス管36の表面
に硅素等を主成分とするセラミック塗料層37を焼付は
塗装し約5μm以上の遠赤外線を有効に放射するよう構
成されている。この遠赤外線ヒータ34は、耐熱性の高
い合成樹脂製のホルダー38を介してドーム状に形成し
たアルミニウム等の金属製の反射板39より垂下支持さ
れている。また前記反射板39は解凍室15内の両側壁
、奥壁を構成する内箱部分も一体に形成したものとして
おり、更に天面ドーム部両側の平面部には多数の通風孔
40を形成している。
In FIGS. 1 and 2, 32 is an outer box made of synthetic resin, and 33 is a heat insulating material installed on the inner surface of the outer box 32 to surround the outer periphery. 34 is a far-infrared heater installed in the upper part of the thawing chamber 15, and a ceramic paint layer 37 containing silicon or the like as a main component is baked on the surface of a glass tube 36 in which a heater wire 35 is enclosed to form a coating with a thickness of about 5 μm or more. It is configured to effectively emit far-infrared rays. This far-infrared heater 34 is suspended and supported by a dome-shaped reflector plate 39 made of metal such as aluminum through a holder 38 made of synthetic resin with high heat resistance. In addition, the reflector plate 39 is integrally formed with the inner box portions that constitute both side walls and the back wall of the thawing chamber 15, and a large number of ventilation holes 40 are formed in the flat portions on both sides of the top dome portion. ing.

次に、41はアルミニウム等金属製の底面板であり、そ
の裏面に線状の加熱ヒータ42がアルミ箔43等により
熱伝導的に密着固定されている。
Next, reference numeral 41 denotes a bottom plate made of metal such as aluminum, and a linear heater 42 is tightly fixed to the back surface of the bottom plate with aluminum foil 43 or the like for heat conduction.

44は前記底面板41上に着脱自在に設置される解凍皿
であり、被解凍食品45を載置するアルミニウム等金属
製の皿46と外周を囲む合成樹脂製の枠体47により構
成されている。48は前記反射板39の下方に一定の間
隔をおいて固定設置した火傷防止用の防護網であり、4
9は解凍室15の前面開口部を開閉する扉である。また
、50は前記反射板39の裏面空間に形成した通風路で
あり、吐出口51を介して前記ダンパーサーモ20に連
通している。52は解凍室15内の奥壁に形成した吸込
口であり前記吸込ダクト28に連通している。
A thawing tray 44 is detachably installed on the bottom plate 41, and is composed of a tray 46 made of metal such as aluminum on which the food to be thawed 45 is placed, and a frame 47 made of synthetic resin surrounding the outer periphery. . 48 is a protective net for preventing burns that is fixedly installed below the reflector plate 39 at a certain interval;
A door 9 opens and closes the front opening of the thawing chamber 15. Further, reference numeral 50 denotes a ventilation passage formed in the space on the back surface of the reflector plate 39, which communicates with the damper thermometer 20 via a discharge port 51. Reference numeral 52 denotes a suction port formed in the back wall of the thawing chamber 15 and communicates with the suction duct 28 .

次に第5図を用いて本実施例の解凍室付冷蔵庫の機能を
説明する。
Next, the functions of the refrigerator with a defrosting chamber of this embodiment will be explained using FIG.

第5図において、53は前記冷蔵庫本体8の外殻前面に
設けた解凍スイッチである。
In FIG. 5, 53 is a defrost switch provided on the front surface of the outer shell of the refrigerator main body 8.

以下第5図を用いて電気回路及び制御回路について説明
する。
The electric circuit and control circuit will be explained below using FIG. 5.

圧縮機16はリレー接点54を介して、送風機18はリ
レー接点55を介して夫々電源に接続されている。遠赤
外線ヒータ34はリレー接点56を介して、加熱ヒータ
42はリレー接点57を介して夫々電源に接続されてい
る。又、解凍室用のダンパーサーモの電磁コイル21、
冷蔵室用のダンパーサーモの電磁コイル21′は夫々リ
レー接点58.59を介して電源に接続されている。
The compressor 16 and the blower 18 are connected to a power source via a relay contact 54 and a relay contact 55, respectively. The far-infrared heater 34 and the heater 42 are connected to a power source through a relay contact 56 and a relay contact 57, respectively. Also, the electromagnetic coil 21 of the damper thermo for the thawing chamber,
The electromagnetic coils 21' of the damper thermos for the refrigerator compartment are each connected to the power supply via relay contacts 58, 59.

60は冷凍室温度制御装置で、サーミスタ等の温度検知
器29、抵抗R1、R2、R3、コンパレータ61を備
えた比較回路、トランジスタ62、リレーコイル63を
備えており、前記コンパレータ61の出力は前記トラン
ジスタ62のベースに接続されている。又、トランジス
タ62のコレクタには、前記リレー接点54を開閉させ
る吸引用の前記リレーコイル63が接続されている。6
4は冷蔵室温度制御装置で、サーミスタ等の温度検知器
30、抵抗R4、R5、R6、コンパレータ65を備え
た比較回路、トランジスタ66、リレーコイル67を備
えており、前記コンパレータ65の出力は前記トランジ
スタ66のベースに接続されている。又、トランジスタ
66のコレクタには、前記リレー接点59を開閉させる
吸引用の前記リレーコイル67が接続されている。68
は解凍室温度制御装置で、サーミスタ等の温度検知器3
1、抵抗R7、R8、R9、コンパレータ69を備えた
比較回路、OR回路70、AND回路70a1 トラン
ジスタ71、リレーコイル72を備えており、通常冷却
時は前記解凍室15の室内が約−3℃のパーシャルフリ
ージング温度に温調されるよう構成されている。前記コ
ンパレータ69の出力は、前記OR回路70の一方の入
力に接続されている。またOR回路70の出力は、前記
AND回路70aを介して前記トランジスタ71のベー
スに接続され、前記トランジスタ71のコレクタには、
前記リレー接点58を開閉させる吸引用の前記リレーコ
イル72が接続されている。
Reference numeral 60 denotes a freezer temperature control device, which includes a temperature detector 29 such as a thermistor, resistors R1, R2, R3, a comparator circuit including a comparator 61, a transistor 62, and a relay coil 63, and the output of the comparator 61 is Connected to the base of transistor 62. Further, the collector of the transistor 62 is connected to the relay coil 63 for attraction, which opens and closes the relay contact 54 . 6
Reference numeral 4 denotes a refrigerator temperature control device, which includes a temperature detector 30 such as a thermistor, resistors R4, R5, R6, a comparator circuit including a comparator 65, a transistor 66, and a relay coil 67. Connected to the base of transistor 66. Further, the collector of the transistor 66 is connected to the relay coil 67 for attraction, which opens and closes the relay contact 59. 68
is a thawing chamber temperature control device, and a temperature sensor such as a thermistor 3
1. It is equipped with a comparison circuit including resistors R7, R8, R9, a comparator 69, an OR circuit 70, an AND circuit 70a1, a transistor 71, and a relay coil 72. During normal cooling, the temperature inside the thawing chamber 15 is approximately -3°C. The temperature is controlled to the partial freezing temperature of . The output of the comparator 69 is connected to one input of the OR circuit 70. Further, the output of the OR circuit 70 is connected to the base of the transistor 71 via the AND circuit 70a, and the collector of the transistor 71 is connected to the base of the transistor 71 through the AND circuit 70a.
The relay coil 72 for suction, which opens and closes the relay contact 58, is connected.

73は解凍制御装置で、前記解凍室15c)−底面板4
1に密着させた温度検知器43、抵抗RIO1R11、
R12、コンパレータ74及び抵抗R13、R14、R
15、コンパレータ74aを備えた2つの比較回路と、
タイマー75.76.77.77a、90、AND回路
78.79.79a10R回路80.81.82、前記
OR回路70、インバータ83、インバータ83a、h
ランジメタ84.8.5.86、リレーコイル87.8
8.89及び前記解凍スイッチ53を備えている。
73 is a thawing control device, which connects the thawing chamber 15c) to the bottom plate 4;
1, a temperature sensor 43, a resistor RIO1R11,
R12, comparator 74 and resistors R13, R14, R
15, two comparison circuits equipped with a comparator 74a,
Timer 75.76.77.77a, 90, AND circuit 78.79.79a10R circuit 80.81.82, OR circuit 70, inverter 83, inverter 83a, h
Langimeta 84.8.5.86, relay coil 87.8
8.89 and the defrosting switch 53.

そして、前記解凍スイッチ53の出力は、前記タイマー
75の入力に接続されており、前記タイマー75の出力
は、前記AND回路78.79a10R回路70.82
の夫々一方の入力に接続されている。前記コンパレータ
74の出力は、前記インバータ83を介して前記AND
回路78のもう一方の入力に接続されると同時に、前記
AND回路79の一方の入力に接続されている。前記コ
ンパレータ74aの出力は、タイマー90およびインバ
ータ83aを介して前記AND回路79aのもう一方の
入力に接続され、このAND回路79aの出力は、前記
AND回路79のもう一方の入力に接続されている。前
記AND回路78の出力は、OR回路80.81aの一
方に接続されており、前記AND回路79の出力は、前
記タイマー76.77.77aの入力に接続されている
。そして前記タイマー76.77の出力は、前記OR回
路80.81の夫々のもう一方の入力に接続されており
、OR回路80.81の出力は、夫々前記トランジスタ
84.85のベースに接続されている。前記トランジス
タ84.85のコレクタには、前記リレー接点56.5
7を開閉させる吸引用の前記リレーコイル87.88が
接続されている。そして前記タイマー77aの出力は、
前記OR回路70の出力とともに、前記AND回路70
aの一方の入力に接続されている。また、前記0R回路
82のもう一方の入力には、前記冷凍室温度制御装置6
0のコンパレータ61の出力が接続されており、前記O
R回路82の出力は、前記トランジスタ86のベースに
接続されている。そして前記トランジスタ86のコレク
タには、前記リレー接点55を開閉させる吸引用のリレ
ーコイル89が接続されている。
The output of the defrosting switch 53 is connected to the input of the timer 75, and the output of the timer 75 is connected to the AND circuit 78.79a10R circuit 70.82.
are connected to one input of each. The output of the comparator 74 is connected to the AND via the inverter 83.
It is connected to the other input of the circuit 78 and simultaneously connected to one input of the AND circuit 79. The output of the comparator 74a is connected to the other input of the AND circuit 79a via a timer 90 and an inverter 83a, and the output of the AND circuit 79a is connected to the other input of the AND circuit 79. . The output of the AND circuit 78 is connected to one of the OR circuits 80.81a, and the output of the AND circuit 79 is connected to the input of the timer 76.77.77a. The outputs of the timers 76 and 77 are connected to the other inputs of the OR circuits 80 and 81, and the outputs of the OR circuits 80 and 81 are respectively connected to the bases of the transistors 84 and 85. There is. The collector of the transistor 84.85 has the relay contact 56.5.
The relay coils 87 and 88 for suction that open and close 7 are connected. The output of the timer 77a is
Along with the output of the OR circuit 70, the AND circuit 70
connected to one input of a. Further, the other input of the 0R circuit 82 is connected to the freezer compartment temperature control device 6.
The output of the comparator 61 of O is connected, and the output of the comparator 61 of O
The output of R circuit 82 is connected to the base of transistor 86. A suction relay coil 89 for opening and closing the relay contact 55 is connected to the collector of the transistor 86.

尚ここで、前記タイマー75は入力に一旦“High”
 (以後単に“H”と呼ぶ)の信号が入ると所定時間t
の間“H”信号を出力しつづけ、その後“LOW″ (
以後単にL”と呼ぶ)の信号に切り換わるよう構成され
ている。また前記タイマー76.77は入力に“H”信
号が入力されている間は“H”L”の信号を所定時間づ
つ交互に出力するが、所定の時間経過で“H”信号の断
続出力率が段階的に低下するよう構成されている。
Here, the timer 75 is set to "High" once for the input.
(Hereafter simply referred to as "H") signal is input for a predetermined time t.
The “H” signal continues to be output during this period, and then “LOW” (
The timers 76 and 77 alternate between "H" and "L" signals for a predetermined period of time while the "H" signal is being input to the input. However, the intermittent output rate of the "H" signal is configured to decrease stepwise as a predetermined time elapses.

例えば具体的には、前記タイマー76の出力は、最初の
時間t1は“H“信号の出力率が80%、次の時間t2
では“H”信号の出力率が40%になるよう構成され、
前記タイマー77の出力は最初の時間1+  −は“H
”信号の出力率が80%、次の時間t2−では“H”信
号の出力率が0%になるよう構成されている。尚、前記
タイマー76.77の動作時間はt+ +t2=tl 
 −+t2−となるよう構成され、前記タイマー75の
所定時間tは解凍作用のタイムセーフ的な役割をさせる
ことも含めて、前記タイマー76.77の動作時間t+
 +t2 =t+  −+t2−より十分長くなるよう
設定されている。更に、前記タイマー77aは通常は出
力が“H”であり、−旦入力に“H”が入力されると時
間1.=1.−の聞出力“H″を継続し、その後、時間
t2=t2−の聞出力“L”となるよう構成する。
For example, specifically, the output of the timer 76 is such that the output rate of the "H" signal is 80% at the first time t1, and the output rate of the "H" signal is 80% at the next time t2.
In this case, the configuration is such that the output rate of the "H" signal is 40%,
The output of the timer 77 is "H" for the first time 1+-
The output rate of the "H" signal is 80%, and the output rate of the "H" signal is 0% at the next time t2-.The operating time of the timers 76 and 77 is t+ +t2=tl
-+t2-, and the predetermined time t of the timer 75 is the operating time t+ of the timers 76 and 77, including the time-safe role of the defrosting action.
+t2 = t+ −+t2− is set to be sufficiently longer. Further, the output of the timer 77a is normally "H", and when "H" is input to the input of -1, the timer 77a outputs "H". =1. -, the output continues to be "H", and then becomes "L" at time t2=t2-.

かかる構成において、冷凍室13の温度が所定値より高
い場合は、温度検知器29の抵抗値が小さくなっており
、コンパレータ61の出力がH”となるためトランジス
タ62がONしてリレーコイル63が導通ずる。このた
めリレー接点54が閉成して圧縮機16が運転される。
In this configuration, when the temperature of the freezer compartment 13 is higher than a predetermined value, the resistance value of the temperature detector 29 is small and the output of the comparator 61 becomes H'', so the transistor 62 is turned on and the relay coil 63 is turned on. Therefore, the relay contact 54 is closed and the compressor 16 is operated.

又、これと同時にOR回路82の出力も“H″となって
いるためトランジスタ86がON t、てリレーコイル
89が導通ずる。このため、リレー接点55が閉成して
送風機18も運転され冷凍室13、冷蔵室14、解凍室
15へ冷気を強制通風して冷却を行替う。
At the same time, the output of the OR circuit 82 also becomes "H", so the transistor 86 is turned on and the relay coil 89 becomes conductive. Therefore, the relay contact 55 is closed and the blower 18 is also operated to forcefully ventilate cold air to the freezing compartment 13, refrigerator compartment 14, and thawing compartment 15 to perform cooling.

その後、冷凍室13が所定温度にまで冷却されれば温度
検知器29の抵抗値が大きくなりコンパレータ6の出力
が“L″となる。このため、トランジスタ62は0FF
L、又OR回路82の出力も“L”となるためトランジ
スタ86もOFFしてリレーコイル63.89への通電
が断たれる。このためリレー接点54.55はいづれも
開放し圧縮機16、送風機18が停止する。以後この作
用を繰り返して冷凍室13内は所定温度(例えば−20
℃)に温調維持される。
Thereafter, when the freezer compartment 13 is cooled to a predetermined temperature, the resistance value of the temperature detector 29 increases and the output of the comparator 6 becomes "L". Therefore, the transistor 62 is 0FF.
Since the output of the OR circuit 82 also becomes "L", the transistor 86 is also turned off, and the power to the relay coil 63.89 is cut off. Therefore, both relay contacts 54 and 55 are opened, and the compressor 16 and blower 18 are stopped. Thereafter, this action is repeated until the inside of the freezer compartment 13 reaches a predetermined temperature (for example, -20
The temperature is maintained at ℃).

次に冷蔵室14の温度が所定値より高い場合は、温度検
知器30の抵抗値が小さくなっており、コンパレータ6
5の出力が“H”となるなめ、トランジスタ66がON
してリレーコイル、67が導通する。このため、リレー
接点59が閉成して電磁コイル21−に通電されて、ダ
ンパーサーモ19のダンパー24゛が開放され、冷蔵室
14内へ冷気が導入されて冷却作用を行なう。
Next, when the temperature of the refrigerator compartment 14 is higher than a predetermined value, the resistance value of the temperature detector 30 is small, and the comparator 6
Since the output of 5 becomes "H", the transistor 66 turns on.
Then, the relay coil 67 becomes conductive. Therefore, the relay contact 59 is closed, the electromagnetic coil 21- is energized, the damper 24' of the damper thermostat 19 is opened, and cold air is introduced into the refrigerator compartment 14 to perform a cooling effect.

その後、冷蔵室14が所定温度にまで冷却されれば、温
度検知器30の抵抗値が大きくなってコンパレータ65
の出力が“L”となるgこのため、トランジスタ66は
OFFしてリレーコイル67への通電が断たれてリレー
接点59が開放し、電磁コイル21′への通電も断たれ
る。そしてダンパーサーモ19のダンパー24′が閉成
されて、冷蔵室14内への冷気の流入が阻止される。以
後、この作用を繰り返して冷蔵室14内は所定温度(例
えば5℃)に温調維持される。
Thereafter, when the refrigerator compartment 14 is cooled to a predetermined temperature, the resistance value of the temperature detector 30 becomes large and the comparator 65
As a result, the transistor 66 is turned off, the current to the relay coil 67 is cut off, the relay contact 59 is opened, and the current to the electromagnetic coil 21' is also cut off. Then, the damper 24' of the damper thermostat 19 is closed to prevent cold air from flowing into the refrigerator compartment 14. Thereafter, this action is repeated to maintain the temperature inside the refrigerator compartment 14 at a predetermined temperature (for example, 5° C.).

また、非解凍時において解凍室15の温度が所定値より
高い場合は、温度検知器31の抵抗値が小さくなってお
り、コンパレータ69の出力が”H” となるf=?h
OR回路70.AND回路7゜aの出力がH”となりト
ランジスタ71がONしてリレーコイル72が導通する
。このため、リレー接点58が閉成して電磁コイル21
に通電されてダンパーサーモ20のダンパー24が開放
されて解凍室1,5内へ冷気が導入され冷却作用を行な
う。その後、解凍室15が所定温度にまで冷却されれば
温度検知器31の抵抗値が太き(なってコンパレータ6
9の出力が“L”となる。このため、OR回路70の出
力が“L”となってAND回路70aの出力も“L”と
なり、トランジスタ71はOFFしてリレーコイル72
への通電が断たれてリレー接点58が開放し、電磁コイ
ル21への通電も断たれる。そしてダンパーサーモ20
のダンパー24が閉成されて解凍室15内への冷気流入
が阻止される。以後、この作用を繰り返して解凍室15
内は前述の様に生鮮食品の保存に適した冷凍温度と冷蔵
温度の間の第3の温度帯、即ち約−3℃のパーシャルフ
リージング温度帯に温調維持される。
Further, when the temperature of the thawing chamber 15 is higher than a predetermined value when not thawing, the resistance value of the temperature detector 31 is small, and the output of the comparator 69 becomes "H", f=? h
OR circuit 70. The output of the AND circuit 7゜a becomes H'', the transistor 71 turns on, and the relay coil 72 becomes conductive. Therefore, the relay contact 58 closes and the electromagnetic coil 21
is energized, the damper 24 of the damper thermostat 20 is opened, and cold air is introduced into the thawing chambers 1 and 5 to perform a cooling action. Thereafter, when the thawing chamber 15 is cooled to a predetermined temperature, the resistance value of the temperature detector 31 increases (and the comparator 6
The output of 9 becomes "L". Therefore, the output of the OR circuit 70 becomes "L" and the output of the AND circuit 70a also becomes "L", and the transistor 71 is turned off and the relay coil 72
The power supply to the electromagnetic coil 21 is cut off, the relay contact 58 is opened, and the power supply to the electromagnetic coil 21 is also cut off. And damper thermo 20
The damper 24 is closed to prevent cold air from flowing into the thawing chamber 15. Thereafter, this action is repeated until the thawing chamber 15
As mentioned above, the temperature inside the container is maintained at a third temperature range between the freezing temperature and the refrigeration temperature suitable for preserving fresh foods, that is, the partial freezing temperature range of about -3°C.

次に解凍時の作用について述べる。先ず、解凍しようと
する被解凍食品45を解凍トレイ44上に載置して解凍
室15内の底面板41上に設置した上で解凍スイッチ5
3を投入する。投入と同時にタイマー75が“H”信号
の出力を開始し、AND回路78.79aの一方の入力
が“H”となる。この時、解凍室15の底面板41は冷
凍状態の温度の低い(例えば−20℃)の被解凍食品4
5を載置した解凍皿44との熱伝導で温度が低下してい
る。即ち、温度検知器43は十分温度の低い状態にある
。このためコンパレータ74及び74aの出力は両者共
に“L”となっており、インバータ83及び83aで両
者共に“H”に反転された信号が夫々AND回路78及
び79aのもう一方の入力に入力される。従ってAND
回路79aの入力は共に“H”となるため出力は“H”
となり、AND回路79の一方の入力に入力される。
Next, we will discuss the action during thawing. First, the food to be thawed 45 to be thawed is placed on the thawing tray 44 and placed on the bottom plate 41 in the thawing chamber 15, and then the thawing switch 5 is turned on.
Insert 3. At the same time as the input, the timer 75 starts outputting an "H" signal, and one input of the AND circuit 78, 79a becomes "H". At this time, the bottom plate 41 of the thawing chamber 15 is connected to the frozen food 4 which is at a low temperature (for example, -20°C).
The temperature decreases due to heat conduction with the thawing tray 44 on which the food 5 is placed. That is, the temperature sensor 43 is in a sufficiently low temperature state. Therefore, the outputs of comparators 74 and 74a are both "L", and the signals inverted to "H" by inverters 83 and 83a are input to the other inputs of AND circuits 78 and 79a, respectively. . Therefore, AND
Since the inputs of the circuit 79a are both “H”, the output is “H”
and is input to one input of the AND circuit 79.

一方、AND回路79にはインバータ83を介さない“
L”の信号がそのまま入力される。このためAND回路
78の出力は“H” 、AND回路79の出力は“L”
となるため、タイマー76.77は動作せず、OR回路
80.81の出力が“H”となってトランジスタ84.
85がONする。そしてリレーコイル87.88に通電
され、リレー接点56.57が閉成して遠赤外線ヒータ
34、加熱ヒータ42に連続通電される。
On the other hand, the AND circuit 79 does not include the inverter 83.
The "L" signal is input as is. Therefore, the output of the AND circuit 78 is "H" and the output of the AND circuit 79 is "L".
Therefore, the timers 76 and 77 do not operate, and the outputs of the OR circuits 80 and 81 become "H" and the transistors 84 and 84.
85 turns on. Then, the relay coils 87 and 88 are energized, the relay contacts 56 and 57 are closed, and the far-infrared heater 34 and the heating heater 42 are continuously energized.

そして、解凍作用が進行して温度検知器43が予め定め
た所定温度(例えば20℃)にまで上昇すると(、これ
に要する時間をt。とじ、この−期間を第1の段階とす
る)、コンパレータ74の出力が“H”となり、インバ
ータ83を介して“L”の信号がAND回路78に入力
されてAND回路78の出力が“L”となる。この時、
コンパレータ74aの出力は、変らず“L“のままであ
る。
Then, when the thawing action progresses and the temperature sensor 43 rises to a predetermined temperature (for example, 20 ° C.) (the time required for this is t, and this period is defined as the first stage), The output of the comparator 74 becomes "H", the "L" signal is input to the AND circuit 78 via the inverter 83, and the output of the AND circuit 78 becomes "L". At this time,
The output of the comparator 74a remains unchanged at "L".

一方、AND回路79には、“H”の信号が入力される
ためタイマー76.77が所定の断続率により“H”L
”の信号を交互に繰り返して出力し始める。このためそ
れに応じた断続出力率でOR回路80.81を介してト
ランジスタ84.85が0N10FFする。そして、リ
レーコイル87.88への通電が断続されてリレー接点
56.57が断続的に開閉する。
On the other hand, since the "H" signal is input to the AND circuit 79, the timers 76 and 77 go "H" and "L" at a predetermined intermittent rate.
" signal starts to be output repeatedly. Therefore, the transistor 84.85 is turned on and off through the OR circuit 80.81 at an intermittent output rate corresponding to that signal.Then, the energization to the relay coil 87.88 is interrupted. The relay contacts 56 and 57 open and close intermittently.

その結果、遠赤外線ヒータ34は前記連続通電の時間t
。に続く時間1+  (この期間を第2の段階とする)
は通電率80%、次の時間t2 (この期間を第3の段
階とする)は通電率40%と時間経過とともに段階的に
発熱容量が低下していくように制御される。また加熱ヒ
ータ42は前記連続通電の時間t。に続く時間t1−は
通電率80%、次の時間t2−は通電率0%と発熱容量
が低下していくように制御される。
As a result, the far infrared heater 34 is continuously energized for a period of time t.
. 1+ (this period is the second stage)
is controlled so that the energization rate is 80%, and the energization rate is 40% at the next time t2 (this period is defined as the third stage), so that the heat generation capacity is gradually reduced as time passes. Further, the heater 42 is continuously energized for the time t. Control is performed such that the energization rate is 80% during the following time t1-, and 0% during the next time t2-, so that the heat generation capacity is reduced.

このように、被解凍食品45の温度が低い解凍初期は温
度検知器43の温度が、所定温度(たとえば20℃)に
上昇するまでは、遠赤外線ヒータ34および加熱ヒータ
42の両ヒータが連続通電されるため、被解凍食品45
の重量が様々に変化しても、温度検知器43の温度上昇
の度合で、夫々の重量に適した時間だけ過不足なく発熱
量の大きい条件下で急速に解凍が進められることになり
、解凍時間の短縮化が図れる。
In this way, in the early stage of thawing when the temperature of the food to be thawed 45 is low, both the far-infrared heater 34 and the heating heater 42 are continuously energized until the temperature of the temperature sensor 43 rises to a predetermined temperature (for example, 20° C.). Foods to be thawed 45
Even if the weight of the food changes, depending on the degree of temperature rise of the temperature sensor 43, thawing will proceed rapidly under conditions with a large amount of heat generation for a time appropriate for each weight. Time can be shortened.

そして、その後は時間経過とともに発熱容量が段階的に
低下し、被解凍食品45の表面温度の上昇を抑制しなが
らその解凍が進行する。解凍中は被解凍食品45に対し
て、上面からは遠赤外線ヒ−夕34からの放射加熱が反
射板39の反射作用とも相まって均等に行なわれ、底面
からは加熱ヒータ42による伝熱加熱が同時に行なわれ
ることになる。
Thereafter, the heat generation capacity gradually decreases with the passage of time, and the thawing of the food 45 progresses while suppressing the rise in the surface temperature of the food 45 to be thawed. During thawing, the food to be thawed 45 is uniformly heated by radiation from the far-infrared heater 34 from the top surface, coupled with the reflection action of the reflector plate 39, and is simultaneously heated by conduction from the bottom surface by the heater 42. It will be done.

ここで、遠赤外線ヒータ34の加熱においては5μm以
上の長波長の遠赤外線が被解凍食品45に対して放射さ
れるため、遠赤外線波長域に吸収波長帯を持つ一般的な
食品類では効率よく遠赤外線が吸収され、被解凍食品4
5の比較的内部にまで浸透して表面部と中心部との温度
むらが比較的大きくならない状態で解凍が進行する。又
、加熱ヒータ42による加熱においては、遠赤外線ヒー
タ34で十分に加熱しきれない被解凍食品45の底面部
を解凍皿44を介しての伝熱加熱で解凍することができ
る。
Here, in heating by the far infrared heater 34, far infrared rays with a long wavelength of 5 μm or more are radiated to the food to be thawed 45, so that general foods having an absorption wavelength band in the far infrared wavelength range can be efficiently Far infrared rays are absorbed and the food to be thawed 4
Thawing proceeds in a state where the temperature unevenness between the surface portion and the center portion does not become relatively large as it penetrates relatively far into the inside of the portion 5. Further, in heating by the heater 42, the bottom portion of the food to be thawed 45, which cannot be sufficiently heated by the far-infrared heater 34, can be thawed by heat conduction heating via the thawing plate 44.

一方、これら遠赤外線ヒータ34、加熱ヒータ42によ
る加熱作用と同時に、解凍中即ちタイマー75の出力が
“H”信号を発生し続ける第1、第2、第3の段階の間
はOR回路82の出力が“H”となり、トランジスタ8
6がONし、リレーコイル89が導通する。このため、
リレー接点55が閉成して冷凍室温度制御装置60の出
力の如何に関わらず送風機18が強制的に運転される。
On the other hand, at the same time as the heating action by the far-infrared heater 34 and the heating heater 42, the OR circuit 82 is activated during defrosting, that is, during the first, second, and third stages in which the output of the timer 75 continues to generate an "H" signal. The output becomes “H” and transistor 8
6 is turned on, and the relay coil 89 becomes conductive. For this reason,
The relay contact 55 closes and the blower 18 is forced to operate regardless of the output of the freezer temperature control device 60.

また、一方、この間に於いて、タイマー77aの出力は
、第1の段階ではコンパレータ74の出力がL”による
AND回路79の出力“L”により“L”となっている
。続く第2の段階でAND回路79の出力が“H”に変
わると、タイマー77aの出力は第2の段階が“H”、
第3の段階が“L”となる。このため、AND回路70
aの出力も第1、第2の段階が“H”、第3の段階が“
L”となり、トランジスタ71がその間ON。
Meanwhile, during this period, the output of the timer 77a is "L" due to the output of the AND circuit 79 which is "L" due to the output of the comparator 74 being "L" in the first stage. When the output of the AND circuit 79 changes to "H", the output of the timer 77a changes to "H" in the second stage.
The third stage is "L". Therefore, the AND circuit 70
The output of a is also “H” in the first and second stages, and “H” in the third stage.
The transistor 71 is turned on during that time.

ON、OFFとなる。即ち、解凍中は解凍室用のダンパ
ーサーモ20のダンパー24が第1及び第2の段階が強
制的に開放、第3の段階が強制的に閉塞というパターン
になる。
It turns ON and OFF. That is, during thawing, the damper 24 of the damper thermometer 20 for the thawing chamber has a pattern in which the first and second stages are forcibly opened, and the third stage is forcibly closed.

このように、第1、第2の段階は開放されたダンパー2
4を介して送風機18で強制通風された冷気が、吐出ダ
クト26を通じ、吐出口51より解凍室15内上部の通
風路50内に流入する。通風路50内に流入した冷気は
、反射板39に形成された多数の通風孔より下方へ吐出
され、被解凍食品45の表面を均等に冷却する。
In this way, the first and second stages are the open damper 2
The cold air forcedly ventilated by the blower 18 through the air blower 18 flows through the discharge duct 26 and into the ventilation passage 50 in the upper part of the thawing chamber 15 through the discharge port 51. The cold air that has flowed into the ventilation path 50 is discharged downward from a large number of ventilation holes formed in the reflection plate 39, and evenly cools the surface of the food to be thawed 45.

この作用によって被解凍食品45は、主として遠赤外線
ヒータ34の遠赤外線放射効果と、−遠赤外線ヒータ3
4及び加熱ヒータ42の発熱容量を段階的に低下させる
制御の効果に加えて、さらに表面部の温度上昇が抑制さ
れることになり、結果として中心部と表面部との温度差
の小さい解凍むらの少ない解凍が進行する。
Due to this action, the food 45 to be thawed is mainly affected by the far-infrared radiation effect of the far-infrared heater 34 and the far-infrared radiation effect of the far-infrared heater 34.
In addition to the effect of the control that gradually reduces the heat generation capacity of the heaters 4 and 42, the temperature rise at the surface is further suppressed, resulting in uneven thawing with a small temperature difference between the center and the surface. Decompression progresses with less.

そして、解凍がかなり進行して、第2の段階の終了時点
(例えば、被解凍食品45の中心温度が一5℃付辺)以
後は、ダンパーサーモ20のダンパー24が強制的に閉
塞されて、冷気が導入されない形で、且つヒータ発熱量
の小さい状態で、徐々に解凍の仕上げが進行する。この
間は被解凍食品45の温度も上昇しているため、ヒータ
の加熱効率、被解凍食品45の熱吸収効率が低下してい
る状態であるが、ダンパー24が閉塞しているため解凍
室15内の余熱は、吸込口52からは回収されず、冷却
器17の方にも戻されない。このため、冷却器17に対
する熱負荷量はその分軽減されることになり、圧縮機1
6の余分な運転が避けられる。
Then, after the thawing has progressed considerably and the second stage ends (for example, when the center temperature of the food to be thawed 45 is around 15° C.), the damper 24 of the damper thermostat 20 is forcibly closed. Defrosting progresses gradually without introducing cold air and with a small amount of heat generated by the heater. During this time, the temperature of the food to be thawed 45 is also rising, so the heating efficiency of the heater and the heat absorption efficiency of the food to be thawed 45 are decreasing, but since the damper 24 is blocked, the temperature inside the thawing chamber 15 is The remaining heat is not recovered from the suction port 52 and is not returned to the cooler 17. Therefore, the amount of heat load on the cooler 17 is reduced accordingly, and the compressor 1
6 extra driving is avoided.

なお、解凍中の被解凍食品45の温度特性及びタイムチ
ャートを第6図に示す。
Note that FIG. 6 shows the temperature characteristics and time chart of the food to be thawed 45 during thawing.

第6図においては、−例として温度20℃が本発明でい
う所定の温度であり、時間t。か同第1の段階、t、が
同第2の段階、t2が同第3の段階であることをを示す
In FIG. 6, for example, a temperature of 20 DEG C. is the predetermined temperature in the present invention, and a time t. Indicates that t is the first stage, t is the second stage, and t2 is the third stage.

また、解凍時間についても遠赤外線の内部浸透効果と解
凍初期の連続加熱制御により、比較的短時間の解凍(例
えば重量500 g、厚さ25mmのマグロで約30分
)が可能となるほか、反射板39が通風路50内に露出
しているため本来相当な高温となる反射板39自体が周
辺部材の温度が冷却されて低下し安全上も好都合となる
In addition, regarding the thawing time, the internal penetration effect of far infrared rays and continuous heating control in the initial stage of thawing make it possible to thaw in a relatively short time (for example, about 30 minutes for a tuna weighing 500 g and 25 mm thick). Since the plate 39 is exposed in the ventilation path 50, the temperature of the surrounding members of the reflector plate 39 itself, which is originally quite high in temperature, is cooled and lowered, which is advantageous in terms of safety.

このような解凍作用が進行して、下記の時間to +t
+ +t2 =to  −+tI −+t2 −即ち、
第1、第2、第3の段階の合計時間が経過すると、タイ
マー76.77の出力が“L”になるとともに、タイマ
ー76よ−リタイマー75のリセット端子に入力されて
タイマー75の出力も“L”となる。このため、トラン
ジスタ84.85が夫々OFFしてリレーコイル87.
88への通電が断たれて、リレー接点56.57が開放
し、遠赤外線ヒータ34、加熱ヒータ42への通電が断
たれて解凍が終了する。またこれと同様にOR回路82
の一方の入力が“L”となるため送風機18の強制運転
状態が解除される。また、タイマー77aの出力が′″
H”に復帰するため、AND回路70aの一方の入力が
“H”となって、解凍室用ダンパーサーモ20のダンパ
ー24の強制閉塞状態が解除される。
As this thawing action progresses, the following time to +t
+ +t2 =to -+tI -+t2 -i.e.
When the total time of the first, second, and third stages has elapsed, the outputs of the timers 76 and 77 become "L", and the output of the timer 75 is also "L" due to input from the timer 76 to the reset terminal of the retimer 75. It becomes “L”. Therefore, transistors 84, 85 are turned off, and relay coils 87.
88 is cut off, relay contacts 56 and 57 are opened, and the far infrared heater 34 and heating heater 42 are cut off, and thawing is completed. Similarly, the OR circuit 82
Since one of the inputs becomes "L", the forced operation state of the blower 18 is canceled. Also, the output of the timer 77a is
In order to return to "H", one input of the AND circuit 70a becomes "H", and the forcibly closed state of the damper 24 of the damper thermos 20 for the defrosting chamber is released.

そして、解凍終了後は通常冷却時と同様に温度検知器3
1の検知温度に基づき、解凍室15内は温度制御される
。このため、解凍後の被解凍食品45は約−3℃のパー
シャルフリージング温度帯に安定するよう直ちに冷却さ
れることになり、余熱で更に温度上昇することがない。
After thawing, the temperature sensor 3
The temperature inside the defrosting chamber 15 is controlled based on the detected temperature. Therefore, the food to be thawed 45 after thawing is immediately cooled to stabilize in the partial freezing temperature range of approximately -3°C, and the temperature does not further rise due to residual heat.

そして、解凍終了後そのまま放置しておいても魚、肉類
等生ものの保存に適した約−3℃のパーシャルフリージ
ング温度帯で保冷されているため従来のように使用者が
解凍の終了を監視して即座に処理する手間もなく安心し
て解凍が行なえ、また解凍終了後任意の時間に被解凍食
品45を利用できることになり極めて使い勝手がよい。
Even if you leave it as it is after thawing, it is kept cool at a partial freezing temperature range of approximately -3°C, which is suitable for preserving perishables such as fish and meat, so the user does not have to monitor the end of thawing as usual. The food 45 can be thawed safely without the need for immediate processing, and the food to be thawed 45 can be used at any time after thawing, making it extremely convenient to use.

次に空の状態で解凍を開始した場合等の温度過昇時につ
いて説明する。温度検知器43の温度が上昇し続けて第
1の設定温度(例えば20℃)を超えて第2の設定温度
(例えば40℃)になやと、コンパレータ74aの出力
は“H”となり、タイマー90が作動し所定時間後“H
”の信号を出力しインバータ83aで“L”に反転され
た信号がAND回路79aの一方の入力に入力される。
Next, we will explain what happens when the temperature rises excessively, such as when thawing is started in an empty state. When the temperature of the temperature detector 43 continues to rise and exceeds the first set temperature (for example, 20°C) and reaches the second set temperature (for example, 40°C), the output of the comparator 74a becomes "H" and the timer is activated. 90 is activated and after a predetermined time “H”
” is inverted to “L” by the inverter 83a, and the signal is input to one input of the AND circuit 79a.

このためAND回路79aの出力は“L”となりAND
回路79の一方の入力に入力される。従ってAND回路
79の出力は“L”となるためタイマー76.77は動
作せず、OR回路80.81の一方の入力には共に“L
”の信号が入力される。
Therefore, the output of the AND circuit 79a becomes "L" and
It is input to one input of the circuit 79. Therefore, the output of the AND circuit 79 is "L", so the timers 76 and 77 do not operate, and one input of the OR circuit 80 and 81 is both "L".
” signal is input.

一方AND回路78からは“L“の信号が出力され続け
ているのでOR回路80181のもう一方の入力にも共
に“L#の信号が入力される。
On the other hand, since the AND circuit 78 continues to output the "L" signal, the "L#" signal is also input to the other input of the OR circuit 80181.

従ってOR回路80.81の出力は共に“L”となりト
ランジスタ84.85はOFFし、−ル−コイル87.
88への通電が中止され、リレー接点56.57が開放
状態となり、遠赤外線ヒータ34及び加熱ヒータ42へ
の通電は中止される。
Therefore, the outputs of the OR circuits 80, 81 are both "L", the transistors 84, 85 are turned off, and the -L coils 87, .
The energization to the far-infrared heater 34 and the heating heater 42 is stopped, and the relay contacts 56 and 57 are opened.

従って温度過昇時には両ヒータが強制的にOFFされる
ため解凍室15の各部の熱変形を防止することができる
Therefore, when the temperature rises excessively, both heaters are forcibly turned off, so that thermal deformation of each part of the defrosting chamber 15 can be prevented.

以上の様に本実施例の解凍室付冷蔵庫によると次の様な
効果が得られる。
As described above, the refrigerator with a defrosting chamber of this embodiment provides the following effects.

■ 上面より遠赤外線ヒータによる遠赤外線放射加熱、
底面より加熱ヒータによる熱伝導加熱の両面より効率的
に加熱でき、しかも解凍中は両ヒータの発熱容量が段階
的に低下してゆくこと、及び遠赤外線の被解凍食品内部
への浸透効果とも合わせて中心部と表面部の温度むらの
少ない解凍が可能となる。
■ Far-infrared radiant heating by far-infrared heater from the top,
Heat can be efficiently heated from both sides by heat conduction heating by the heater from the bottom, and the heat generation capacity of both heaters gradually decreases during thawing, and this also combines with the effect of far infrared rays penetrating into the inside of the food being thawed. This allows for thawing with less unevenness in temperature between the center and surface.

■ 解凍室底面板に設けた温度検知器が所定温度に上昇
するまでは遠赤外線ヒータ、加熱ヒータを連続通電させ
るため、被解凍食品の重量が変化しても夫々に適した、
時間だけ最大容量のヒータで急速な加熱が行え、短時間
の解凍が可能となる。
■ The far-infrared heater and heating heater are continuously energized until the temperature sensor installed on the bottom plate of the thawing chamber rises to a predetermined temperature, so even if the weight of the food to be thawed changes, the
Rapid heating can be performed using the maximum capacity heater for only a certain amount of time, making it possible to defrost food in a short time.

■ 解凍中の第1、第2の段階は解凍室用のダンパーサ
ーモを強制的に開放させるとともに送風機を強制的に連
続運転させて、反射板の裏面空間に形成した通風路より
被解凍食品に対して冷気を降下流入させるため被解凍食
品の表面部が均等に冷却され更に温度上昇が抑制されて
解凍むらの少ない解凍が実現できる。
■ During the first and second stages of thawing, the damper thermo for the thawing chamber is forcibly opened and the blower is forced to operate continuously, allowing food to be thawed to be thawed through the ventilation passage formed in the space on the back of the reflector. On the other hand, since the cold air is allowed to descend and flow in, the surface of the food to be thawed is evenly cooled, temperature rise is further suppressed, and thawing with less unevenness can be achieved.

■ 解凍中の第3の段階ではダンパーサーモが強制的に
閉塞されるため解凍室内の余熱は冷却器に戻されず熱負
荷とならない。このため、圧縮機の余分な冷却運転を軽
減出来る。
■ During the third stage of defrosting, the damper thermo is forcibly closed, so the residual heat in the defrosting chamber is not returned to the cooler and does not become a heat load. Therefore, extra cooling operation of the compressor can be reduced.

■ 解凍中、本来なら高温になる反射板その他局辺部材
も反射板が通風路に露出して冷却されるため温度低下し
安全上も好都合である。
- During thawing, the reflector and other peripheral components that would normally be at high temperatures are exposed to the ventilation path and cooled, which lowers the temperature, which is advantageous for safety.

■ 解凍中、異常温度過昇が発生しても、両ヒー夕を強
制的にOFFさせるので解凍室各部の熱変形を防止する
ことができ、安全面での問題はなくなる。
- Even if an abnormal temperature rise occurs during thawing, both heaters are forcibly turned off, so thermal deformation of various parts of the thawing chamber can be prevented, eliminating safety issues.

■ 解凍終了後は解凍室内が冷凍室温度と冷蔵室温度の
間の温度帯(例えば約−3℃のパーシャルフリージング
温度帯)に保冷されるため、解凍終了直後の余熱で被解
凍食品の温度が更に上昇することがなく、そのまま放置
しておいても魚肉等の生ものに適した温度で鮮度が保持
され任意の時間に食品を利用することが出来る。
■ After thawing, the temperature inside the thawing chamber is kept between the freezer and refrigerator temperatures (for example, the partial freezing temperature range of approximately -3°C), so the residual heat immediately after thawing will lower the temperature of the food to be thawed. It does not rise further, and even if left as is, the freshness is maintained at a temperature suitable for raw foods such as fish meat, and the food can be used at any time.

[発明の効果コ 以上説明した本発明によれば、解凍時および解凍終了後
の温度制御を適正なものとなし、解凍むらが少な(、短
時間で解凍可能な解凍室付冷蔵庫とすることができると
いう優れた効果を達成できる。
[Effects of the Invention] According to the present invention described above, temperature control during and after thawing can be made appropriate, and a refrigerator with a thawing chamber that can thaw in a short time can be provided with less uneven thawing. You can achieve excellent results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す解凍室の斜視図、第2
図は同第1図の解凍室のA−A−線における断面図、第
3図は同第1図の解凍室を備えた解凍室付冷蔵庫の縦断
面図、第4図は同第1図の解凍室の入口に設けたダンパ
ーサーモの拡大断面図、第5図は同第3図の解凍室付冷
蔵庫の電気回路及び制御回路図、第6図は解凍中のタイ
ムチャート及び被解凍食品の温度特性図、第7図は従来
例を示す解凍箱の斜視図、第8図は同第7図の解凍箱の
B−B −線における断面図である。 13・・・冷凍室、14・・・冷蔵室、15・・・解凍
室、16・・・圧縮機、17・・・冷却器、18・・・
送風機、20・・・ダンパーサーモ、34・・・遠赤外
線ヒータ、39・・・反射板、40・・・通風孔、41
・・・底面板、42・・・加熱ヒータ、43・・・温度
検知器、44・・・解凍皿、45・・・被解凍食品、4
9・・・扉、50・・・通風路、73・・・解凍制御装
置。 15・解凍室 31.43・・・解凍室温度検知手段 34・・遠赤外線ヒータ 第1図 す 第3図 ン1 g1Ic4図
Fig. 1 is a perspective view of a thawing chamber showing one embodiment of the present invention;
The figure is a sectional view taken along line A-A of the thawing chamber shown in Fig. 1, Fig. 3 is a longitudinal sectional view of a refrigerator with a thawing chamber equipped with the thawing chamber shown in Fig. 1, and Fig. 4 is the sectional view taken along the line AA- Fig. 5 is an electric circuit and control circuit diagram of the refrigerator with a thawing chamber shown in Fig. 3, and Fig. 6 is a time chart during thawing and a diagram of the food to be thawed. FIG. 7 is a perspective view of a thawing box showing a conventional example, and FIG. 8 is a sectional view of the thawing box taken along line B--B in FIG. 7. 13... Freezer room, 14... Refrigerator room, 15... Thawing room, 16... Compressor, 17... Cooler, 18...
Blower, 20... Damper thermo, 34... Far infrared heater, 39... Reflector, 40... Ventilation hole, 41
... Bottom plate, 42 ... Heater, 43 ... Temperature detector, 44 ... Thawing dish, 45 ... Food to be thawed, 4
9... Door, 50... Ventilation path, 73... Thawing control device. 15. Thawing chamber 31.43... Thawing chamber temperature detection means 34... Far infrared heater Fig. 1 Fig. 3 N1 g1Ic4 Fig.

Claims (1)

【特許請求の範囲】 冷凍室と、冷蔵室と、解凍室と、冷却器と、前記冷却器
により冷却された空気を前記冷凍室、冷蔵室および解凍
室に強制通風させる送風機と、前記解凍室の内部に設け
た遠赤外線ヒータと、金属製の底面板の裏面に密着させ
た加熱ヒータと、前記底面板の裏面の略中央に密着させ
た温度検知器と、前記解凍室の入口に設けて冷気流入量
を調整するダンパーサーモと、前記ダンパーサーモより
連通し、前記解凍室上部空間に形成した通風路とを少な
くとも含む解凍室付冷蔵庫であって、解凍中は前記送風
機を強制運転させるとともに解凍時間を3段階に分割し
、下記の制御手段を備え、非解凍時は解凍室を冷蔵温度
と冷凍温度の間の温度帯に維持させる解凍制御装置を備
えたことを特徴とする解凍室付冷蔵庫。 第1の段階:解凍開始から前記温度検知器の温度が所定
の温度に上昇するまでの間、前記遠赤外線ヒータと加熱
ヒータへの通電を連続的に行うとともに、前記ダンパー
サーモを強制的に解放する。 第2の段階:前記温度検知器の温度が所定の温度に上昇
した後一定の時間内、前記遠赤外線ヒータと加熱ヒータ
への通電を断続的に行うとともに、前記ダンパーサーモ
を強制的に解放する。 第3の段階:前記第2の段階経過後、前記遠赤外線ヒー
タ若しくは加熱ヒータの少なくとも一方への通電を停止
するか、または両ヒータの発熱容量を前記第2の段階よ
り低下させるとともに、前記ダンパーサーモを強制的に
閉塞する。
[Scope of Claims] A freezer compartment, a refrigerator compartment, a thawing compartment, a cooler, a blower for forcing air cooled by the cooler into the freezing compartment, refrigerator compartment, and thawing compartment, and the thawing compartment. a far-infrared heater provided inside the thawing chamber, a heating heater placed in close contact with the back surface of the metal bottom plate, a temperature sensor placed in close contact with the substantially center of the back surface of the bottom plate, and a far infrared heater provided at the entrance of the thawing chamber. A refrigerator with a thawing chamber, which includes at least a damper thermostat that adjusts the amount of cold air flowing in, and a ventilation passage formed in the upper space of the thawing chamber, which is communicated with the damper thermometer, and during thawing, the blower is forced to operate and the thawing chamber is thawed. A refrigerator with a thawing chamber, which divides the time into three stages, is equipped with the following control means, and is equipped with a thawing control device that maintains the thawing chamber in a temperature range between the refrigerating temperature and the freezing temperature when not thawing. . First stage: From the start of thawing until the temperature of the temperature sensor rises to a predetermined temperature, the far-infrared heater and heating heater are continuously energized, and the damper thermo is forcibly released. do. Second stage: After the temperature of the temperature sensor rises to a predetermined temperature, the far-infrared heater and heating heater are intermittently energized and the damper thermo is forcibly released within a certain period of time. . Third stage: After the second stage has passed, the supply of electricity to at least one of the far-infrared heater or the heating heater is stopped, or the heat generation capacity of both heaters is lowered than in the second stage, and the damper Forcibly close the thermostat.
JP15328390A 1990-06-12 1990-06-12 Refrigerator with defreezing chamber Pending JPH0445380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15328390A JPH0445380A (en) 1990-06-12 1990-06-12 Refrigerator with defreezing chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15328390A JPH0445380A (en) 1990-06-12 1990-06-12 Refrigerator with defreezing chamber

Publications (1)

Publication Number Publication Date
JPH0445380A true JPH0445380A (en) 1992-02-14

Family

ID=15559089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15328390A Pending JPH0445380A (en) 1990-06-12 1990-06-12 Refrigerator with defreezing chamber

Country Status (1)

Country Link
JP (1) JPH0445380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225742A (en) * 1993-02-05 1994-08-16 Shimura Shoji Kk Consecutive processing apparatus for thawing and cold storage
US10247465B2 (en) 2014-10-02 2019-04-02 Arcelik Anonim Sirketi Cooling device comprising a thawing compartment and the control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225742A (en) * 1993-02-05 1994-08-16 Shimura Shoji Kk Consecutive processing apparatus for thawing and cold storage
US10247465B2 (en) 2014-10-02 2019-04-02 Arcelik Anonim Sirketi Cooling device comprising a thawing compartment and the control method thereof

Similar Documents

Publication Publication Date Title
JPH0755319A (en) Refrigerator
JPH0719701A (en) Refrigerator
JP2763622B2 (en) Refrigerator with thawing room
JPH0445380A (en) Refrigerator with defreezing chamber
JP2763623B2 (en) Refrigerator with thawing room
JPH0428990A (en) Electric refrigerator
JPH05141858A (en) Refrigerator with thawing chamber
JP2851688B2 (en) Refrigerator with thawing room
JP2892710B2 (en) Refrigerator with thawing room
JP2809830B2 (en) Refrigerator with thawing room
JPH0452475A (en) Refrigerator with thawing chamber
JPH0445379A (en) Refrigerator with defreezing chamber
JP2851683B2 (en) Refrigerator with thawing room
JP2528951B2 (en) Refrigerator / refrigerator with defroster
JP2815459B2 (en) Refrigerator with thawing room
JPH03241281A (en) Refrigerator with thawing room
JPH03129282A (en) Refrigerator with deferring chamber
JPH03175252A (en) Refrigerator with thawing compartment
JPH051880A (en) Refrigerator equipped with defrosting chamber
JPH03129283A (en) Refrigerator with defreezing chamber
JP2809813B2 (en) Refrigerator with thawing room
JPH0445381A (en) Refrigerator with defreezing chamber
JPH03134476A (en) Refrigerator having thawing chamber
JPH0593569A (en) Refrigerator with defreezing chamber
JP2863302B2 (en) Refrigerator with thawing room