JPH03140434A - Beta-type silicon nitride whisker reinforced magnesium composite - Google Patents
Beta-type silicon nitride whisker reinforced magnesium compositeInfo
- Publication number
- JPH03140434A JPH03140434A JP27845189A JP27845189A JPH03140434A JP H03140434 A JPH03140434 A JP H03140434A JP 27845189 A JP27845189 A JP 27845189A JP 27845189 A JP27845189 A JP 27845189A JP H03140434 A JPH03140434 A JP H03140434A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- type silicon
- composite
- beta
- whiskers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 31
- 239000002131 composite material Substances 0.000 title claims abstract description 25
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 28
- 239000011777 magnesium Substances 0.000 title claims description 17
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims description 11
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 19
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 8
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 abstract description 11
- 239000000956 alloy Substances 0.000 abstract description 11
- 239000011159 matrix material Substances 0.000 abstract description 7
- 239000012783 reinforcing fiber Substances 0.000 abstract description 5
- 238000005266 casting Methods 0.000 description 12
- 239000000835 fiber Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000004512 die casting Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
主粟上皇■凪立互
本発明は繊維強化金属複合材料に関し、詳しくはβ型窒
化珪素ウィスカを強化繊維とし、マグネシウム合金をマ
トリックスとするβ型窒化珪素ウィスカ強化マグネシウ
ム複合材料に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber-reinforced metal composite material, specifically a β-type silicon nitride whisker-reinforced magnesium composite in which β-type silicon nitride whiskers are used as reinforcing fibers and a magnesium alloy is used as a matrix. Regarding materials.
従来■葺土
本願発明者はマグネシウム(以下、Mgと記す場合があ
る。)−イツトリウム(以下、Yと記す。Conventional ■ Roofing soil The inventor of the present application has produced magnesium (hereinafter sometimes referred to as Mg)-yttrium (hereinafter referred to as Y).
)−サマリウム(以下、Smと記す。)系又は、Mg−
Y−3m−ジルコニウム(以下、Zrと記す。)系の鋳
造用マグネシウム合金を提案した(特開昭61−250
144号公報)。この合金は250 ’C以下の温度で
優れた機械的性質を有するが、アルミニウム合金等と比
較すると熱膨張率が高く、低熱膨張率が要求される用途
には使えない。更に、250°Cを超える温度では強度
の低下が著しいという欠点がある。)-samarium (hereinafter referred to as Sm) system or Mg-
We proposed a Y-3m-zirconium (hereinafter referred to as Zr) based magnesium alloy for casting (Japanese Patent Laid-Open No. 61-250
Publication No. 144). Although this alloy has excellent mechanical properties at temperatures below 250'C, it has a high coefficient of thermal expansion compared to aluminum alloys, etc., and cannot be used in applications that require a low coefficient of thermal expansion. Furthermore, there is a drawback that the strength decreases significantly at temperatures exceeding 250°C.
Bが”しようとする課簡
上記のように、本願発明者は既にM g −Y −Sm
系又はMg−Y−3m−Z r系の耐熱性に優れた高強
度の鋳造用のマグネシウム合金を提案した。As mentioned above, the inventor has already written M g −Y −Sm
We have proposed a high-strength magnesium alloy for casting with excellent heat resistance and Mg-Y-3m-Zr series.
しかし、この合金には上述のような問題があるため、従
来、繊維強化金属複合材料に使用されている種々の繊維
の中でも特に熱膨張率が低く、高強度を有し、高温安定
性に優れたβ型窒化珪素ウィスカを使用し、Mg−YS
m系又はMg−Y−3m−Zr系合金の改良を目的に、
更には250°Cを超える温度での使用に耐える低熱膨
張率の複合材料の提供を目的に、β型窒化珪素強化Mg
−Y−3m系又はMg−Y−3m−Z r系複合材料を
検討した。However, because this alloy has the problems mentioned above, among the various fibers conventionally used in fiber-reinforced metal composite materials, it has a particularly low coefficient of thermal expansion, high strength, and excellent high-temperature stability. Using β-type silicon nitride whiskers, Mg-YS
For the purpose of improving m-based or Mg-Y-3m-Zr based alloys,
Furthermore, with the aim of providing a composite material with a low coefficient of thermal expansion that can withstand use at temperatures exceeding 250°C, β-type silicon nitride-reinforced Mg
-Y-3m-based or Mg-Y-3m-Zr-based composite materials were investigated.
i”を”するための
上述の目的は、本発明によれば
(1)2〜8%のYおよび2〜7%のSmを含有し、残
りが実質的にMgであるマグネシウム合金95〜70容
量%と、β型窒化珪素ウィスカ5〜30容量%とからな
るβ型窒化珪素ウィスカ強化マグネシウム複合材料、
(2)マグネシウム合金が更に1%以下のZrを含有す
るものである上記(1)に記載の複合材料、によって達
成される。According to the present invention, the above-mentioned objective for making i" % by volume, and β-type silicon nitride whisker reinforced magnesium composite material consisting of 5 to 30% by volume of β-type silicon nitride whiskers, (2) the above (1) in which the magnesium alloy further contains 1% or less Zr; This is achieved by the described composite material.
本発明は、強化繊維として高強度を有し高温安定性に優
れ、多くの無機繊維の中でも熱膨張率が特に低いβ型窒
化珪素ウィスカを使用する。マトリックスとしてY含有
量が2〜8%、Sm含有量が2〜7%であり、場合によ
っては1%以下のZrを含み、残りが実質的にMgであ
るマグネシウム合金を使用する。そして、β型窒化珪素
ウィスカの繊維体積率を5〜30容量%に設定すること
により、後述する本願発明者が行った実験の結果明らか
なように、250°Cを超える温度での使用に耐える複
合材料を得ることができる。The present invention uses β-type silicon nitride whiskers as reinforcing fibers, which have high strength, excellent high-temperature stability, and have a particularly low coefficient of thermal expansion among many inorganic fibers. A magnesium alloy with a Y content of 2 to 8%, an Sm content of 2 to 7%, and optionally 1% or less of Zr, with the remainder being substantially Mg, is used as the matrix. By setting the fiber volume fraction of the β-type silicon nitride whiskers to 5 to 30% by volume, it can withstand use at temperatures exceeding 250°C, as is clear from the results of experiments conducted by the inventor described below. Composite materials can be obtained.
Y含有量が2〜8%、Sm含有量が2〜7%で場合によ
っては1%以下のZrを含み、残りが実質的にMgから
成るマグネシウム合金は、機械的強度および耐熱性が高
い。従って、この合金はβ型窒化珪素ウィスカによって
強化されることにより、それらの特性がより一層向上す
る。しかし、Y含有量が2%未満では所望の強度が得ら
れず、8%を超えても強度は8%の場合と余り変わらず
、却って脆くなり、8%を超えたYの添加はYが高価で
あるので経済的でない。Sm含有量が2%未満では充分
強度が出す、7%を超えると脆くなると共に耐熱性が低
下し好ましくない。また、Mgに対するZrO固溶度は
最高が3.8%であるが、実際には0.6%前後で充分
であり、1%以下で充分に強度向上の効果を発揮する。Magnesium alloys with a Y content of 2 to 8%, an Sm content of 2 to 7%, and in some cases 1% or less of Zr, with the remainder essentially consisting of Mg, have high mechanical strength and heat resistance. Therefore, these alloys are strengthened by β-type silicon nitride whiskers, thereby further improving their properties. However, if the Y content is less than 2%, the desired strength cannot be obtained, and even if it exceeds 8%, the strength is not much different from that of 8%, and it becomes brittle. It is not economical because it is expensive. If the Sm content is less than 2%, sufficient strength will be obtained, but if it exceeds 7%, it will become brittle and the heat resistance will decrease, which is not preferable. Further, the maximum solid solubility of ZrO in Mg is 3.8%, but in reality, around 0.6% is sufficient, and a strength improvement effect of 1% or less is sufficiently exerted.
Mg−Y−3m系又はMg−Y−3m−Zr系合金をマ
トリックスとする複合材料は、β型窒化珪素ウィスカの
繊維体積率が5容量%未溝の場合には、充分な強度、低
い熱膨張率を確保することができない。また、この繊維
体積率が5〜30容量%の範囲では、複合材料の強度は
繊維体積率の増加と共にほぼ直線的に増加するが、繊維
体積率が30容量%を超えると溶湯の浸透に対するβ型
窒化珪素ウィスカ成形体の抵抗がかなり大きくなり、健
全な鋳物の鋳造が困難となる。Composite materials with a matrix of Mg-Y-3m or Mg-Y-3m-Zr alloys have sufficient strength and low heat when the fiber volume fraction of β-type silicon nitride whiskers is 5% by volume without grooves. It is not possible to ensure the expansion rate. In addition, when the fiber volume fraction is in the range of 5 to 30% by volume, the strength of the composite material increases almost linearly as the fiber volume fraction increases, but when the fiber volume fraction exceeds 30% by volume, β The resistance of the silicon nitride whisker compact becomes considerably large, making it difficult to cast a sound casting.
なお、本明細書におけるY、SmおよびZrはそれぞれ
原子番号39.62および40の元素である。パーセン
テージは、マトリックスあるいは強化繊維を容量%で表
示した場合を除き全て重量%である。また、マグネシウ
ム合金の合金成分に関する「実質的にMgJとは、マグ
ネシウム合金中に含まれるY、Sm、Zr等の添加元素
以外の不可避的に含有されるカルシウム、亜鉛、珪素、
鉄、銅、ニッケル等の不純物の合計が2%以下で残りが
Mgであることを意味する。Note that Y, Sm, and Zr in this specification are elements with atomic numbers of 39.62 and 40, respectively. All percentages are by weight unless the matrix or reinforcing fibers are expressed as volume %. Regarding alloy components of magnesium alloys, ``Substantially, MgJ means calcium, zinc, silicon,
This means that the total amount of impurities such as iron, copper, and nickel is 2% or less, with the remainder being Mg.
以下に、本発明を実施例によって詳細に説明する。The present invention will be explained in detail below using examples.
実J1外
実施例1〜3、比較例1〜3
マグネシウム合金Mg−3%Y−6%Sm(実施例1)
、Mg−5%Y−4%Sm−0.5%Zr(実施例2L
Mg−7%Y−3%Sm(実施例3)、Mg−1,5%
Y−6%Sm(比較例1)、Mg−7%y−i、s%S
m(比較例2)、Mg−9%Y−8%S m −0,5
%Zr(比較例3)を溶製し、各マグネシウム合金と宇
部興産(株)製β型窒化珪素ウィスカ(平均繊維長10
〜50μm、平均繊維径0.1〜1.5 a m、10
0%β−3i3N4)の成形体を用いて、250トン竪
型ダイカストマシンによりβ型窒化珪素ウィスカ強化マ
グネシウム複合材料を鋳造した。鋳造に使用したマトリ
ックス合金の合金成分、鋳造条件、竪型ダイカストマシ
ン金型キャビティ部模式図および鋳造したβ型窒化珪素
ウィスカ強化マグネシウム複合材料の模式図を、それぞ
れ第1表、第2表、第1図および第2図に示す。Actual J1 Examples 1 to 3, Comparative Examples 1 to 3 Magnesium alloy Mg-3%Y-6%Sm (Example 1)
, Mg-5%Y-4%Sm-0.5%Zr (Example 2L
Mg-7%Y-3%Sm (Example 3), Mg-1.5%
Y-6%Sm (Comparative Example 1), Mg-7%y-i, s%S
m (Comparative Example 2), Mg-9%Y-8%S m -0,5
% Zr (Comparative Example 3), each magnesium alloy and β-type silicon nitride whisker manufactured by Ube Industries, Ltd. (average fiber length 10
~50μm, average fiber diameter 0.1~1.5am, 10
A β-type silicon nitride whisker-reinforced magnesium composite material was cast using a 250-ton vertical die-casting machine using a compact of 0% β-3i3N4). The alloy components of the matrix alloy used in casting, the casting conditions, a schematic diagram of the mold cavity of a vertical die-casting machine, and a schematic diagram of the cast β-type silicon nitride whisker-reinforced magnesium composite material are shown in Tables 1, 2, and 2, respectively. Shown in Figures 1 and 2.
第
表
マグネシウム合金の合金成分
第
表
鋳
造
条
件
β型窒化珪素ウィスカ成形体は、バインダーを使用しな
いで圧縮成形することにより繊維が実質的に三次元ラン
ダムに配向した円板状のものであって、その寸法は直径
的100mm、厚さ約20mmである。β型窒化珪素ウ
ィスカ成形体の繊維体積率は約10容量%であった。Table: Alloy Composition of Magnesium Alloy Table: Casting Conditions The β-type silicon nitride whisker molded product is a disk-shaped product in which fibers are substantially three-dimensionally randomly oriented by compression molding without using a binder, Its dimensions are 100 mm in diameter and approximately 20 mm in thickness. The fiber volume fraction of the β-type silicon nitride whisker molded body was about 10% by volume.
また、同じ合金溶湯を用いて、同じ鋳造条件で、β型窒
化珪素ウィスカ成形体を入れない鋳物を鋳造した。Furthermore, a casting without the β-type silicon nitride whisker compact was cast using the same molten alloy and under the same casting conditions.
以下に鋳造方法を具体的に述べる。The casting method will be specifically described below.
第1図に示した250トン竪型ダイカストマシンのスリ
ーブ■にマグネシウム合金溶湯■を柄杓で入れる。スリ
ーブ■の内部にはマグネシウム合金溶湯■の温度低下を
防止するためセラミックペーパー[相]が置かれている
。次に、第1図に示すように置中子■をセットし、その
上にβ型室化珪素ウィスカ成形体■を載せる。直ちに可
動金型■が上から降りてきて閉じられ、キャビティ■に
プランジャー■の押し上げによりマグネシウム合金溶湯
■が押し込まれる。型閉時間の45秒が経過した後可動
金型■が上方に移動し、第2図に示されたβ型窒化珪素
ウィスカ強化マグネシウム複合材料が取り出される。Using a ladle, pour the molten magnesium alloy (■) into the sleeve (■) of the 250-ton vertical die-casting machine shown in Figure 1. Ceramic paper [phase] is placed inside the sleeve (■) to prevent the temperature of the molten magnesium alloy (■) from decreasing. Next, as shown in FIG. 1, a placing core (2) is set, and a β-type chambered silicon whisker molded body (2) is placed thereon. Immediately, the movable mold ■ comes down from above and closes, and the molten magnesium alloy ■ is pushed into the cavity ■ by the push-up of the plunger ■. After the mold closing time of 45 seconds has elapsed, the movable mold (2) is moved upward, and the β-type silicon nitride whisker-reinforced magnesium composite material shown in FIG. 2 is taken out.
β型窒化珪素ウィスカ成形体を入れない鋳物の鋳造方法
は、β型窒化珪素ウィスカ成形体を入れない点が異なる
だけであり、その他はβ型窒化珪素ウィスカ強化マグネ
シウム複合材料の鋳造方法と同じである。The casting method for castings that does not contain β-type silicon nitride whisker compacts is the same as the casting method for β-type silicon nitride whisker-reinforced magnesium composite materials, except that the β-type silicon nitride whisker compacts are not included. be.
第2図に示した複合材料において、円板状を呈する窒化
珪素ウィスカ成形体が存在する部分から、この成形体の
円形面に平行に試験片を切り出し、JIS規格に準じて
300″Cで引張試験、250°Cでクリープ破断試験
を行った。また、この成形体の入っていないマグネシウ
ム合金についても同様の試験を行った。それらの結果を
第3表および第4表に別々に示す。In the composite material shown in Figure 2, a test piece was cut out parallel to the circular surface of the disc-shaped silicon nitride whisker molded body from the part where it was present, and tensile tested at 300″C according to the JIS standard. A creep rupture test was conducted at 250°C.A similar test was also conducted on the magnesium alloy without this molded body.The results are shown separately in Tables 3 and 4.
第3表および第4表からβ型窒化珪素ウィスカにより強
化した複合材料の機械的性質および耐熱性がかなり向上
していることが分かる。It can be seen from Tables 3 and 4 that the mechanical properties and heat resistance of the composite materials reinforced with β-type silicon nitride whiskers are significantly improved.
発遭ド裏九果
実施例の欄で説明したように、強化繊維として所定の繊
維体積率のβ型窒化珪素ウィスカを使用し、マトリック
スとしてMg−Y−3m系又はMg−Y−3m−Zr系
合金を使用すると、機械的性質が優れ、250°Cを超
える温度での使用に耐える複合材料を得ることができる
。As explained in the section of the embodiment example, β-type silicon nitride whiskers with a predetermined fiber volume percentage are used as the reinforcing fibers, and Mg-Y-3m series or Mg-Y-3m-Zr is used as the matrix. The use of these alloys makes it possible to obtain composite materials with excellent mechanical properties and withstand use at temperatures above 250°C.
この複合材料の用途としては軽量、低熱膨張と耐熱性が
要求されるもの、例えば自動車用エンジン部品、汎用エ
ンジン部品などが考えられる。Possible uses for this composite material include those that require light weight, low thermal expansion, and heat resistance, such as automobile engine parts and general-purpose engine parts.
第1図は250トン竪型ダイ力ストマシン金型キヤビテ
イ部模式図、第2図はβ型窒化珪素ウィスカ強化マグネ
シウム複合材料模式図である。
■ −−−−−−−−一可動金型、■ −一一一一一・
・・固定金型、■ −・−−−−−・プラテン、■ ・
・−−−−−−−プランジャー■ −・・−・・スリー
ブ、■ −−−−−−−−装置中子、■ −−−一一一
−−−キャビティ、
■ −−一一一一・・−マグネシウム合金溶湯、β型窒
化珪素ウィスカ成形体、
セラミックペーパーFIG. 1 is a schematic diagram of a mold cavity of a 250-ton vertical die force machine, and FIG. 2 is a schematic diagram of a β-type silicon nitride whisker-reinforced magnesium composite material. ■ −−−−−−−−1 Movable mold, ■ −1111・
・・Fixed mold, ■ −・−−−−−・Platen, ■ ・
・−−−−−−− Plunger ■ −・・−・・Sleeve, ■ −−−−−−− Equipment core, ■ −−−111−−−Cavity, ■ −−111 - Molten magnesium alloy, β-type silicon nitride whisker compact, ceramic paper
Claims (2)
ウムを含有し、残りが実質的にマグネシウムであるマグ
ネシウム合金95〜70容量%と、β型窒化珪素ウィス
カ5〜30容量%とからなるβ型窒化珪素ウィスカ強化
マグネシウム複合材料。(1) Consisting of 95-70% by volume of a magnesium alloy containing 2-8% yttrium and 2-7% samarium, with the remainder being substantially magnesium, and 5-30% by volume of β-type silicon nitride whiskers. β-type silicon nitride whisker reinforced magnesium composite material.
を含有するものである請求項(1)に記載の複合材料。(2) The composite material according to claim (1), wherein the magnesium alloy further contains 1% or less of zirconium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27845189A JPH0784637B2 (en) | 1989-10-27 | 1989-10-27 | β-type silicon nitride whisker reinforced magnesium composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27845189A JPH0784637B2 (en) | 1989-10-27 | 1989-10-27 | β-type silicon nitride whisker reinforced magnesium composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03140434A true JPH03140434A (en) | 1991-06-14 |
JPH0784637B2 JPH0784637B2 (en) | 1995-09-13 |
Family
ID=17597524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27845189A Expired - Fee Related JPH0784637B2 (en) | 1989-10-27 | 1989-10-27 | β-type silicon nitride whisker reinforced magnesium composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0784637B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010215974A (en) * | 2009-03-17 | 2010-09-30 | Kobe Steel Ltd | Heat resistant magnesium alloy extruded material having excellent anisotropy of proof stress, and method for producing the same |
EP2264200A1 (en) * | 2008-04-01 | 2010-12-22 | Kabushiki Kaisha Kobe Seiko Sho | Magnesium alloy and process for producing the same |
-
1989
- 1989-10-27 JP JP27845189A patent/JPH0784637B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2264200A1 (en) * | 2008-04-01 | 2010-12-22 | Kabushiki Kaisha Kobe Seiko Sho | Magnesium alloy and process for producing the same |
EP2264200A4 (en) * | 2008-04-01 | 2011-03-02 | Kobe Steel Ltd | Magnesium alloy and process for producing the same |
US8329094B2 (en) | 2008-04-01 | 2012-12-11 | Kobe Steel, Ltd. | Magnesium alloy and process for producing the same |
JP2010215974A (en) * | 2009-03-17 | 2010-09-30 | Kobe Steel Ltd | Heat resistant magnesium alloy extruded material having excellent anisotropy of proof stress, and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0784637B2 (en) | 1995-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu | Squeeze casting of magnesium alloys and their composites | |
CA2603858C (en) | Magnesium alloy | |
EP1957221B1 (en) | A combination of casting process and alloy compositions resulting in cast parts with superior combination of elevated temperature creep properties, ductility and corrosion performance | |
US5077138A (en) | Fiber reinforced magnesium alloy | |
Nguyen et al. | Microstructure and mechanical characteristics of AZ31B/Al2O3 nanocomposite with addition of Ca | |
JPH10168533A (en) | High strength heat resistant zinc alloy and molded goods | |
Langlais et al. | The SEED technology for semi-solid processing of aluminum alloys: A metallurgical and process overview | |
Sun et al. | Influences of rod diameter and sand-mould strength on hot tearing in Mg WE43A constrained rod castings | |
JPH03140434A (en) | Beta-type silicon nitride whisker reinforced magnesium composite | |
US4990310A (en) | Creep-resistant die cast zinc alloys | |
JP4352472B2 (en) | Magnesium matrix composite | |
Gieskes et al. | Metal matrix composites: a study of patents, patent applications and other literature | |
Shafizadeh et al. | Mechanical Properties of Al–30Si–5Fe Alloy Using Combination of Rapid Solidification and Thixoforming Processes | |
Muthukumarasamy et al. | The performance of zinc alloy based metal matrix composites produced through squeeze casting | |
AU669309B2 (en) | Cast composite materials | |
JPH07107185B2 (en) | Magnesium alloy for composite materials | |
Lo et al. | Magnesium matrix composites for elevated temperature applications | |
Cook et al. | System optimization for squeeze cast composites | |
JP3800575B2 (en) | Zinc alloy for mold, mold and mold block | |
Granath et al. | Porosity reduction possibilities in commercial Aluminium A380 and Magnesium AM60 alloy components using the RheoMetalTM process | |
페이 | The Effects of Rare Earth Elements on High Pressure Die Casting Mg Alloys | |
Abhilash et al. | Carbon fibre reinforced aluminum matrix composite: Development & Evaluation of Mechanical Behaviors | |
Dieringa et al. | Microstructure, creep and dilatometric behavior of reinforced magnesium matrix composites | |
Hu et al. | Effect of Thermal Treatment (T5) on Microstructure and Tensile Properties of Vacuum High Pressure Die Cast Al–Si–Mg Alloy | |
JPH02298228A (en) | Beta-type silicon nitride whisker reinforced magnesium composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |