JPH0314054B2 - - Google Patents

Info

Publication number
JPH0314054B2
JPH0314054B2 JP57191128A JP19112882A JPH0314054B2 JP H0314054 B2 JPH0314054 B2 JP H0314054B2 JP 57191128 A JP57191128 A JP 57191128A JP 19112882 A JP19112882 A JP 19112882A JP H0314054 B2 JPH0314054 B2 JP H0314054B2
Authority
JP
Japan
Prior art keywords
ethylene
olefin
polyene
crosslinked
polyene copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57191128A
Other languages
Japanese (ja)
Other versions
JPS5980439A (en
Inventor
Hideki Yagyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57191128A priority Critical patent/JPS5980439A/en
Publication of JPS5980439A publication Critical patent/JPS5980439A/en
Publication of JPH0314054B2 publication Critical patent/JPH0314054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電線・ケーブルの絶縁体として好適な
架橋成形体の製造方法に関するものである。 架橋ポリエチレンやエチレンプロピレンゴムを
絶縁体とする電線・ケーブルは従来より広範囲に
用いられてきている。 しかし、浸水状態で課電を行つた場合、いずれ
も電気的な劣化が進行することが知られている。
この劣化は一般にエチレンプロピレンゴムよりも
架橋ポリエチレンの方が進みにくいが、架橋ポリ
エチレンにおいては水トリーという特異な劣化形
態が起ることが認められている。 電線・ケーブルは今後も地中埋設など浸水環境
下における使用が多くなると考えられ、水トリー
の生を抑える電線・ケーブルの開発は急務であ
る。 本発明は上記に基いてなされたもので、極めて
顕著な水トリー抑制御作用を有する架橋成形体の
製造方法の提供を目的とするものである。 すなわち、本発明はエチレンと炭素数が4〜10
のα−オレフインとポリエンからなり、かつエチ
レンとα−オレフインのモル比が75/25〜95/5
であるエチレン・α−オレフイン・ポリエン共重
合体にシラン化合物およびラジカル発生剤を反応
させて得たシラングラフト化エチレン・α−オレ
フイン・ポリエン共重合体にシラノール縮合触媒
を混合して加熱反応させながら押出成形し、得ら
れた押出成形体を水分の存在下で架橋することを
特徴とするものである。 本発明におけるエチレン・α−オレフイン・ポ
リエン共重合体は、例えば、触媒としてVO
(OR)oX3−n(ただし、Rは脂肪族炭化水素基、
Xはハロゲン、0<n≦3)で示されるバナジウ
ム化合物と、平均組成がR′nAlX′3−m(ただし、
R′は炭化水素基、X′はハロゲン、1≦m≦1.5)
で示される有機アルミニウム化合物を用い、
Al/V(原子比)を5以上に維持し、炭化水素溶
媒中、多量の水素の存在下、40〜100℃温度でエ
チレンと炭素数4〜10のα−オレフインとポリエ
ンを連続重合させて得られるものである。 ここで使用されるポリエンとしては、1,4へ
キサジエン、5−エチリデン−2−ノルボルネン
などの非共役ジエンがあげられる。 エチレンとα−オレフインは、モル比で75/25
〜95/5の割合で重合させるのが望ましく、75/
25以下では機械的強度が小さくな、95/5以上で
は水トリー抑止機能が低減する。 エチレン・α−オレフイン・ポリエン共重合体
の分子量は特に規定しないが、押出成形性の点か
ら密度が0.88〜0.91g/cm3、メルトインデツクス
が0.1以上のものが適切である。 シラン化合物は加水分解可能な有機基、たとえ
ばメトキシ基、エトキシ基、ブトキシ基などのア
ルコキシ基を含み、かつ有機重合体中に発生した
遊離ラジカル部位と反応性である脂肪族的に不飽
和な炭化水素基またはハイドロカーボンオキシ基
を有する化合物が好適で、代表的なものとしてビ
ニルトリメトキシシラン、ビニルトリエトキシシ
ラン、ビニルトリアセトキシシランなどがあげら
れる。 ラジカル発生剤としては、ジクミルパーオキサ
イド、過酸化ベンゾイル、2・5−ジメチル−
2・5−ジ(第3ブチル−ペルオキシ)ヘキシン
−3などの有機過酸化物、およびアゾビスイソブ
チロニトリル、ジメチルアゾイソブチレートなど
のアゾ化合物といつたものがあげられる。 シラングラフト化エチレン・α−オレフイン・
ポリエン共重合体を得るには、エチレンα−オレ
フイン・ポリエン共重合体にシラン化合物および
ラジカル発生剤を添加し、押出機、バンバリーミ
キサー、ロールミルなどの装置で約200℃前後の
温度で加熱反応させる。 このようにして得られたシラングラフト化エチ
レン・α−オレフイン共重合体にシラノール縮合
触媒を添加混合して押出成形し、押出成形体を水
分と接触させることにより架橋成形体が得られ
る。 シラノール縮合触媒としては、ジブチル錫ジラ
ウレート、ジブチル錫ジアセテート、ナフテン酸
コバルトなどがある。 本発明においては、ポリエチレン、ポリプロピ
レン、ポリブテン−1、ポリ4−メチルペンテン
−1、エチレン酢酸ビニル共重合体、エチレンエ
チルアクリレート共重合体などのポリマーを、電
気的特性を害さない範囲で加えることを可能であ
り、また酸化防止剤や滑剤などを適宜添加しても
よい。 以下、本発明の実施例について明する。 実施例 1 エチレンとα−オレフインのモル比が85/15
で、メルトインデツクスが1のエチレン・α−オ
レフイン・ポリエン共重合体100重量部に、ビニ
ルトリメトキシシラン2.0重量部およびジクミル
パーオキサイド0.2重量部を溶解した溶液を分散
し、スクリユウ押出機を用いて押出温度200℃で
押出し、シラングラフト化エチレン・α−オレフ
イン・ポリエン共重合体を形成し、これをペレタ
イザーでペレツト化した。 次いで、このペレツト100重量部にジブチル錫
ジラウレート1重量部の割合で押出機に導入し、
外径3mmの銅導体上に厚さ0.5mmのポリエチレン
系半導電層が被覆されている外周に絶縁体厚2mm
となるように押出被覆し、80℃の温水中に15時間
浸漬して架橋絶縁電線を得た。 実施例 2 エチレンとα−オレフインのモル比が81/19
で、メルトインデツクスが3のエチレン・α−オ
レフイン・ポリエン共重合体を用いた以外は実施
例1と同様にして架橋絶縁電線を得た。 比較例 密度が0.290、メルトインデツクスが1の低密
度ポリエチレン100重量部にジクミルパーオキサ
イド2.5重量部添加したものを押出機に導入し、
外径3mmの銅導体上に厚さ0.5mmのポリエチレン
系半導電層が被覆されている外周に絶縁体厚2mm
となるように押出被覆し、200℃の高圧スチーム
において加熱して架橋絶縁電線を得た。 かくして得られた架橋絶縁電線の水トリー発生
状況を観察した結果を次表に示す。
The present invention relates to a method for producing a crosslinked molded body suitable as an insulator for electric wires and cables. Electric wires and cables using crosslinked polyethylene or ethylene propylene rubber as insulators have been widely used. However, it is known that electrical deterioration progresses when electricity is applied in a flooded state.
Although this deterioration generally progresses more slowly in crosslinked polyethylene than in ethylene propylene rubber, it has been recognized that a unique form of deterioration called water tree occurs in crosslinked polyethylene. It is thought that electric wires and cables will continue to be used in flooded environments, such as buried underground, and there is an urgent need to develop electric wires and cables that can suppress the growth of water trees. The present invention has been made based on the above, and an object of the present invention is to provide a method for producing a crosslinked molded product having an extremely significant water tree suppression effect. That is, the present invention uses ethylene and carbon atoms of 4 to 10.
of α-olefin and polyene, and the molar ratio of ethylene and α-olefin is 75/25 to 95/5.
A silane-grafted ethylene/α-olefin/polyene copolymer obtained by reacting an ethylene/α-olefin/polyene copolymer with a silane compound and a radical generator is mixed with a silanol condensation catalyst and subjected to a heating reaction. It is characterized by extrusion molding and crosslinking the obtained extruded product in the presence of moisture. In the present invention, the ethylene/α-olefin/polyene copolymer can be used as a catalyst, for example.
(OR) o X 3 −n (where R is an aliphatic hydrocarbon group,
X is a halogen, a vanadium compound represented by 0<n≦3) and a vanadium compound with an average composition of R′ n AlX′ 3 −m (however,
R' is a hydrocarbon group, X' is a halogen, 1≦m≦1.5)
Using an organoaluminum compound shown by
While maintaining Al/V (atomic ratio) at 5 or more, ethylene, α-olefin having 4 to 10 carbon atoms, and polyene are continuously polymerized at a temperature of 40 to 100°C in a hydrocarbon solvent in the presence of a large amount of hydrogen. That's what you get. Examples of the polyene used here include non-conjugated dienes such as 1,4 hexadiene and 5-ethylidene-2-norbornene. Ethylene and α-olefin have a molar ratio of 75/25
It is desirable to polymerize at a ratio of ~95/5, and 75/5.
If it is less than 25, the mechanical strength will be small, and if it is more than 95/5, the water tree suppression function will be reduced. The molecular weight of the ethylene/α-olefin/polyene copolymer is not particularly limited, but from the viewpoint of extrusion moldability, one having a density of 0.88 to 0.91 g/cm 3 and a melt index of 0.1 or more is suitable. Silane compounds are aliphatically unsaturated carbonized compounds that contain hydrolyzable organic groups, such as alkoxy groups such as methoxy, ethoxy, or butoxy groups, and are reactive with free radical sites generated in organic polymers. Compounds having a hydrogen group or a hydrocarbonoxy group are preferred, and typical examples include vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltriacetoxysilane. As a radical generator, dicumyl peroxide, benzoyl peroxide, 2,5-dimethyl-
Examples include organic peroxides such as 2,5-di(tert-butyl-peroxy)hexyne-3, and azo compounds such as azobisisobutyronitrile and dimethylazoisobutyrate. Silane grafted ethylene・α-olefin・
To obtain a polyene copolymer, a silane compound and a radical generator are added to an ethylene α-olefin/polyene copolymer, and the mixture is heated and reacted at a temperature of approximately 200°C using equipment such as an extruder, Banbury mixer, or roll mill. . A crosslinked molded product is obtained by adding and mixing a silanol condensation catalyst to the thus obtained silane-grafted ethylene/α-olefin copolymer, extrusion molding, and bringing the extruded molded product into contact with moisture. Examples of the silanol condensation catalyst include dibutyltin dilaurate, dibutyltin diacetate, and cobalt naphthenate. In the present invention, polymers such as polyethylene, polypropylene, polybutene-1, poly4-methylpentene-1, ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, etc. may be added within a range that does not impair the electrical properties. It is possible, and antioxidants, lubricants, etc. may be added as appropriate. Examples of the present invention will be explained below. Example 1 Molar ratio of ethylene and α-olefin is 85/15
A solution of 2.0 parts by weight of vinyltrimethoxysilane and 0.2 parts by weight of dicumyl peroxide was dispersed in 100 parts by weight of an ethylene/α-olefin/polyene copolymer with a melt index of 1, and a screw extruder was used. The copolymer was extruded at an extrusion temperature of 200°C to form a silane-grafted ethylene/α-olefin/polyene copolymer, which was then pelletized using a pelletizer. Next, 100 parts by weight of the pellets and 1 part by weight of dibutyltin dilaurate were introduced into an extruder,
A 0.5 mm thick polyethylene semiconductive layer is coated on a copper conductor with an outer diameter of 3 mm.Insulator thickness is 2 mm on the outer periphery.
The crosslinked insulated wire was coated by extrusion and immersed in warm water at 80°C for 15 hours to obtain a crosslinked insulated wire. Example 2 Molar ratio of ethylene and α-olefin is 81/19
A crosslinked insulated wire was obtained in the same manner as in Example 1 except that an ethylene/α-olefin/polyene copolymer having a melt index of 3 was used. Comparative Example 100 parts by weight of low density polyethylene with a density of 0.290 and a melt index of 1 and 2.5 parts by weight of dicumyl peroxide were introduced into an extruder.
A 0.5 mm thick polyethylene semiconductive layer is coated on a copper conductor with an outer diameter of 3 mm.Insulator thickness is 2 mm on the outer periphery.
The crosslinked insulated wire was coated by extrusion and heated in high-pressure steam at 200°C to obtain a crosslinked insulated wire. The results of observing the occurrence of water trees in the cross-linked insulated wire thus obtained are shown in the following table.

【表】 なお、観察は次のようにして行つた。 絶縁電線と蒸留水中に浸漬し、銅導体と水との
間に3KV、50Hzの交流電圧を常温で18か月間課
電した。課電終了後絶縁体を簿く輪切りにしてメ
チレンブルー水溶液で煮沸染色し、発生した水ト
リーの数を光学顕微鏡で観察した。 以上の説明からも明らかな通り、本発明によれ
ば、水トリー抑止効果に優れた架橋成形体が得ら
れ、特に架橋電線・ケーブルの信頼性向上に大き
く寄与する。
[Table] The observations were made as follows. The insulated wire was immersed in distilled water, and a 3KV, 50Hz AC voltage was applied between the copper conductor and the water at room temperature for 18 months. After the electrification was completed, the insulator was cut into circular slices, boiled and stained with a methylene blue aqueous solution, and the number of water trees generated was observed using an optical microscope. As is clear from the above description, according to the present invention, a crosslinked molded article having an excellent water tree suppression effect can be obtained, and particularly contributes significantly to improving the reliability of crosslinked electric wires and cables.

Claims (1)

【特許請求の範囲】[Claims] 1 エチレンと炭素数が4〜10のα−オレフイン
とポリエンからなり、かつエチレンとα−オレフ
インのモル比が75/25〜95/5であるエチレン・
α−オレフイン・ポリエン共重合体にシラン化合
物およびラジカル発生剤を反応させて得たシラン
グラフト化エチレン・α−オレフイン・ポリエン
共重合体にシラノール縮合触媒を混合して加熱反
応させながら押出成形し、得られた押出成形体を
水分の存在下で架橋することを特徴とする架橋成
形体の製造方法。
1 Ethylene, which is composed of ethylene, an α-olefin having 4 to 10 carbon atoms, and a polyene, and whose molar ratio of ethylene to α-olefin is 75/25 to 95/5.
A silane-grafted ethylene/α-olefin/polyene copolymer obtained by reacting an α-olefin/polyene copolymer with a silane compound and a radical generator is mixed with a silanol condensation catalyst and extruded while undergoing a heating reaction. A method for producing a crosslinked molded product, which comprises crosslinking the obtained extruded molded product in the presence of moisture.
JP57191128A 1982-10-29 1982-10-29 Preparation of crosslinked molded article Granted JPS5980439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191128A JPS5980439A (en) 1982-10-29 1982-10-29 Preparation of crosslinked molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191128A JPS5980439A (en) 1982-10-29 1982-10-29 Preparation of crosslinked molded article

Publications (2)

Publication Number Publication Date
JPS5980439A JPS5980439A (en) 1984-05-09
JPH0314054B2 true JPH0314054B2 (en) 1991-02-25

Family

ID=16269332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191128A Granted JPS5980439A (en) 1982-10-29 1982-10-29 Preparation of crosslinked molded article

Country Status (1)

Country Link
JP (1) JPS5980439A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707520A (en) * 1985-08-21 1987-11-17 Union Carbide Corporation Composition based on water-curable thermoplastic polymers and metal carboxylate silanol condensation catalysts
US4873042A (en) * 1988-03-25 1989-10-10 Union Carbide Chemicals And Plastics Company Inc. Process for extruding a thermoplastic copolymer
EP1170116A1 (en) * 2000-07-05 2002-01-09 REHAU AG + Co Moisture curable polyolefine elastomer profiles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365344A (en) * 1976-11-24 1978-06-10 Hitachi Cable Ltd Crosslinking of polyolefin and preparation of crosslinked electric wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365344A (en) * 1976-11-24 1978-06-10 Hitachi Cable Ltd Crosslinking of polyolefin and preparation of crosslinked electric wire

Also Published As

Publication number Publication date
JPS5980439A (en) 1984-05-09

Similar Documents

Publication Publication Date Title
CA2290318C (en) Crosslinked compositions containing silane-grafted polyolefins and polypropylene
AU715346B2 (en) Tree resistant cable
US5492760A (en) Water tree resistant, moisture curable insulation composition for power cables
KR20170026479A (en) Stabilized moisture-curable polymeric compositions
AU708233B2 (en) Tree resistant cable
KR102498786B1 (en) Ethylene-alpha-olefin copolymer-triallyl phosphate composition
JPH0286639A (en) Tree resistant compositon
KR102498801B1 (en) Ethylene-alpha-olefin copolymer-triallyl phosphate composition
EP0837476B1 (en) Tree resistant cable
AU724031B2 (en) Tree resistant cable
JPH0216137A (en) Stabilization of crosslinked vldpe
JP2023523069A (en) Anhydride group-containing polypropylene graft and method for preparing polypropylene graft
JPH0314054B2 (en)
CN111742008A (en) Polyolefin and polyvinylpyrrolidone formulations
EP1338018A2 (en) Tree resistant cable
JPH0257572B2 (en)
CN1233628A (en) Tree resistant cable
JP3959575B2 (en) Method for producing power cable in which silane-modified linear polyethylene is coated and water-crosslinked
TWI768107B (en) Polyethylene composition with treeing retardants
JP3574689B2 (en) How to prevent die squash
EP0491066B1 (en) Power cable
JP2001266650A (en) Electric insulating composition and electric cable
JPH10265583A (en) Crosslinked molded product and electric wire, cable
CA2382762C (en) Crosslinked compositions containing silane-modified polyolefin blends
JPH08185712A (en) Electric wire and cable