JPH0445379A - Refrigerator with defreezing chamber - Google Patents

Refrigerator with defreezing chamber

Info

Publication number
JPH0445379A
JPH0445379A JP15326190A JP15326190A JPH0445379A JP H0445379 A JPH0445379 A JP H0445379A JP 15326190 A JP15326190 A JP 15326190A JP 15326190 A JP15326190 A JP 15326190A JP H0445379 A JPH0445379 A JP H0445379A
Authority
JP
Japan
Prior art keywords
temperature
thawing
chamber
defreezing
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15326190A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takayama
高山 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP15326190A priority Critical patent/JPH0445379A/en
Publication of JPH0445379A publication Critical patent/JPH0445379A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a defreezing operation without temperature unevenness at each of a central part and a surface part within a short period of time and further to keep freshness at a temperature suitable for a fish or a meat upon completion of the defreezing operation by a method wherein a double-surface heating with a far infrared ray radiation heating from an upper surface and a thermal transmitting heating from a bottom surface is carried out and a heating capacity of both heaters is decreased in a stepwise manner during a defreezing operation. CONSTITUTION:A defreezing control device has a defreezing time divided into three stages. A far infrared ray heater 27 and a heating heater 32 are continuously energized by an electrical energization with a time until the temperature of the first temperature sensor 33 is increased up to a predetermined temperature being applied as the first stage. Subsequently, the electrical energization for both heaters is intermittently carried out toward the second and third stages. At the first and second stages, a damper thermostat 13 is forcedly released and at the third stage, the damper thermostat 13 is forcedly closed. During a non-defreezing operation, a temperature in the second temperature sensor 24 disposed in a defreezing chamber 8 causes the damper thermostat to be opened or closed in response to the first predetermined temperature and further causes a temperature in the defreezing chamber to be kept at the third temperature range between a refrigeration temperature and a freezing temperature. As a temperature of the second temperature sensor 24 becomes the second predetermined temperature higher than the first predetermined temperature, it is controlled such that an electrical energization for both heaters is stopped.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷凍食品を解凍する解凍室付冷蔵庫に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigerator with a thawing chamber for thawing frozen foods.

従来の技術 従来より冷凍食品の解凍に対して加熱ヒータを用いる例
が知られている0例えば、実公昭48−25414号公
報に示される例がそれであり、以下第7図、第8図に従
い説明する。
BACKGROUND OF THE INVENTION Examples of using a heater to defrost frozen foods have been known for some time. For example, an example is shown in Japanese Utility Model Publication No. 48-25414, and will be explained below with reference to FIGS. 7 and 8. do.

80は解凍箱で、金属又は合成樹脂等で箱状に形成した
外箱81と、この外箱81の内側に適当な間隙を配して
設けた熱伝導率の良好なアルミ等の金属製の内箱82で
構成されている。83は線状の加熱ヒータで、前記解凍
箱80の底面部は疎に、上面部は密になるようにしてア
ルミ箔84によって前記内箱82に熱伝導的に密接され
ている。85は断熱材で、前記外箱81、アルミ箔84
間に介在させている。86は被解凍食品を示す。
Reference numeral 80 denotes a thawing box, which includes an outer box 81 made of metal or synthetic resin, etc., and a metal box 81 made of metal such as aluminum with good thermal conductivity, which is provided with an appropriate gap inside the outer box 81. It is composed of an inner box 82. Reference numeral 83 denotes a linear heater, which is closely connected to the inner box 82 through aluminum foil 84 so that the bottom surface of the thawing box 80 is sparse and the top surface is densely packed. 85 is a heat insulating material, which includes the outer box 81 and aluminum foil 84.
It is interposed in between. 86 indicates the food to be thawed.

上記のような構成において、解凍箱80の底面に被解凍
食品86を載置して解凍作用を開始すると、加熱ヒータ
83の加熱によって内箱82の全周より熱が加えられ、
はぼ均一に被解凍食品86を加熱し、解凍を行なわせる
ことができるようになっている。
In the above configuration, when the food to be thawed 86 is placed on the bottom surface of the thawing box 80 and the thawing action is started, heat is applied from the entire circumference of the inner box 82 by the heating of the heater 83.
The food to be thawed 86 can be heated and thawed more or less uniformly.

発明が解決しようとする課題 しかし、上記のような構成では解凍箱80の底面部から
は熱伝導により被解凍食品86の底面部に熱が伝わり底
面部の解凍は可能であるものの、解凍箱80の上面及び
側面部からの被解凍食品86への放射熱の効果は、加熱
ヒータ83から内箱82を介しての熱線波長が5μm以
下の近赤外線域であるためほとんどなく、解凍箱80内
の暖められた空気の対流による伝熱によってのみ加熱が
行なわれる。このため、被解凍食品86の中心部と表面
部との解凍むらが大きくなり易く、また解凍時間も長く
かかるという問題点や、解凍終了後そのまま食品を放置
しておくと、特に魚肉等の生ものでは雰囲気温度が高い
ことによる変質が生じるため、解凍終了を使用者が監視
して処理する必要があり、安心して使用できないという
問題点があった。
Problems to be Solved by the Invention However, with the above configuration, heat is transmitted from the bottom of the thawing box 80 to the bottom of the food to be thawed 86 by heat conduction, and although it is possible to thaw the bottom of the food 86, the thawing box 80 The effect of radiant heat on the food to be thawed 86 from the top and side surfaces is almost negligible because the heat ray wavelength from the heater 83 through the inner box 82 is in the near-infrared region of 5 μm or less. Heating occurs only by convective heat transfer of warmed air. For this reason, there are problems in that the thawing unevenness between the center and surface of the food to be thawed 86 tends to become large, and the thawing time also takes a long time. Since deterioration occurs due to the high ambient temperature, it is necessary for the user to monitor the completion of defrosting, and there is a problem that the product cannot be used with confidence.

本発明は上記のような問題点を解消するものであり、解
凍むらが少なく、短時間で解凍可能な解凍室を特に冷蔵
庫内に付与することを目的としている。
The present invention solves the above-mentioned problems, and aims to provide a thawing chamber, especially in a refrigerator, that is less uneven in thawing and can be thawed in a short time.

課頭な解決するための手段 上記目的を達成するために本発明は、冷凍室と、冷蔵室
と、外周を断熱材で囲み且つ前面開口部に開閉自在の扉
を設けた解凍室と、圧縮機、冷却器等を有する冷凍サイ
クルと、前記冷却器により冷却された空気を前記冷凍室
、冷蔵室、解凍室にそれぞれ強制通風させる送風機と、
前記解凍室の上部に設けた遠赤外線ヒータと、金属製の
底面板の裏面に熱伝導的に密着させた加熱ヒータと、前
記底面板の裏面の略中央に熱伝導的に密着させた第1の
温度検知器と、前記遠赤外線ヒータの上面をドーム状に
覆う金属製の反射板と、被解凍食品を載置して前記底面
板上に熱伝導的、且つ着脱自在に設置される解凍皿と、
前記解凍室の入口に設けて電気的入力で冷気流入量を調
節するダンパーサーモと、このダンパーサーモより連通
し、前記反射板の裏面上部空間に形成した通風路と、前
記反射板に設けて、前記通風路と解凍室内を連通させる
多数の通風孔と、解凍中は前記送風機を強制運転させる
とともに解凍時間を制御する解凍制御装置とを備え、こ
の解凍制御装置では解凍時間を3段階に分割し、解凍開
始から前記第1の温度検知器の温度が所定温度に上昇す
るまでの時間を第1の段階として前記遠赤外線ヒータ及
び加熱ヒータを連続通電させ、それ以後は第2、第3の
段階へと前記両ヒータへの通電を断続的に行なわせて断
続通電率を低下させ、前記第1と第2段階は前記ダンパ
ーサーモを強制開放させ、前記第3の段階は前記ダンパ
ーサーモを強制閉塞させ、且つ非解凍時には、前記解凍
室に設けた第2の温度検知器の温度が第1の所定温度に
より前記ダンパーサーモを開閉させ前記解凍室内の温度
を、冷蔵温度と冷凍温度の間の第3の温度帯に維持させ
ると共に前記第2の温度検知器の温度が前記第1の所定
温度より高い第2の所定温度になると、前記両ヒータへ
の通電を中止させるよう制御する解凍室付冷蔵庫とした
Means for Solving Problems In order to achieve the above object, the present invention provides a freezer compartment, a refrigerator compartment, a thawing compartment whose outer periphery is surrounded by a heat insulating material and a front opening provided with a door that can be opened and closed, and a compression compartment. a refrigeration cycle having a refrigerator, a cooler, etc., and a blower for forcing air cooled by the cooler into the freezing compartment, refrigerator compartment, and thawing compartment, respectively;
a far-infrared heater provided in the upper part of the thawing chamber; a heating heater that is in close contact with the back surface of the metal bottom plate in a thermally conductive manner; and a first heater that is in close contact with the back surface of the bottom plate in a thermally conductive manner. a temperature sensor, a metal reflecting plate that covers the upper surface of the far-infrared heater in a dome shape, and a thawing dish that is heat-conductive and removably installed on the bottom plate on which food to be thawed is placed. and,
a damper thermometer installed at the entrance of the thawing chamber to adjust the amount of cold air inflow by electrical input; a ventilation passage communicating with the damper thermometer and formed in a space above the back surface of the reflector; The defrosting control device includes a large number of ventilation holes that communicate the ventilation passage with the inside of the thawing chamber, and a thawing control device that forces the blower to operate during thawing and controls the thawing time, and the thawing control device divides the thawing time into three stages. The far-infrared heater and the heating heater are continuously energized as a first stage from the start of thawing until the temperature of the first temperature sensor rises to a predetermined temperature, and thereafter, second and third stages In the first and second stages, the damper thermo is forcibly opened, and in the third stage, the damper thermo is forcibly closed. and when not defrosting, the temperature of the second temperature sensor provided in the defrosting chamber is set to a first predetermined temperature to open and close the damper thermo, and the temperature in the defrosting chamber is adjusted to a temperature between the refrigerating temperature and the freezing temperature. Refrigerator with a defrosting chamber controlled to maintain the temperature in the temperature range No. 3 and to stop supplying electricity to both heaters when the temperature of the second temperature sensor reaches a second predetermined temperature higher than the first predetermined temperature. And so.

作用 本発明は上記のように解凍時に解凍制御装置によって制
御するようにした。すなわち、被解凍食品の上面及び側
面より遠赤外線ヒータによる遠赤外線の直接放射及び反
射板を介しての間接放射が行なわれると共に底面の加熱
ヒータからの伝熱加熱が行なわれて熱吸収される。又、
底面の第1の温度検知器が所定温度に上昇する第1段階
では、両ヒータが連続通電されて急激に被解凍食品の温
度が上昇する。その後は両ヒータへの断続通電率が第2
.第3段階と段階的に低下することと、第1、第2段階
ではダンパーサーモを介して反射板に形成した上面の多
数の通風孔より被解凍食品に対して均等に冷気が供給さ
れて食品表面の温度上昇を抑制するようになっている。
Function The present invention is configured such that the thawing is controlled by the thawing control device as described above. That is, far-infrared rays are directly radiated by the far-infrared heater and indirectly radiated through the reflector from the top and side surfaces of the food to be thawed, and heat is absorbed by conductive heating from the bottom heater. or,
In the first stage where the first temperature sensor on the bottom rises to a predetermined temperature, both heaters are continuously energized and the temperature of the food to be thawed rises rapidly. After that, the intermittent energization rate to both heaters is the second
.. In the third stage, the temperature decreases step by step, and in the first and second stages, cold air is evenly supplied to the food to be thawed through the many ventilation holes formed on the top surface of the reflector through the damper thermo. It is designed to suppress the rise in surface temperature.

そして、第3段階ではダンパーサーモが閉塞して解凍室
内の排熱を冷却器側に回収させない、また、誤って被解
凍食品を入れずに解凍開始した際は、第2の温度検知器
の温度が第1の所定温度より高い第2の所定温度になる
と、両ヒータへの通電が中止され、各部が異常高温にな
るのを防止する。さらに解凍終了後は、第2の温度検知
器の温度が、第1の所定温度によりダンパーサーモの開
閉による温調作用により食品温度は自動的に冷蔵温度と
冷凍温度の間の第3の温度帯に維持されて保冷されるも
のである。
In the third stage, the damper thermo is blocked and the waste heat in the thawing chamber is not recovered to the cooler side.Also, if you accidentally start thawing without putting the food to be thawed, the temperature of the second temperature sensor When the temperature reaches a second predetermined temperature higher than the first predetermined temperature, power supply to both heaters is stopped to prevent each part from becoming abnormally high temperature. Furthermore, after thawing is completed, the temperature of the second temperature sensor is adjusted to the first predetermined temperature, and the food temperature is automatically adjusted to the third temperature range between the refrigeration temperature and the freezing temperature by the temperature control action by opening and closing the damper thermometer. It is kept cool and kept cool.

実施例 以下1本発明の一実施例である解凍室付冷蔵庫について
第1図から第6図に従い説明する。
Embodiment 1 A refrigerator with a defrosting chamber, which is an embodiment of the present invention, will be described with reference to FIGS. 1 to 6.

第1図において、lは冷蔵庫本体で、外箱2、内箱3及
びこれら両方の外箱2と内箱3間に充填された断熱材4
により構成されている。5は区画壁で、冷蔵庫本体l内
を上下に区画する壁で、前記区画壁5の上部に冷凍室6
、下部に冷蔵室7が形成されている。8は解凍室で、前
記冷蔵室7内の上部の一区画に設けた。9は圧縮機で、
前記冷蔵庫本体lの底部後方に設けられている。10は
冷却器で、前記冷凍室6の背面に収められ、前記圧縮機
9と共に冷凍サイクルを構成している。
In FIG. 1, l is the refrigerator main body, an outer box 2, an inner box 3, and a heat insulating material 4 filled between the outer box 2 and the inner box 3.
It is made up of. Reference numeral 5 denotes a partition wall, which divides the inside of the refrigerator main body l into upper and lower parts.
, a refrigerating chamber 7 is formed in the lower part. Reference numeral 8 denotes a thawing chamber, which is provided in an upper section of the refrigerator chamber 7. 9 is a compressor;
It is provided at the rear of the bottom of the refrigerator main body l. Reference numeral 10 denotes a cooler, which is housed in the back of the freezer compartment 6 and forms a refrigeration cycle together with the compressor 9.

11は送風機で、前記冷却器10で冷却された冷気を前
記冷凍室6.冷蔵室7、解凍室8内に強制通風させるよ
うになっている。lz、13はダンパーサーモで前記冷
蔵室6、解凍室8の入口に設けて電気的入力で冷気流入
量を調節するようになっており、その詳細を解凍室8用
のダンパーサーモ−13を例にとって第2図で説明する
。14は電磁コイル、15はプランジャーで、前記電磁
コイル!4の内心部を電磁作用の有無によって上下する
ようになっている。 16はロッドで、前記プランジャ
ー15に接合されている。17はダンパーで、冷気通路
を開閉するようになっている。前記電磁コイル目へ通電
されると、電磁作用で前記ロッド16が押し上げられて
前記ダンパー17が開放され、又、通電が断たれると前
記ロッド15は下方に落下して前記ダンパー17が閉成
するように構成されている。尚、冷蔵室用のダンパーサ
ーモ12も同様の構成となっている。
Reference numeral 11 denotes a blower which blows cold air cooled by the cooler 10 into the freezer compartment 6. Forced ventilation is provided in the refrigerator compartment 7 and the thawing compartment 8. lz, 13 is a damper thermostat, which is installed at the entrance of the refrigerator compartment 6 and thawing compartment 8 to adjust the amount of cold air flowing in by electrical input. This will be explained with reference to FIG. 14 is an electromagnetic coil, 15 is a plunger, and the electromagnetic coil! The inner center of 4 moves up and down depending on the presence or absence of electromagnetic action. A rod 16 is connected to the plunger 15. 17 is a damper, which opens and closes the cold air passage. When the electromagnetic coil is energized, the rod 16 is pushed up by electromagnetic action and the damper 17 is opened, and when the energization is cut off, the rod 15 falls downward and the damper 17 is closed. is configured to do so. Note that the damper thermostat 12 for the refrigerator compartment also has a similar configuration.

第1図に戻り、 18.19は吐出ダクトで、前記送風
機11からの冷気を前記冷蔵室7.解凍室8に導<、 
20.21は吸込ダクトで、それぞれ前記冷蔵室7、解
凍室8内を冷却した冷気を前記冷却器IOに戻すための
ダクトである。又、2Z、23は温度検知器で、それぞ
れ前記冷凍室6、冷蔵室7の温度を検知する。又、24
は解凍室8内の温度を検知する第2の温度検知器である
Returning to FIG. 1, 18 and 19 are discharge ducts that direct cold air from the blower 11 to the refrigerator compartment 7. Lead to thawing chamber 8<,
Reference numerals 20 and 21 indicate suction ducts, which are ducts for returning cold air that has cooled the insides of the refrigerator compartment 7 and the thawing compartment 8 to the cooler IO. Further, 2Z and 23 are temperature detectors, which detect the temperatures of the freezing compartment 6 and the refrigerator compartment 7, respectively. Also, 24
is a second temperature sensor that detects the temperature inside the thawing chamber 8.

次に前記解凍室8の詳細について第3図、第4図に従っ
て説明する。
Next, details of the thawing chamber 8 will be explained according to FIGS. 3 and 4.

25は合成樹脂製の外箱、26は断熱材で、前記外箱2
5の内面に設置して外周を囲むようになっている。27
は遠赤外線ヒータで、前記解凍室8内の上部に設けられ
、ヒータ線を封入したガラス管の表面に硅素等を主成分
とするセラミック塗料層を焼付は塗装し約5μm以上の
遠赤外線を有効に放射するよう構成されている。この遠
赤外線ヒータ27は耐熱性の高い合成樹脂製のホルダー
28を介してドーム状に形成したアルミニウム等の金属
製の反射板29より垂下支持されている。又、前記反射
板29は解凍室8内の両側壁、奥壁を構成する内箱部分
も一体に形成したものとしており、さらに天面ドーム部
両側の平面部には多数の通風孔30を形成している0次
に、31は底面板で、アルミニウム等金属製の板、32
は加熱ヒータで、前記底面板31の裏面にアルミ箔等で
熱伝導的に固定され、線状をしている。
25 is an outer box made of synthetic resin; 26 is a heat insulating material;
It is installed on the inner surface of 5 and surrounds the outer periphery. 27
is a far-infrared heater, which is installed in the upper part of the thawing chamber 8, and is effective at far-infrared rays of about 5 μm or more by baking a ceramic paint layer mainly composed of silicon or the like on the surface of a glass tube in which a heater wire is enclosed. It is configured to radiate. This far-infrared heater 27 is suspended and supported by a dome-shaped reflector plate 29 made of metal such as aluminum through a holder 28 made of synthetic resin with high heat resistance. Further, the reflecting plate 29 is also integrally formed with the inner box portions that constitute the both side walls and the back wall of the thawing chamber 8, and furthermore, a large number of ventilation holes 30 are formed in the flat portions on both sides of the top dome portion. Next, 31 is the bottom plate, which is made of metal such as aluminum, and 32
is a heater, which is fixed to the back surface of the bottom plate 31 with aluminum foil or the like in a thermally conductive manner, and has a linear shape.

33は第1の温度検知器で、前記底面板31の裏面中央
部付近に熱伝導的に密着させている。34は解凍皿で、
前記底面板31上に着脱自在に設置され、被解凍食品3
5を載置するアルミニウム等の金属製の皿36と外周を
囲む合成樹脂製の枠体37により構成されている。38
は防護網で、前記反射板29の下方に一定の間隔をおい
て固定設置され、火傷防止用となっている。39は扉で
、解凍室8の前面開口部を開閉する扉である。又、40
は通風路で、前記反射板29の裏面空間に形成され、吐
出口41を介して、前記ダンパーサーモ!3に連通して
いる。42は吸込口で解凍室8内の奥壁に形成され、前
記吸込ダクト21に連通している。
Reference numeral 33 denotes a first temperature sensor, which is brought into close contact near the center of the back surface of the bottom plate 31 for thermal conduction. 34 is a thawing dish,
The food to be thawed 3 is removably installed on the bottom plate 31.
It is composed of a plate 36 made of metal such as aluminum on which 5 is placed, and a frame 37 made of synthetic resin surrounding the outer periphery. 38
A protective net is fixedly installed below the reflecting plate 29 at a constant interval to prevent burns. 39 is a door that opens and closes the front opening of the thawing chamber 8. Also, 40
is a ventilation passage formed in the space on the back surface of the reflector plate 29, and is connected to the damper thermo! via the discharge port 41. It is connected to 3. A suction port 42 is formed on the back wall of the thawing chamber 8 and communicates with the suction duct 21 .

第1図で、43は解凍スイッチで、前記冷蔵庫本体lの
外殻前面に設けている。
In FIG. 1, 43 is a defrost switch, which is provided on the front surface of the outer shell of the refrigerator main body l.

次に電気回路及び制御回路について第5図、第6図で説
明する。
Next, the electric circuit and control circuit will be explained with reference to FIGS. 5 and 6.

第5図において、圧縮機9はリレー接点44を介して、
送風機IIはリレー接点45を介してそれぞれ電源に接
続されている。遠赤外線ヒータ27はリレー接点46を
介して、加熱ヒータ32はリレー接点47を介してそれ
ぞれ電源に接続されている。又、解凍室用のダンパーサ
ーモの電磁コイル14.冷蔵室用のダンパーサ−千の電
磁コイル+4’はそれぞれリレー接点48.49を介し
て電源に接続されている。
In FIG. 5, the compressor 9 is connected via a relay contact 44 to
The blowers II are each connected to a power source via a relay contact 45. The far-infrared heater 27 is connected to a power source via a relay contact 46, and the heating heater 32 is connected to a power source via a relay contact 47. Also, the electromagnetic coil 14 of the damper thermo for the thawing chamber. The damper coils +4' for the refrigerator compartment are each connected to the power supply via relay contacts 48,49.

50は冷凍室温度制御装置でサーミスタ等の温度検知器
22、抵抗Rl、R*、 Rs、コンパレータ51を備
えた比較回路、トランジスタ52.リレーコイル53を
備えており、前記コンパレータ5!の出力は前記トラン
ジスタ52のベースに接続されている。又、トランジス
タ52のコレクタには前記リレー接点44を開閉させる
吸引用の前記リレーコイル53が接続されている。54
は冷蔵室温度制御装置で、サーミスタ等の温度検知器2
3、抵抗R、、RI、R@、コンパレータ55を備えた
比較回路、トランジスタ56.リレーコイル57を備え
ており、前記コンパレータ55の出力は前記トランジス
タ56のベースに接続されている。又、トランジスタ5
6のコレクタには前記リレー接点49を開閉させる吸引
用の前記リレーコイル57が接続されている。58は解
凍室温度II[御装置で、サーミスタ等の第2の温度検
知器24.抵抗Rt、 Ra、 R1,コンパレータ5
9及び抵抗R+s、RI4、Rts、コンパレータ59
aを備えた2つの比較回路、OR回路60、AND回路
60a、トランジスタ61、リレーコイル62を備えて
おり、通常冷却時は前記解凍室8の室内が約−3℃のパ
ーシャルフリージング温度に温調されるよう抵抗構成さ
れている。前記コンパレータ59の出力は前記OR回路
60の一方の入力に接続されている。又OR回路60の
出力は前記AND回路60aを介して前記トランジスタ
61のベースに接続され、前記トランジスタ61のコレ
クタには前記リレー接点48を開閉させる吸引用の前記
リレーコイル62が接続されている。
Reference numeral 50 denotes a freezer temperature control device, which includes a temperature detector 22 such as a thermistor, resistors Rl, R*, Rs, a comparator circuit including a comparator 51, and a transistor 52. It is equipped with a relay coil 53, and the comparator 5! The output of is connected to the base of the transistor 52. Further, the collector of the transistor 52 is connected to the relay coil 53 for attraction, which opens and closes the relay contact 44 . 54
is a refrigerator room temperature control device, which includes a temperature sensor 2 such as a thermistor.
3. Comparison circuit with resistor R, RI, R@, comparator 55, transistor 56. A relay coil 57 is provided, and the output of the comparator 55 is connected to the base of the transistor 56. Also, transistor 5
The relay coil 57 for suction, which opens and closes the relay contact 49, is connected to the collector 6. 58 is a control device for the thawing chamber temperature II and a second temperature sensor 24, such as a thermistor. Resistance Rt, Ra, R1, comparator 5
9 and resistance R+s, RI4, Rts, comparator 59
It is equipped with two comparison circuits equipped with a, an OR circuit 60, an AND circuit 60a, a transistor 61, and a relay coil 62, and during normal cooling, the temperature inside the thawing chamber 8 is controlled to a partial freezing temperature of about -3°C. The resistor is configured to The output of the comparator 59 is connected to one input of the OR circuit 60. The output of the OR circuit 60 is connected to the base of the transistor 61 via the AND circuit 60a, and the collector of the transistor 61 is connected to the relay coil 62 for attracting the relay contact 48.

63は解凍制御装置で、前記解凍室8の底面板31に密
着させた第1の温度検知器33、抵抗R8゜、R11、
Rlm、コンパレータ64を備えた比較回路とタイマー
65.66.67.67a、AND回路68.69.6
9a、OR回路70.7+、 72、インバータ73、
インバータ73a、トランジスタ74.75.76、リ
レーコイル77.78.79及び前記解凍スイッチ43
を備えている。
63 is a thawing control device, which includes a first temperature sensor 33 closely attached to the bottom plate 31 of the thawing chamber 8, resistors R8°, R11,
Rlm, comparison circuit with comparator 64 and timer 65.66.67.67a, AND circuit 68.69.6
9a, OR circuit 70.7+, 72, inverter 73,
Inverter 73a, transistors 74, 75, 76, relay coils 77, 78, 79 and the defrosting switch 43
It is equipped with

そして、前記解凍スイッチ43の出力は前記タイマー6
5の入力に接続されており、前記タイマー65の出力は
前記A N D回路68.69a、OR回路6o、72
のそれぞれ一方の入力に接続されている。前記コンパレ
ータ64の出力は前記インバータ73を介して前記AN
D回路68のもう一方の入力に接続されると同時に前記
AND回路69の一方の入力に接続されている。前記コ
ンパレータ59aの出力は前記インバータ73aを介し
て前記AND回路69aのもう一方の入力に接続され、
このAND回路69aの出力は前記AND回路69のも
う一方の入力に接続されている。前記AND回路68の
出力はOR回路70、71a一方に接続されており、前
記AND回路69の出力は前記タイマー66.67.6
7aの入力に接統されている。そして前記タイマー66
.67の出力は前記OR回路70.71のそれぞれのも
う一方の入力に接続されており、OR回路70.71の
出力はそれぞれ前記トランジスタ74.75のベースに
接続されている。前記トランジスタ74.75のコレク
タには前記リレー接点46.47を開閉させる吸引用の
前記リレーコイル77.78が接続されている。そして
前記タイマー67aの出力は前記OR回路60の出力と
共に、前記AND回路60aの一方の入力に接続されて
いる。又、前記OR回路72のもう一方の入力には前記
冷凍室温度制御装置50のコンパレータ51の出力が接
続されており、前記OR回路72の出力は前記トランジ
スタ76のベースに接続されている。そして前記トラン
ジスタ76のコレクタには前記リレー接点45を開閉さ
せる吸引用のリレーコイル79が接続されている。
The output of the defrosting switch 43 is the output of the timer 6.
5, and the output of the timer 65 is connected to the input of the A N D circuit 68, 69a, the OR circuit 6o, 72.
are connected to one input of each. The output of the comparator 64 is connected to the AN via the inverter 73.
It is connected to the other input of the D circuit 68 and simultaneously connected to one input of the AND circuit 69. The output of the comparator 59a is connected to the other input of the AND circuit 69a via the inverter 73a,
The output of this AND circuit 69a is connected to the other input of the AND circuit 69. The output of the AND circuit 68 is connected to one of the OR circuits 70 and 71a, and the output of the AND circuit 69 is connected to the timer 66, 67, 6.
It is connected to the input of 7a. and the timer 66
.. The outputs of 67 are connected to the other inputs of the OR circuits 70.71, and the outputs of the OR circuits 70.71 are connected to the bases of the transistors 74.75, respectively. The collector of the transistor 74.75 is connected to the relay coil 77.78 for attraction, which opens and closes the relay contact 46.47. The output of the timer 67a is connected together with the output of the OR circuit 60 to one input of the AND circuit 60a. Further, the output of the comparator 51 of the freezing room temperature control device 50 is connected to the other input of the OR circuit 72, and the output of the OR circuit 72 is connected to the base of the transistor 76. A suction relay coil 79 for opening and closing the relay contact 45 is connected to the collector of the transistor 76.

尚、ここで前記タイマー65は入力に一旦“旧gh(以
後単に“H”と呼ぶ)の信号が入ると所定時間tの間“
H′倍信号出力し続け、その後“LO實  (以後単に
“L“と呼ぶ)の信号に切換わるよう構成されている。
Incidentally, here, the timer 65 operates for a predetermined time t once the "old gh" (hereinafter simply referred to as "H") signal is input.
It is configured to continue outputting an H'-fold signal, and then switch to a "LO" signal (hereinafter simply referred to as "L").

また前記タイマー66.67は入力に“H°倍信号入力
されている間は“H”“L”の信号を所定時間づつ交互
に出力するが、所定の時間経過でH”信号の断続出力率
が段階的に低下するよう構成されている。
In addition, the timers 66 and 67 alternately output "H" and "L" signals for a predetermined period of time while the "H° double signal is being input to the input, but after a predetermined period of time has elapsed, the intermittent output rate of the H" signal is reached. is configured to decrease in stages.

例えば、具体的には、前記タイマー66の出力は、最初
の時間1+は°H”信号の出力率が80%、次の時間t
1では“H“信号の出力率が40%になるよう構成され
、前記タイマー67の出力は最初の時間1+″は“H°
倍信号出力率が80%、次の時間t■′では“H”信号
の出力率が0%になるよう構成されている。尚、前記タ
イマー65.67の動作時間はtr +tm =t+ 
’ +tmとなるよう構成され前記タイマー65の所定
時間tは解凍作用のタイムセーフ的な役割をさせること
も含めて、前記タイマー66.67の動作時間tI+t
 s = t t″+jt’より十分長くなるよう設定
されている。
For example, specifically, the output rate of the timer 66 is 80% for the first time 1+, and 80% for the next time t.
1, the output rate of the "H" signal is 40%, and the output of the timer 67 is "H°" for the first time "1+".
The structure is such that the double signal output rate is 80% and the "H" signal output rate is 0% at the next time t'. Incidentally, the operating time of the timer 65.67 is tr +tm =t+
'+tm, and the predetermined time t of the timer 65 is the operating time tI+t of the timer 66 and 67, including the time-safe role of the defrosting action.
It is set to be sufficiently longer than s=tt''+jt'.

さらに、前記タイマー67aは通常は出力が“H”であ
り、−旦入力に“H”が入力されると時間tr = j
 r ′の聞出力“Hoを継続し、その後、時間ts”
Lm”の聞出力“L゛となるよう接続されている。
Further, the output of the timer 67a is normally "H", and when "H" is input to the input of -1, the time tr = j
The output of r' continues "Ho, then time ts"
Lm" is connected so that the output becomes "L".

上記のような構成において、冷凍室6の温度が所定値よ
り高い場合は、温度検知器22の抵抗値が小さくなって
おりフンパレータ51の出力が“H”となるためトラン
ジスタ52がONL、てリレーコイル53が導通する。
In the above configuration, when the temperature of the freezer compartment 6 is higher than a predetermined value, the resistance value of the temperature detector 22 is small and the output of the humpator 51 becomes "H", so the transistor 52 becomes ONL and the relay is activated. Coil 53 becomes conductive.

このためリレー接点44が閉成して圧縮機9が運転され
る。又、これと同時にOR回路72の出力も“H“どな
っているためトランジスタ76がONL、てリレーコイ
ル79が導通する。このため、リレー接点45が閉成し
て送風機11も運転され冷凍室6、冷蔵室7.解凍室8
へ冷気を強制通風して冷却を行なう、その後、冷凍室6
が所定温度にまで冷却されれば温度検知器22の抵抗値
が大きくなりコンパレータ51の出力が“L”となる、
このため、トランジスタ52は0FFL、又。
Therefore, the relay contact 44 is closed and the compressor 9 is operated. At the same time, the output of the OR circuit 72 also becomes "H", so the transistor 76 turns ON, and the relay coil 79 becomes conductive. Therefore, the relay contact 45 is closed and the blower 11 is also operated to operate the freezer compartment 6, refrigerator compartment 7. Thawing chamber 8
Cooling is performed by forcing cold air into the freezer compartment 6.
When the temperature sensor 22 is cooled down to a predetermined temperature, the resistance value of the temperature sensor 22 increases and the output of the comparator 51 becomes "L".
Therefore, the transistor 52 becomes 0FFL.

OR回路72の出力も“L”となるためトランジスタ7
6も0FFL、てリレーコイル53.79への通電が断
たれる。このためリレー接点44.45はいずれも開放
した圧縮機9.送風機Ifが停止する。以後この作用を
繰返して冷凍室6内は所定温度(例えば−20℃)に温
調維持される。
Since the output of the OR circuit 72 also becomes “L”, the transistor 7
6 is also 0FFL, and the power to the relay coil 53.79 is cut off. Therefore, both relay contacts 44 and 45 are connected to the compressor 9. The blower If stops. Thereafter, this action is repeated to maintain the temperature inside the freezer compartment 6 at a predetermined temperature (for example, -20°C).

次に冷蔵室7の温度が所定値より高い場合は、温度検知
器23の抵抗値が小さくなっており、コンパレータ55
の出力が“H”となるためトランジスタ56がONL、
てリレーコイル57が導通する。このためリレー接点4
9が閉成して電磁コイル14゛ に通電されてダンパー
サーモ12のダンパー17が開放されて冷蔵室7内へ冷
気が導入され冷却作用を行なう、その後、冷蔵室7が所
定温度にまで冷却されれば温度検知器23の抵抗値が大
きくなってコンパレータ55の出力が“L”となる、こ
のため、トランジスタ56はOFFとなり、リレーコイ
ル57への通電が断たれてリレー接点49が開放し、電
磁コイル+4’への通電も断たれる。そしてダンパーサ
ーモ12のダンパー17が閉成されて冷蔵室7内への冷
気の流入が阻止される。以後、この作用を繰返して冷蔵
室7内は所定温度(例えば5℃)に温調維持される。
Next, when the temperature of the refrigerator compartment 7 is higher than a predetermined value, the resistance value of the temperature detector 23 is small, and the comparator 55
Since the output of becomes “H”, the transistor 56 becomes ONL,
The relay coil 57 becomes conductive. Therefore, relay contact 4
9 is closed, the electromagnetic coil 14' is energized, the damper 17 of the damper thermometer 12 is opened, and cold air is introduced into the refrigerator compartment 7 to perform a cooling effect.The refrigerator compartment 7 is then cooled to a predetermined temperature. If so, the resistance value of the temperature sensor 23 becomes large and the output of the comparator 55 becomes "L". Therefore, the transistor 56 is turned off, the current to the relay coil 57 is cut off, and the relay contact 49 is opened. Power to the electromagnetic coil +4' is also cut off. Then, the damper 17 of the damper thermostat 12 is closed to prevent cold air from flowing into the refrigerator compartment 7. Thereafter, this action is repeated to maintain the temperature inside the refrigerator compartment 7 at a predetermined temperature (for example, 5° C.).

また、非解凍時において解凍室8の温度が所定値より高
い場合は1、第2の温度検知器24の抵抗値が小さくな
っており、コンパレータ59の出力が“H”となるため
、OR回路60、AND回路60aの出力が“H“とな
り、トランジスタ61がONL。
In addition, when the temperature of the thawing chamber 8 is higher than a predetermined value during non-defrosting, the resistance value of the second temperature detector 24 is small and the output of the comparator 59 becomes "H", so the OR circuit 60, the output of the AND circuit 60a becomes "H", and the transistor 61 becomes ONL.

てリレーコイル62が導通する。このためリレー接点4
8が閉成して電磁コイル14に通電されてダンパーサー
モ13のダンパー17が開放されて解凍室8内へ冷気が
導入され冷却作用を行なう、その後、解凍室8が所定温
度にまで冷却されれば第2の温度検知器24の抵抗値が
大きくなってコンパレータ5gの出力が“L”となる、
このためOR回路60の出力が“L”となってAND回
路60aの出力も“L”となりトランジスタ61はOF
Fとなりリレーコイル62への通電が断たれてリレー接
点48が開放し電磁コイル14への通電も断たれる。そ
してダンパーサーモ!3のダンパー17が閉成されて解
凍室8内への冷気流入が阻止される。以後、この作用を
繰返して解凍室8内は前述の様に生鮮食品の保存に適し
た冷凍温度と冷蔵温度の間の第3の温度帯、すなわち約
−3℃のパーシャルフリージング温度帯に温調維持され
る。
The relay coil 62 becomes conductive. Therefore, relay contact 4
8 is closed, the electromagnetic coil 14 is energized, the damper 17 of the damper thermometer 13 is opened, and cold air is introduced into the thawing chamber 8 to perform a cooling effect.Then, the thawing chamber 8 is cooled to a predetermined temperature. In this case, the resistance value of the second temperature sensor 24 increases and the output of the comparator 5g becomes "L".
Therefore, the output of the OR circuit 60 becomes "L", the output of the AND circuit 60a also becomes "L", and the transistor 61 is turned off.
F, the power supply to the relay coil 62 is cut off, the relay contact 48 is opened, and the power supply to the electromagnetic coil 14 is also cut off. And damper thermo! The damper 17 of No. 3 is closed to prevent cold air from flowing into the thawing chamber 8. Thereafter, by repeating this action, the temperature inside the thawing chamber 8 is controlled to the third temperature zone between the freezing temperature and the refrigeration temperature suitable for preserving fresh foods, that is, the partial freezing temperature zone of approximately -3°C, as described above. maintained.

次に解凍時の作用について述べる。先ず、解凍しようと
する被解凍食品35を解凍トレイ34上に載置して解凍
室8内の底面板31上に設置した上で解凍スイッチ43
を投入する。投入と同時にタイマー65が“H”信号の
出力を開始し、AND回路68゜69aの一方の入力が
“H”となる、この時、解凍室8の底面板31は冷凍状
態の温度の低い(例えば−20℃)被解凍食品35を載
置した解凍皿34の熱伝導で温度が低下している。すな
わち、第1の温度検知器33は十分温度の低い状態にあ
る。このためコンパレータ64及び64aの出力は両者
共に“Lo、どなっており、インバータ73及び73a
で両者共に“H“に反転された信号がそれぞれAND回
路68及び69aのもう一方の入力に入力される。従っ
て、AND回路69aの入力は共に“H−となるため出
力は“H”となり、AND回路69の一方の入力に入力
される。一方、AND回路69にはインバータ73を介
さない“L”の信号がそのまま入力される。このためA
ND回路68の出力は“H”、AND回路69の出力は
“L“となるため、タイマー66.67は動作せず、O
R回路70.71の出力がH”となってトランジスタ7
4.75がONする。そしてリレーコイル77.78に
通電され、リレー接点46.47が閉成して遠赤外線ヒ
ータ27、加熱ヒータ32に連続通電される。そして、
解凍作用が進行して第1の温度検知器33が予め定めた
所定温度(例えば20℃)にまで上昇する(これに要す
る時間なtoとし、この期間を第1の段階とする)とコ
ンパレータ64の出力が“Hoとなり、インバータ73
を介して“し”の信号がAND回路68に入力されてA
ND回路68の出力が“L”となる、一方、AND回路
69には“H”の信号が入力されるためタイマー66.
67が所定の断続率により“H”L”の信号を交互に繰
返して出力し始める。このためそれに応じた断続出力率
でOR回路70.7Iを介してトランジスタ74.75
がON10 F Fする。
Next, we will discuss the action during thawing. First, the food to be thawed 35 to be thawed is placed on the thawing tray 34 and placed on the bottom plate 31 in the thawing chamber 8, and then the thawing switch 43 is turned on.
Insert. At the same time as the input, the timer 65 starts outputting an "H" signal, and one input of the AND circuit 68, 69a becomes "H". For example, -20° C.) The temperature decreases due to heat conduction of the thawing tray 34 on which the food 35 to be thawed is placed. That is, the first temperature sensor 33 is in a sufficiently low temperature state. Therefore, the outputs of the comparators 64 and 64a are both "Lo", and the outputs of the inverters 73 and 73a are "Lo".
The signals, both of which are inverted to "H", are input to the other inputs of AND circuits 68 and 69a, respectively. Therefore, since both inputs of the AND circuit 69a become "H-", the output becomes "H" and is inputted to one input of the AND circuit 69.On the other hand, the AND circuit 69 has a "L" signal that does not go through the inverter 73. The signal is input as is. Therefore, A
Since the output of the ND circuit 68 is "H" and the output of the AND circuit 69 is "L", the timers 66 and 67 do not operate and the O
The outputs of the R circuits 70 and 71 become H", and the transistor 7
4.75 turns on. Then, the relay coils 77 and 78 are energized, the relay contacts 46 and 47 are closed, and the far-infrared heater 27 and the heating heater 32 are continuously energized. and,
When the thawing action progresses and the first temperature sensor 33 rises to a predetermined temperature (for example, 20° C.) (the time required for this is defined as to, and this period is defined as the first stage), the comparator 64 The output becomes “Ho” and the inverter 73
The “yes” signal is input to the AND circuit 68 through A
The output of the ND circuit 68 becomes "L", while the "H" signal is input to the AND circuit 69, so the timer 66.
67 begins to alternately repeat and output "H" and "L" signals at a predetermined intermittent output rate.Therefore, the transistors 74.75 and 74.75 start to output signals of "H" and "L" alternately and repeatedly at a predetermined intermittent output rate.
turns ON10FF.

そして、リレーコイル77.78への通電が断続されて
リレー接点46.47が断続的に開閉する。その結果、
遠赤外線ヒータ27は前記連続通電の時間t0に続く時
間1+  (この期間を第2の段階とする)は通電率8
0%、次の時間tm  (この期間を第3の段階とする
)は通電率40%と時間経過とともに段階的に発熱容量
が低下していくように制御される。又、加熱ヒータ32
は前記連続通電の時間t0に続く時間j+’は通電率8
0%、次の時間tm’は通電率O%と発熱容量が低下し
ていくように制御される。このように被解凍食品35の
温度が低い解凍初期は第1の温度検知器33の温度が所
定温度に上昇するまで遠赤外線ヒータ27、加熱ヒータ
32の両ヒータが連続通電されるため被解凍食品35の
重量が様々に変化しても、第1の温度検知器33の温度
上昇の度合で、それぞれの重量に適した時間だけ過不足
なく発熱量の大きい条件下で急速に解凍が進められるこ
とになり、解凍時間の短縮化が図れる。そして、その後
は時間経過とともに発熱容量が段階的に低下し、被解凍
食品35の表面温度の上昇を抑制しながらの解凍が進行
する。
Then, the relay coils 77, 78 are de-energized and the relay contacts 46, 47 are intermittently opened and closed. the result,
The far infrared heater 27 has an energization rate of 8 during the time 1+ (this period is defined as the second stage) following the continuous energization time t0.
0%, and the next time tm (this period is defined as the third stage), the energization rate is 40%, and the heat generation capacity is controlled to gradually decrease as time passes. Also, the heater 32
The time j+' following the continuous energization time t0 is the energization rate 8.
0%, and the next time tm' is controlled so that the energization rate is 0% and the heat generation capacity is decreased. In this way, in the early stage of thawing when the temperature of the food to be thawed 35 is low, both the far-infrared heater 27 and the heating heater 32 are continuously energized until the temperature of the first temperature sensor 33 rises to a predetermined temperature. Even if the weight of the first temperature sensor 33 varies, thawing can proceed rapidly under conditions with a large calorific value for a time suitable for each weight depending on the degree of temperature rise of the first temperature sensor 33. Therefore, the thawing time can be shortened. Thereafter, the heat generating capacity decreases stepwise with the passage of time, and thawing proceeds while suppressing the rise in surface temperature of the food 35 to be thawed.

解凍中は被解凍食品35に対して、上面からは遠赤外線
ヒータ27からの放射加熱が反射板29の反射作用とも
相俟って均等に行なわれ、底面からは加熱ヒータ32に
よる伝熱加熱が同時に行なわれることになる。ここで遠
赤外線ヒータ27の加熱においては5μm以上の長波長
の遠赤外線が被解凍食品35に対して放射されるため、
遠赤外線波長域に吸収波長帯をもつ一般的な食品類では
効率よく遠赤外線が吸収され、被解凍食品35の比較的
内部にまで浸透して表面部と中心部との温度むらが比較
的大きくならない状態で解凍が進行する。又、加熱ヒー
タ32による加熱においては、遠赤外線ヒータ2丁で十
分に加熱しきれない被解凍食品35の底面部を解凍皿3
4を介しての伝熱加熱で解凍することができる。
During thawing, the food to be thawed 35 is uniformly heated by radiation from the far-infrared heater 27 from the top surface due to the reflection action of the reflector plate 29, and conductive heating by the heater 32 from the bottom surface. It will be done at the same time. Here, in the heating by the far infrared heater 27, far infrared rays with a long wavelength of 5 μm or more are radiated to the food to be thawed 35.
For general foods that have an absorption wavelength band in the far-infrared wavelength range, far-infrared rays are efficiently absorbed, and the far-infrared rays penetrate relatively deep into the food to be thawed 35, resulting in a relatively large temperature unevenness between the surface and the center. The thawing process continues without any problems. In addition, when heating with the heater 32, the bottom part of the food 35 to be thawed, which cannot be sufficiently heated by the two far-infrared heaters, is placed in the thawing tray 3.
It can be thawed by heat transfer heating through 4.

一方、これら遠赤外線ヒータ27、加熱ヒータ32によ
る加熱作用と同時に解凍中すなわちタイマー55の出力
が“H”信号を発生し続ける第1、第2、第3の段階の
間はOR回路72の出力が“H−となりトランジスタ7
6がONL、、リレーコイル79が導通する。このため
リレー接点45が閉成して冷凍室温度制御装置50の出
力の如何にかかわらず送風機■が強制的に運転される。
On the other hand, during the first, second and third stages in which the output of the timer 55 continues to generate an "H" signal during defrosting at the same time as the heating action of the far infrared heater 27 and the heating heater 32, the output of the OR circuit 72 becomes “H-” and transistor 7
6 is ONL, the relay coil 79 is conductive. Therefore, the relay contact 45 is closed and the blower (2) is forced to operate regardless of the output of the freezer temperature control device 50.

また一方、この間に於いてタイマー67aの出力は、第
1の段階ではコンパレータ64の出力が“L”になるA
ND回路69の出力“Loにより“L”となっている、
続く第2の段階でAND回路49の出力が“H”に変わ
るとタイマー67aの出力は第2の段階が“H”第3の
段階が“L”となる、このためAND回路60aの出力
も第1、第2の段階が“H”、第3の段階が“し”とな
り、トランジスタ61がその間ON、ON、OFFとな
る。すなわち、解凍中は解凍室用のダンパーサーモ13
のダンパー14が第1及び第2の段階が強制的に開放、
第3の段階が強制的に閉塞というパターンになる。
On the other hand, during this period, the output of the timer 67a is A, at which the output of the comparator 64 becomes "L" in the first stage.
The output of the ND circuit 69 is “L” due to the “Lo” output,
In the subsequent second stage, when the output of the AND circuit 49 changes to "H", the output of the timer 67a becomes "H" in the second stage and "L" in the third stage, so the output of the AND circuit 60a also changes. The first and second stages are "H", the third stage is "off", and the transistor 61 is turned ON, ON, and OFF during that period. In other words, during thawing, the damper thermometer 13 for the thawing chamber
The damper 14 of the first and second stages is forcibly opened,
The third stage is a pattern of forced occlusion.

このように、第1、第2の段階は開放されたダンパー1
4を介して送風機11で強制通風された冷気が吐出ダク
ト19を通じ、吐出口41より解凍室8内上部の通風路
40内に流入する。通風路40内に流入した冷気は反射
板29に形成して、多数の通風孔より下方へ吐出され、
被解凍食品35の表面を均等に冷却する。この作用によ
って被解凍食品35は主として遠赤外線ヒー タ27の
遠赤外線放射効果と遠赤外線ヒータ27及び加熱ヒータ
32の発熱容量を段階的に低下させる制御の効果に加え
てさらに表面部の温度上昇が抑制されることになり、結
果と−して中心部と表面部との温度差の小さい解凍むら
の少ない解凍が進行する。そして、解凍がかなり進行し
た第2の段階の終了時点(例えば、被解凍食品35の中
心温度が一5℃付近)以後はダンパーサーモ13のダン
パー14が強制的に閉塞されて冷気が導入されない形で
、且つヒータ発熱量の小さい状態で徐々に解凍の仕上げ
が進行する。この間は被解凍食品35の品温も上昇して
いるためヒータの加熱効率、被解凍食品35の熱吸収効
率が低下している状態であるがダンパー14が閉塞して
いるため解凍室8内の余熱は吸込口42からは回収され
ず、冷却器10の方にも戻されない、このため、冷却器
lOに対する熱負荷量はその分軽減されることになり、
圧縮機9の余分な運転が避けられる。尚、解凍中の被解
凍食品35の温度特性及びタイムチャートな第6図に示
す。
In this way, the first and second stages are performed with the damper 1 open.
Cold air forcedly ventilated by the blower 11 passes through the discharge duct 19 through the discharge port 41 and flows into the ventilation passage 40 in the upper part of the thawing chamber 8 . The cold air flowing into the ventilation passage 40 is formed on the reflection plate 29 and is discharged downward through a large number of ventilation holes.
The surface of the food 35 to be thawed is uniformly cooled. Due to this action, the food to be thawed 35 is mainly affected by the far-infrared radiation effect of the far-infrared heater 27 and the control effect of gradually reducing the heat generation capacity of the far-infrared heater 27 and heating heater 32, as well as by further increasing the temperature of the surface area. As a result, thawing progresses with a small temperature difference between the center and surface areas and less uneven thawing. After the end of the second stage when the thawing has progressed considerably (for example, when the center temperature of the food 35 to be thawed is around 15° C.), the damper 14 of the damper thermostat 13 is forcibly closed and cold air is not introduced. In this state, the defrosting process gradually progresses while the amount of heat generated by the heater is small. During this time, the temperature of the food to be thawed 35 is also rising, so the heating efficiency of the heater and the heat absorption efficiency of the food to be thawed 35 are decreasing, but since the damper 14 is blocked, the temperature in the thawing chamber 8 is The residual heat is not recovered from the suction port 42 and is not returned to the cooler 10, so the amount of heat load on the cooler 10 is reduced accordingly.
Redundant operation of the compressor 9 is avoided. The temperature characteristics and time chart of the food 35 to be thawed during thawing are shown in FIG. 6.

又、解凍時間についても遠赤外線の内部浸透効果と解凍
初期の連続加熱制御により、比較的短時間の解凍(例え
ば重量500g、厚さ25mmのマグロで約30分)が
可能となるほか、反射板29が通風路40内に露出して
いるため本来相当な高温となる反射板29自体が周辺部
材の温度が冷却されて低下し安全上も好都合となる。
In addition, regarding the thawing time, the internal penetration effect of far infrared rays and continuous heating control during the initial stage of thawing make it possible to thaw in a relatively short time (for example, about 30 minutes for a tuna weighing 500 g and 25 mm thick). Since the reflector plate 29 is exposed in the ventilation passage 40, the temperature of the surrounding members of the reflector plate 29 itself, which is originally quite high temperature, is cooled and lowered, which is advantageous in terms of safety.

このような解凍作用が進行して時間jo+t++Lm 
=jo  +t+ ′・+t* ’すなわち、第1、第
2、第3の段階の合計時間が経過するとタイマー66.
67の出力が“Loになるとともに、タイマー66より
タイマー65のリセット端子に入力されてタイマー55
の出力もL°となる。このため、トランジスタ74.7
5がそれぞれ0FFL、てリレーコイル77、78への
通電が断たれて、リレー接点46.47が開放し、遠赤
外線ヒータ27、加熱ヒータ32への通電が断たれて解
凍が終了する。又これと同時にOR回路72の一方の入
力が“し”となるため送風機!!の強制運転状態が解除
される。又、タイマー67aの出力が“Hoに復帰する
ためAND回路60aの一方の人力が“11”となって
解凍室用ダンパーサーモ13のダンパー17の強制閉塞
状態が解除される。
As this thawing action progresses, the time jo+t++Lm
=jo +t+ '·+t*' That is, when the total time of the first, second, and third stages has elapsed, the timer 66.
When the output of 67 becomes "Lo," the timer 66 inputs the signal to the reset terminal of the timer 65, and the timer 55
The output of is also L°. Therefore, transistor 74.7
5 reaches 0FFL, the relay coils 77 and 78 are de-energized, the relay contacts 46 and 47 are opened, and the far-infrared heater 27 and the heating heater 32 are de-energized to complete defrosting. At the same time, one input of the OR circuit 72 becomes "Yes", so the blower! ! The forced operation status of is canceled. Further, since the output of the timer 67a returns to "Ho", the human power of one side of the AND circuit 60a becomes "11", and the forcedly closed state of the damper 17 of the damper thermometer 13 for the defrosting chamber is released.

そして、解凍終了後は通常冷却時と同様に第2の温度検
知器24の検知温度に基づき、解凍室8内は温度制御さ
れる。このため解凍後の被解凍食品35は約−3℃のパ
ーシャルフリージング温度帯に安定するよう直ちに冷却
されることになり、余熱でさらに温度上昇することがな
い、そして、解凍終了後そのまま放置しておいても魚、
肉類等生ものの保存に適した約−3℃のパーシャルフリ
ージング温度帯で保冷されているため従来の様に使用者
が解凍の終了を監視して即座に処理する手間もなく安心
して解凍が行なえ、又、解凍終了後任意の時間に被解凍
食品35を利用できることになり極めて使い勝手が良い
After the thawing is completed, the temperature inside the thawing chamber 8 is controlled based on the temperature detected by the second temperature sensor 24, as in the case of normal cooling. For this reason, the food to be thawed 35 after thawing is immediately cooled to stabilize in the partial freezing temperature range of about -3°C, and the temperature does not rise further due to residual heat. Even if you leave the fish,
Because it is kept cool at a partial freezing temperature range of approximately -3℃, which is suitable for preserving perishables such as meat, the user can defrost with peace of mind without having to monitor the completion of defrosting and immediately dispose of it, unlike conventional methods. The food to be thawed 35 can be used at any time after thawing, making it extremely convenient to use.

次に空の状態で解凍を開始した場合等の温度過昇時につ
いて説明する。第2の温度検知器24の温度が上昇し続
けて第1の設定温度(例えば−3℃)を越えて第2の設
定温度(例えば40℃)になると、コンパレータ59a
の出力は“H”となりインバータ73aで“L″に反転
された信号がAND回路6jaの一方の入力に入力され
る。このためAND回路69aの出力は“L”となりA
ND回路69の一方の入力に入力される。従ってAND
回路69の出力は“L”となるためタイマー66.67
は動作せず、OR回路70.71の一方の入力には共に
“L”の信号が入力される。一方AND回路68からは
“L”の信号が出力され続けているのでOR回路70.
71のもう一方の入力にも共に“L“の信号が入力され
る。従ってOR回路70.71の出力は共に“L”とな
りトランジスタ74.75は0FFL、、リレーコイル
77.78への通電が中止され、リレー接点46.47
が開放状態となり遠赤外線ヒータ27及び加熱ヒータ3
2への通電は中止される。従って温度過昇時には両ヒー
タが強制的にOFFされるため解凍室8の各部の熱変形
を防止することができる。
Next, we will explain what happens when the temperature rises excessively, such as when thawing is started in an empty state. When the temperature of the second temperature sensor 24 continues to rise and exceeds the first set temperature (for example, -3°C) and reaches the second set temperature (for example, 40°C), the comparator 59a
The output becomes "H", and the signal inverted to "L" by the inverter 73a is input to one input of the AND circuit 6ja. Therefore, the output of the AND circuit 69a becomes "L" and A
It is input to one input of the ND circuit 69. Therefore, AND
Since the output of the circuit 69 becomes "L", the timers 66 and 67
does not operate, and "L" signals are input to one input of both OR circuits 70 and 71. On the other hand, since the AND circuit 68 continues to output the "L" signal, the OR circuit 70.
An "L" signal is also input to the other input of 71. Therefore, the outputs of the OR circuits 70, 71 are both "L", and the transistors 74, 75 are 0FFL, and the relay coils 77, 78 are de-energized, and the relay contacts 46, 47 are turned off.
is in an open state, and the far-infrared heater 27 and the heating heater 3
Power supply to 2 is stopped. Therefore, when the temperature rises excessively, both heaters are forcibly turned off, so that thermal deformation of various parts of the defrosting chamber 8 can be prevented.

発明の効果 以上の様に本発明の解凍室付冷蔵庫によると次のような
効果が得られる。
Effects of the Invention As described above, the refrigerator with a defrosting chamber of the present invention provides the following effects.

(1)上面より遠赤外線ヒータによる遠赤外線放射加熱
、底面より加熱ヒータによる熱伝導加熱の両面より効率
的に加熱でき、しかも解凍中−は両ヒータの発熱容量が
段階的に低下してゆくこと及び遠赤外線の被解凍食品内
部への浸透効果とも合わせて中心部と表面部の温度むら
の少ない解凍が可能となる。
(1) Efficient heating can be achieved from both sides: far-infrared radiant heating using a far-infrared heater from the top, and conductive heating using a heating heater from the bottom, and the heat generation capacity of both heaters gradually decreases during thawing. Combined with the effect of far infrared rays penetrating into the interior of the food to be thawed, thawing with less temperature unevenness between the center and surface becomes possible.

(2)解凍室底面板に設けた第1の温度検知器が所定温
度に上昇するまでは遠赤外線ヒータ、加熱ヒータを連続
通電させるため、被解凍食品の重量が変化してもそれぞ
れに適した時間だけ最大容量のヒータで急速な加熱が行
え、短時間の解凍が可能となる。
(2) Since the far-infrared heater and heating heater are continuously energized until the first temperature sensor installed on the bottom plate of the thawing chamber rises to a predetermined temperature, even if the weight of the food to be thawed changes, the Rapid heating can be performed using the maximum capacity heater for only a certain amount of time, making it possible to defrost food in a short time.

(3)解凍中の第1、第2の段階は解凍室用のダンパー
サーモを強制的に開放させるとともに送風機を強制的に
連続運転させて反射板の裏面空間に形成した通風路より
被解凍食品に対して冷気を降下流入させるため被解凍食
品の表面部が均等に冷却され更に温度上昇が抑制されて
解凍むらの少ない解凍が実現できる。
(3) During the first and second stages of thawing, the damper thermo for the thawing chamber is forcibly opened and the blower is forced to operate continuously to allow the food to be thawed to pass through the ventilation passage formed in the space on the back of the reflector. Since cold air is allowed to descend and flow into the food, the surface of the food to be thawed is uniformly cooled, temperature rise is further suppressed, and thawing with less unevenness can be achieved.

(4)解凍中の第3の段階ではダンパーサーモが強制的
に閉塞されるため解凍室内の余熱が冷却器に戻されず熱
負荷とならない、このため、圧縮機の余分な冷却運転を
軽減できる。
(4) During the third stage of defrosting, the damper thermometer is forcibly closed, so the residual heat in the defrosting chamber is not returned to the cooler and does not become a heat load, which can reduce the need for extra cooling operation of the compressor.

(5)解凍中、本来なら高温になる反射板その他局辺部
材も反射板が通風路に露出して冷却されるため温度低下
し安全上も好都合である。
(5) During thawing, the reflector and other peripheral components, which would normally be at high temperatures, are exposed to the ventilation path and cooled, so the temperature decreases, which is advantageous from a safety perspective.

(6)解凍中、異常温度過昇が発生しても、両ヒータを
強制的にOFFさせるので解凍室各部の熱変形を防止す
ることができ、安全面での問題はなくなる。
(6) Even if an abnormal temperature rise occurs during thawing, both heaters are forcibly turned off, so thermal deformation of various parts of the thawing chamber can be prevented, eliminating any safety problems.

(7)解凍終了後は解凍室内が冷凍室温度と冷蔵室温度
の間の第3の温度帯(例えば約−3℃のパーシャルフリ
ージング温度帯)に保冷されるため、解凍終了直後の余
熱で被解凍食品の温度が更に上昇することが無く、その
まま放置しておいても魚肉等の生ものに適した温度で鮮
度が保持され任意の時間に食品を利用することができる
(7) After thawing, the inside of the thawing chamber is kept cool in the third temperature range between the freezing room temperature and the refrigerator room temperature (for example, the partial freezing temperature range of approximately -3°C), so it is exposed to residual heat immediately after thawing. The temperature of the thawed food does not rise further, and even if it is left as is, its freshness is maintained at a temperature suitable for raw food such as fish meat, and the food can be used at any time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は解凍室を備えた解凍室付冷蔵庫の縦断面図、第
2図は解凍室の入口に設けたダンパーサーモの拡大断面
図、第3図は解凍室の斜視図、第4図は解凍室の断面図
、第5図は本発明の電気回路及び制御回路図、第6図は
解凍中のタイムチャート及び被解凍食品の温度特性図、
第7図は従来例を示す解凍箱の斜視図、第8図は同解凍
箱の断面図である。 6・・・冷凍室  7・・・冷蔵室  8・・・解凍室
9・・・圧縮機  !0・・・冷却器  + 1−・・
送風機+ 3−・・ダンパーサーモ  24・・・第2
の温度検知器27−・・遠赤外線ヒータ  29・・・
反射板30・・・通風孔  31・・・底面板  32
・・・加熱ヒータ33・・・第1の温度検知器  34
−・・解凍皿35・・・被解凍食品  39・・・扉 
 40・・・通風路63・・・解凍制御装置
Figure 1 is a vertical sectional view of a refrigerator with a thawing chamber, Figure 2 is an enlarged sectional view of a damper thermometer installed at the entrance of the thawing chamber, Figure 3 is a perspective view of the thawing chamber, and Figure 4 is a vertical sectional view of a refrigerator with a thawing chamber. A sectional view of the thawing chamber, FIG. 5 is an electric circuit and control circuit diagram of the present invention, FIG. 6 is a time chart during thawing and a temperature characteristic diagram of the food to be thawed,
FIG. 7 is a perspective view of a conventional thawing box, and FIG. 8 is a sectional view of the thawing box. 6... Freezer room 7... Refrigerator room 8... Defrost room 9... Compressor! 0...Cooler + 1-...
Blower + 3-...Damper thermo 24...Second
Temperature detector 27-... Far infrared heater 29...
Reflector plate 30... Ventilation hole 31... Bottom plate 32
... Heater 33 ... First temperature detector 34
-... Thawing dish 35... Food to be thawed 39... Door
40... Ventilation path 63... Thawing control device

Claims (1)

【特許請求の範囲】[Claims] 冷凍室と、冷蔵室と、外周を断熱材で囲み且つ前面開口
部に開閉自在の扉を設けた解凍室と、圧縮機、冷却器等
を有する冷凍サイクルと、前記冷却器により冷却された
空気を前記冷凍室、冷蔵室、解凍室にそれぞれ強制通風
させる送風機と、前記解凍室の上部に設けた遠赤外線ヒ
ータと、金属製の底面板の裏面に熱伝導的に密着させた
加熱ヒータと、前記底面板の裏面の略中央に熱伝導的に
密着させた第1の温度検知器と、前記遠赤外線ヒータの
上面をドーム状に覆う金属製の反射板と、被解凍食品を
載置して前記底面板上に熱伝導的、且つ着脱自在に設置
される解凍皿と、前記解凍室の入口に設けて電気的入力
で冷気流入量を調節するダンパーサーモと、このダンパ
ーサーモより連通し、前記反射板の裏面上部空間に形成
した通風路と、前記反射板に設けて、前記通風路と解凍
室内を連通させる多数の通風孔と、解凍中は前記送風機
を強制運転させるとともに解凍時間を制御する解凍制御
装置とを備え、この解凍制御装置では解凍時間を3段階
に分割し、解凍開始から前記第1の温度検知器の温度が
所定温度に上昇するまでの時間を第1の段階として前記
遠赤外線ヒータ及び加熱ヒータを連続通電させ、それ以
後は第2、第3の段階へと前記両ヒータへの通電を断続
的に行なわせて断続通電率を低下させ、前記第1と第2
段階は前記ダンパーサーモを強制開放させ、前記第3の
段階は前記ダンパーサーモを強調閉塞させ、且つ非解凍
時には、前記解凍室に設けた第2の温度検知器の温度が
第1の所定温度により前記ダンパーサーモを開閉させ前
記解凍室内の温度を、冷蔵温度と冷凍温度の間の第3の
温度帯に維持させると共に前記第2の温度検知器の温度
が前記第1の所定温度より高い第2の所定温度になると
、前記両ヒータへの通電を中止させるよう制御すること
を特徴とする解凍室付冷蔵庫。
A freezing room, a refrigerator room, a thawing room whose outer periphery is surrounded by heat insulating material and has a door that can be opened and closed at the front opening, a refrigeration cycle having a compressor, a cooler, etc., and air cooled by the cooler. a blower for forcing air into each of the freezing compartment, refrigerator compartment, and thawing compartment; a far-infrared heater provided at the top of the thawing compartment; and a heating heater that is thermally conductively in close contact with the back surface of the metal bottom plate; A first temperature sensor is thermally conductively brought into close contact with substantially the center of the back surface of the bottom plate, a metal reflector plate covers the top surface of the far-infrared heater in a dome shape, and food to be thawed is placed thereon. A thawing tray that is thermally conductive and removably installed on the bottom plate, and a damper thermo that is installed at the entrance of the thawing chamber and adjusts the amount of cold air inflow by electrical input, are in communication with each other through this damper thermo, and the A ventilation passage formed in the upper space on the back surface of the reflector, a number of ventilation holes provided in the reflection plate to communicate the ventilation passage with the inside of the thawing chamber, and during thawing, the blower is forced to operate and the thawing time is controlled. The thawing control device divides the thawing time into three stages, and the time from the start of thawing until the temperature of the first temperature sensor rises to a predetermined temperature is defined as the first stage. The infrared heater and the heating heater are continuously energized, and thereafter, in the second and third stages, energization is intermittently performed to both the heaters to reduce the intermittent energization rate, and the first and second
In the step, the damper thermometer is forcibly opened, and in the third step, the damper thermometer is strongly closed, and when the thawing chamber is not thawed, the temperature of the second temperature sensor provided in the thawing chamber is set to the first predetermined temperature. A second temperature sensor that opens and closes the damper thermometer to maintain the temperature in the thawing chamber in a third temperature range between the refrigerating temperature and the freezing temperature, and the temperature of the second temperature sensor is higher than the first predetermined temperature. A refrigerator with a defrosting chamber, characterized in that when the temperature reaches a predetermined temperature, power supply to both of the heaters is stopped.
JP15326190A 1990-06-12 1990-06-12 Refrigerator with defreezing chamber Pending JPH0445379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15326190A JPH0445379A (en) 1990-06-12 1990-06-12 Refrigerator with defreezing chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15326190A JPH0445379A (en) 1990-06-12 1990-06-12 Refrigerator with defreezing chamber

Publications (1)

Publication Number Publication Date
JPH0445379A true JPH0445379A (en) 1992-02-14

Family

ID=15558591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15326190A Pending JPH0445379A (en) 1990-06-12 1990-06-12 Refrigerator with defreezing chamber

Country Status (1)

Country Link
JP (1) JPH0445379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064601A1 (en) * 2004-12-15 2006-06-22 Sharp Kabushiki Kaisha Refrigerator
JP2007085727A (en) * 2006-11-06 2007-04-05 Sharp Corp Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064601A1 (en) * 2004-12-15 2006-06-22 Sharp Kabushiki Kaisha Refrigerator
JP2007085727A (en) * 2006-11-06 2007-04-05 Sharp Corp Refrigerator
JP4502998B2 (en) * 2006-11-06 2010-07-14 シャープ株式会社 refrigerator

Similar Documents

Publication Publication Date Title
JP2012247092A (en) Heating cooker
JPH0445379A (en) Refrigerator with defreezing chamber
JP2763623B2 (en) Refrigerator with thawing room
JP2763622B2 (en) Refrigerator with thawing room
JPH0428990A (en) Electric refrigerator
JP2851688B2 (en) Refrigerator with thawing room
JPH05141858A (en) Refrigerator with thawing chamber
JPH0452475A (en) Refrigerator with thawing chamber
JPH0445380A (en) Refrigerator with defreezing chamber
JP2892710B2 (en) Refrigerator with thawing room
JP2809830B2 (en) Refrigerator with thawing room
JP2851683B2 (en) Refrigerator with thawing room
JP2528951B2 (en) Refrigerator / refrigerator with defroster
JPH03241281A (en) Refrigerator with thawing room
JPH03175252A (en) Refrigerator with thawing compartment
JPH03140785A (en) Refrigerator equipped with defrosting chamber
JP2815459B2 (en) Refrigerator with thawing room
JPH049585A (en) Refrigerator with thawing chamber
JP2863302B2 (en) Refrigerator with thawing room
JPH03129282A (en) Refrigerator with deferring chamber
JP2809813B2 (en) Refrigerator with thawing room
JPH051880A (en) Refrigerator equipped with defrosting chamber
JPH03129283A (en) Refrigerator with defreezing chamber
JPH0445381A (en) Refrigerator with defreezing chamber
JPH0593569A (en) Refrigerator with defreezing chamber