JPH02298228A - Beta-type silicon nitride whisker reinforced magnesium composite - Google Patents
Beta-type silicon nitride whisker reinforced magnesium compositeInfo
- Publication number
- JPH02298228A JPH02298228A JP11749089A JP11749089A JPH02298228A JP H02298228 A JPH02298228 A JP H02298228A JP 11749089 A JP11749089 A JP 11749089A JP 11749089 A JP11749089 A JP 11749089A JP H02298228 A JPH02298228 A JP H02298228A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- type silicon
- composite material
- alloy
- reinforced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 51
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 239000002131 composite material Substances 0.000 title claims abstract description 45
- 239000011777 magnesium Substances 0.000 title claims description 31
- 229910052749 magnesium Inorganic materials 0.000 title claims description 27
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims description 26
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 7
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 6
- 239000000835 fiber Substances 0.000 abstract description 22
- 239000011159 matrix material Substances 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000004512 die casting Methods 0.000 abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 abstract description 5
- 229910052772 Samarium Inorganic materials 0.000 abstract description 4
- 229910052748 manganese Inorganic materials 0.000 abstract description 4
- 239000012783 reinforcing fiber Substances 0.000 abstract description 4
- 239000012779 reinforcing material Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000009864 tensile test Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910000722 Didymium Inorganic materials 0.000 description 4
- 241000224487 Didymium Species 0.000 description 4
- 229910000583 Nd alloy Inorganic materials 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
童東上Ω五里匁M
本発明は、繊維強化金属複合材料に関し、更に詳細には
β型窒化珪素ウィスカを強化繊維とし、マグネシウム合
金をマトリックスとする複合材料、即ちβ型窒化珪素ウ
ィスカ強化マグネシウム複合材料に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber-reinforced metal composite material, and more particularly to a composite material having β-type silicon nitride whiskers as reinforcing fibers and a magnesium alloy as a matrix, that is, β Regarding type silicon nitride whisker reinforced magnesium composite materials.
炙米辺返l
繊維強化金属複合材料のマトリックスを成すマグネシウ
ム合金としては、例えばMDCIA (ASTM規格で
はAZ91A相当)、MC7(ASTM規格ではZK6
1A相当) 、MC8(ASTM規格ではEZ33A相
当)などのJIS規格合金、或いはAM60A、AS4
1A、QE22AなどのΔSTM規格合金が使用されて
いた。Examples of magnesium alloys that form the matrix of fiber-reinforced metal composite materials include MDCIA (equivalent to AZ91A according to ASTM standards), MC7 (ZK6 according to ASTM standards), etc.
1A), JIS standard alloys such as MC8 (equivalent to EZ33A according to ASTM standards), or AM60A, AS4
ΔSTM standard alloys such as 1A and QE22A were used.
しかし、これらのマグネシウム合金とβ型窒化珪素ウィ
スカとの組合わせの場合、例えば溶湯鍛造機(鋳込圧が
高い鋳造機)などを用いて複合材に鋳造してもなお耐熱
性が低く、200℃以上の比較的高温では使用できない
。However, in the case of a combination of these magnesium alloys and β-type silicon nitride whiskers, the heat resistance is still low even when cast into a composite material using, for example, a molten metal forging machine (a casting machine with high casting pressure). It cannot be used at relatively high temperatures above ℃.
が解決しようとする課題
β型窒化珪素ウィスカは、繊維強化金属複合材料の製造
に使用されている種々の強化繊維の中でも高強度を有し
、高温安定性に優れ、かつ熱膨張率が小さい。本発明者
等は、このようなβ型窒化珪素ウィスカの特性を生かし
たマグネシウム合金との複合材料について鋭意検討した
。そして、低熱膨張を必要とする比較的高温、例えば2
00℃以上の温度での使用に耐えるβ型窒化珪素ウィス
カ強化マグネシウム複合材料(以下、単に複合材料と記
す場合がある。)の提供を本発明の課題とし、どのよう
な化学成分のマグネシウム合金がマトリックスとして最
適であるかを見出すための実験を行い、本発明に到達し
た。The problem to be solved by β-type silicon nitride whiskers has the highest strength among the various reinforcing fibers used in the production of fiber-reinforced metal composite materials, excellent high-temperature stability, and low coefficient of thermal expansion. The present inventors have conducted extensive studies on composite materials with magnesium alloys that take advantage of the characteristics of such β-type silicon nitride whiskers. and relatively high temperatures requiring low thermal expansion, e.g.
The object of the present invention is to provide a β-type silicon nitride whisker-reinforced magnesium composite material (hereinafter sometimes simply referred to as composite material) that can withstand use at temperatures of 00°C or higher, and to find out what kind of chemical composition the magnesium alloy has. The present invention was achieved by conducting experiments to find out which material was most suitable as a matrix.
を ゛するための
上述の目的は、本発明によれば、
(1)1%以上、10%以下のNdまたはNd系金属を
含有し、残りが実質的にMqであるマグネシウム合金9
5〜75容口%と、β型窒化珪素ウィスカ5〜25容邑
%から成るβ型窒化珪素ウィスカ強化マグネシウム複合
材料、
(2)マグネシウム合金が更に3%以下のMnを含有す
るものである上記(1)に記載のβ型窒化珪素ウィスカ
強化マグネシウム複合材料、(3)マグネシウム合金が
更に1.5%以下のYを含有するものである上記(1)
および(2)に記載のβ型窒化珪素ウィスカ強化マグネ
シウム複合材料、
(4)マグネシウム合金が更に5%以下のSmを含有す
るものである上記(1)、(2)および(3)に記載の
β型窒化珪素ウィスカ強化マグネシウム複合材料、
(5)マグネシウム合金が更に8%以下のce又はce
系金属を含有するものである上記(1)〜(4)に記載
のβ型窒化珪素ウィスカ強化マグネシウム複合材料、
(6)3〜10%のce系金属を含有し、残りが実質的
にMOであるマグネシウム合金95〜75容」%とβ型
窒化珪素ウィスカ5〜25容量%から成るβ型窒化珪素
ウィスカ強化マグネシウム複合材料、
(7)マグネシウム合金が更に3%以下のMnを含有す
るものである上記(6)に記載のβ型窒化珪素ウィスカ
強化マグネシウム複合材料、。According to the present invention, the above-mentioned object for the purpose of
A β-type silicon nitride whisker-reinforced magnesium composite material comprising 5 to 75% by volume of β-type silicon nitride whiskers and 5 to 25% by volume of β-type silicon nitride whiskers; (2) the above magnesium alloy further containing 3% or less of Mn; (1) The β-type silicon nitride whisker-reinforced magnesium composite material described in (1) above, (3) the magnesium alloy further containing 1.5% or less of Y.
and (2) the β-type silicon nitride whisker-reinforced magnesium composite material as described in (4) the magnesium alloy as described in (1), (2) and (3) above, wherein the magnesium alloy further contains 5% or less Sm. β-type silicon nitride whisker reinforced magnesium composite material, (5) Magnesium alloy further contains 8% or less CE or CE
The β-type silicon nitride whisker-reinforced magnesium composite material according to (1) to (4) above, which contains a ce-based metal, (6) contains 3 to 10% of a ce-based metal, and the remainder is substantially MO. A β-type silicon nitride whisker-reinforced magnesium composite material comprising 95 to 75% by volume of a magnesium alloy and 5 to 25% by volume of β-type silicon nitride whiskers, (7) the magnesium alloy further containing 3% or less of Mn; A β-type silicon nitride whisker-reinforced magnesium composite material according to (6) above.
によって達成される。ただし、上記(1)〜(7)に記
載のβ型窒化珪素ウィスカ強化マグネシウム複合材料は
、マグネシウム合金としては5%以下のPr゛、Gd又
はSCを含んでも一部に差し支えない。また、(6)お
よび(7)に記載のβ型窒化珪素ウィスカ強化マグネシ
ウム複合材料は、5%以下ののY又はSmを含んでも差
し支えない。achieved by. However, the β-type silicon nitride whisker-reinforced magnesium composite materials described in (1) to (7) above may partially contain 5% or less of Pr, Gd, or SC as a magnesium alloy. Further, the β-type silicon nitride whisker-reinforced magnesium composite material described in (6) and (7) may contain 5% or less of Y or Sm.
これらの合金元素は、希土類元素か又はそれに近い性質
の元素であり、含有量にもよるが、必らずしも有害では
なく場合によっては有益でさえある。These alloying elements are rare earth elements or elements with properties similar to rare earth elements, and depending on the content, they are not necessarily harmful and may even be beneficial in some cases.
なお、本明細書におけるNd、Y、Sm、Ce、Pr、
(3dおよびSCはそれぞれ原子番号60.39.62
.58.59.64、および21の■B族の元素であり
、Y、SO以外は希土類元素である。また、Nd系金属
とはNd金属含有量が70%以上のディディミウムを指
し、Ce系金属とはCe含有量が50%以上のミツシュ
メタルである。In addition, in this specification, Nd, Y, Sm, Ce, Pr,
(3d and SC each have atomic number 60.39.62
.. 58, 59, 64, and 21 - B group elements, and the elements other than Y and SO are rare earth elements. Further, the Nd-based metal refers to didymium with a Nd metal content of 70% or more, and the Ce-based metal refers to didymium with a Ce content of 50% or more.
表1にデイデイミウムおよびミツシュメタルの表1.デ
ィディミウムおよびミツシュメタル組成例
本発明によれば、強化繊維として高強度を有し、高温安
定性に優れ、かつ熱膨張率が低いβ型窒化珪素ウィスカ
を使用し、マトリックスとしてNd含有口が1%以上1
0%以下であり、残りが実質的にマグ季シウム(Mg)
であるマグネシウム合金を使用し、β型窒化珪素ウィス
カの体積率を5〜25容但%に設定することにより、後
)ホする本発明者等が行なった実験の結果より明らかな
ように、比較的高温での使用に耐える複合材料を得るこ
とができる。Table 1 shows Deidiumium and Mitsushmetal. Example of Didymium and Mitsushmetal Composition According to the present invention, β-type silicon nitride whiskers, which have high strength, excellent high temperature stability, and low coefficient of thermal expansion, are used as reinforcing fibers, and the Nd content is 1% as the matrix. Above 1
0% or less, and the remainder is essentially magsium (Mg)
As is clear from the results of experiments conducted by the present inventors, by using a magnesium alloy with It is possible to obtain a composite material that can withstand use at extremely high temperatures.
複合材料のマトリックスとしてのMgにNdが添加され
てできるマグネシウム合金は、機械的梯質及び耐熱性が
かなり高いが、β型窒化珪素ウィスカで強化すると、そ
れらの特性がより一層向上する。しかし、Nd含有口が
1%未満ではその効果が充分ではなく、10%を越える
と脆くなり複合材料は実用には適さなくなる。従って、
本発明の複合材料におけるマトリックスとしてのマグネ
シウム合金のNd含有量は1%以上10%以下、好まし
くは3〜7%とされる。なお、この場合にNdの代りに
Nd含有最70%以上のディディミウムを使用しても同
じ効果が得られる。また、3〜10%のCe系金属(ミ
ツシュメタル)を含有する場合には、後述するMq−N
d合金をマトリックスとするβ型窒化珪素ウィスカ強化
マグネシウム複合材料のNd含有量に相□応する強度以
上の強度、特にクリープ強度が得られる。Magnesium alloys made by adding Nd to Mg as a matrix of composite materials have fairly high mechanical strength and heat resistance, but these properties are further improved when reinforced with β-type silicon nitride whiskers. However, if the Nd content is less than 1%, the effect is not sufficient, and if it exceeds 10%, the composite material becomes brittle and is not suitable for practical use. Therefore,
The Nd content of the magnesium alloy as a matrix in the composite material of the present invention is 1% to 10%, preferably 3 to 7%. In this case, the same effect can be obtained by using didymium containing up to 70% Nd instead of Nd. In addition, when containing 3 to 10% of Ce-based metal (mitshu metal), Mq-N
Strength, especially creep strength, greater than or equal to the Nd content of a β-type silicon nitride whisker-reinforced magnesium composite material with d-alloy as a matrix can be obtained.
更に、上述のようなNd含有口のMg−Nd合金をマト
リックスとする複合材料および上述の3〜10%のCe
系金属を含有するマグネシウム合金をマトリックスとす
る複合材料においては、β型窒化珪素ウィスカの体積率
が5重伍%未満の場合には充分な強度、低い熱膨張率を
確保することができず、この体積率が5〜25容四%の
範囲では、複合材料の強度は体積率の増加とともにほぼ
直線的に増加するが、体積率が25容但%を越えると溶
湯の浸透に対するβ型窒化珪素ウィスカの抵抗が増し、
健全な複合材料の製造が回能になる。Further, a composite material having a matrix of Nd-containing Mg-Nd alloy as described above and the above-mentioned 3 to 10% Ce
In a composite material whose matrix is a magnesium alloy containing a series metal, if the volume fraction of β-type silicon nitride whiskers is less than 5% by weight, sufficient strength and low coefficient of thermal expansion cannot be ensured. When the volume fraction is in the range of 5 to 25% by volume, the strength of the composite material increases almost linearly with the increase in volume fraction, but when the volume fraction exceeds 25% by volume, β-type silicon nitride resists the penetration of molten metal. Whisker resistance increases,
Manufacture of healthy composite materials becomes an option.
なお、・本明細書におけるパーセンテージは、繊維の体
積率の衣用の場合を除きすべて重量%であり、マグネシ
ウム合金の化学成分の表現における[実質的にはMgJ
とは、マトリックスとしてのマグネシウム合金中に含ま
れるNd1Mn1デイデイミウム等の添加成分以外の不
可避的に含有されるZn、S i、Fe、Cu、N i
等の不純物の合計が0.5%以下で残りがMgであるこ
とを意味する。In addition, all percentages in this specification are weight % except in the case of fiber volume percentage, and in the expression of chemical components of magnesium alloy [substantially MgJ
"Zn, Si, Fe, Cu, Ni
This means that the total amount of impurities such as is 0.5% or less, and the remainder is Mg.
以下に本発明を実施例について詳細に説明する。The present invention will be described in detail below with reference to examples.
マグネシウム合金AZ92、AZSlolo(宇部興産
■製造合金)、AS21、EZ33A、QE22A、M
g−5%Nd、Mg−5%Nd−1%Mn、Mq−5%
Nd−1%Y、Mg−4%Nd−2%MM%およびMg
−5%MM−2%Mn(注・・・MMはミツシュメタル
)について、250トン竪型ダイカストマシンにより、
β型室、 化珪素ウィスカ成形体を用いて、β型窒化
珪素ウィスカ強化マグネシウム複合材料を製造した。使
用したマトリックス合金の化学成分、製造条件、250
トン竪型ダイ力ストマシン金型キヤビテイ模式図および
β型窒化珪素ウィスカ強化マグネシウム複合材料の模式
図を、それぞれ表2、表3、図1および図2に示す。な
お、上記β型窒化珪素ウィスカ成形体は、宇部興産■製
β型窒化珪素ウィスカ(平均am長10〜50μm、平
均繊維径0.1〜1.5am、100%β−3i3N4
)をバインダーを使用しないで1軸プレスにより作製し
た。Magnesium alloy AZ92, AZSlolo (alloy manufactured by Ube Industries), AS21, EZ33A, QE22A, M
g-5%Nd, Mg-5%Nd-1%Mn, Mq-5%
Nd-1%Y, Mg-4%Nd-2%MM% and Mg
-5%MM-2%Mn (Note: MM is Mitshu Metal) using a 250-ton vertical die-casting machine.
A β-type silicon nitride whisker-reinforced magnesium composite material was manufactured using a β-type silicon nitride whisker molded body. Chemical composition of matrix alloy used, manufacturing conditions, 250
A schematic diagram of the vertical die force machine mold cavity and a schematic diagram of the β-type silicon nitride whisker-reinforced magnesium composite material are shown in Table 2, Table 3, FIG. 1, and FIG. 2, respectively. The above-mentioned β-type silicon nitride whisker molded product is a β-type silicon nitride whisker manufactured by Ube Industries (average am length 10 to 50 μm, average fiber diameter 0.1 to 1.5 am, 100% β-3i3N4).
) was produced using a uniaxial press without using a binder.
形状は約100mφX20mtの円板状繊維体積率は約
10%であり、窒化珪素ウィスカは三次元ランダムに配
向している。The shape is a disc with a size of about 100 mφ x 20 mt, and the fiber volume percentage is about 10%, and the silicon nitride whiskers are three-dimensionally randomly oriented.
以下に製造方法を具体的に述べる。まず、図1に示した
250トン竪型ダイカストマシンのスリーブ■にマグネ
シウム合金溶湯[相]をひしゃくで入れる。スリーブ■
の内部には上記溶湯[相]の温度低下を防止するためセ
ラミックベーパーが置かれている。次に図1に示すよう
に置中子をセットし、その上にβ型室化珪素ウィスカ成
形体■を載せる。The manufacturing method will be specifically described below. First, a molten magnesium alloy [phase] is poured into the sleeve (2) of the 250-ton vertical die-casting machine shown in FIG. 1 using a ladle. Sleeve■
A ceramic vapor is placed inside to prevent the temperature of the molten metal [phase] from decreasing. Next, as shown in FIG. 1, a placing core is set, and the β-type chambered silicon whisker molded body (2) is placed thereon.
直ちに図1に示すように、可動金型■が上から降表3.
製造条件
りて来て閉じられ、キャビティ■に、プランジャー■の
押し上げにより溶湯[株]が押し込まれる。型閉時間の
45秒が経過後可動金型■が上方に移動し、図2に示さ
れたβ型室化珪素ウススカ強化マグネシウム複合材料が
取出される。Immediately, as shown in Figure 1, the movable mold ■ is lowered from above.
Once the manufacturing conditions have been met, the cavity is closed, and the molten metal is pushed into the cavity by the push-up of the plunger. After the mold closing time of 45 seconds has elapsed, the movable mold (2) moves upward, and the β-type silicon nitride Usska-reinforced magnesium composite material shown in FIG. 2 is taken out.
図2に示したβ型窒化珪素ウィスカ成形体強化マグネシ
ウム複合材料において、円板状の成形体が存在する部分
より、成形体の円形面に平行に試験片を切出して、JI
S規格に準じて200 ’Cで引張り試験、250℃で
クリープ破断試験を行なった。表4に試験結果を示した
が、引張試験、クリープ破断試験ともに、EZ33A以
外はF材(熱処理を施していない材料)に依った。In the β-type silicon nitride whisker compact-reinforced magnesium composite material shown in Fig. 2, a test piece was cut out parallel to the circular surface of the compact from the area where the disk-shaped compact was present, and JI
A tensile test was conducted at 200'C and a creep rupture test was conducted at 250C according to the S standard. The test results are shown in Table 4, and in both the tensile test and the creep rupture test, materials other than EZ33A relied on F materials (materials that were not heat treated).
、圧倒9〜15、 較例6〜9゜
実施例1〜8の場合と同様にして、繊維体積率約10容
量%のβ型窒化珪素ウィスカ成形体と表5に示す化学成
分のマグネシウム合金とから250トン竪型ダイカスト
マシンで複合材料を製造した(繊維強化した場合)。又
、表5の化学成分のマグネシウム合金を単独で250ト
ン竪型ダイカストマシンで鋳造した(繊維強化していな
い場合)。この二系列製造物より、実施例1〜8の場合
と同じ方法で試験片を切出し、F材について、200°
C引張試験および250℃クリープ破断試験を実施した
。その結果を繊維強化していない場合を表6(参考例)
に、繊維強化した場合を表7にそれぞれ示した。また、
これらの実験結果のうち、引張試験結果のみを図3にま
とめた。, Overwhelming 9-15, Comparative Examples 6-9° In the same manner as in Examples 1-8, a β-type silicon nitride whisker molded body with a fiber volume ratio of about 10% by volume and a magnesium alloy with the chemical composition shown in Table 5 were prepared. A composite material was manufactured using a 250-ton vertical die-casting machine (in the case of fiber reinforcement). Further, a magnesium alloy having the chemical composition shown in Table 5 was cast alone using a 250-ton vertical die-casting machine (if not reinforced with fibers). From these two series products, test pieces were cut out in the same manner as in Examples 1 to 8, and the F material was cut out at 20°
A C tensile test and a 250°C creep rupture test were conducted. Table 6 shows the results without fiber reinforcement (reference example)
Table 7 shows the cases in which the fibers were reinforced. Also,
Among these experimental results, only the tensile test results are summarized in FIG. 3.
表5.Mg −(1〜20)%Nd合金の化学成分図3
より、Ndの適当な含有量は1%以上、10%以下、特
に3〜7%であることが分かる。Table 5. Chemical composition diagram 3 of Mg-(1~20)%Nd alloy
From this, it can be seen that the appropriate content of Nd is 1% or more and 10% or less, particularly 3 to 7%.
、症例16〜20、比季−10
実施例9〜15の実り結果より適当なNd含有量が分か
った。そこで適当な成形体繊維体積率を求めるため、ま
ず繊維体積率が5容量%、10容量%、15容量%、2
0@量%、25容量%および30容量%のβ型窒化珪素
ウィスカ成形体を作った。この成形方法は一軸プレスだ
けか、又は繊維体積率が不充分な場合は更にラバープレ
スを併用した。このようにして用意したβ型窒化珪素ウ
ィスカ成形体を用いて、Mg−5%Nd合金について実
施例1〜8の場合と同じようにして複合材料を製造し、
その複合材料(F材)より試験片を切出して、200℃
で引張試験および250℃でクリープ破断試験を行なっ
た。その結果を表8および図4に示す。, Cases 16-20, Hiki-10 From the fruiting results of Examples 9-15, an appropriate Nd content was found. Therefore, in order to find an appropriate fiber volume percentage of the molded product, first, the fiber volume percentage is 5% by volume, 10% by volume, 15% by volume, 2% by volume.
β-type silicon nitride whisker molded bodies of 0% by volume, 25% by volume, and 30% by volume were produced. This molding method used only a uniaxial press, or if the fiber volume ratio was insufficient, a rubber press was also used. Using the β-type silicon nitride whisker molded body prepared in this way, a composite material was manufactured in the same manner as in Examples 1 to 8 for Mg-5% Nd alloy,
A test piece was cut out from the composite material (F material) and heated to 200°C.
A tensile test and a creep rupture test were conducted at 250°C. The results are shown in Table 8 and FIG.
図4より、引張強ざおよび耐力は繊維体積率の増加とと
もに繊維・体積率25容四%迄は増加するが、それ以上
では増加しない。これは繊維体積率の増加′とともに成
形体への溶湯の浸透抵抗が増加し、その結果繊維体積率
が3CI量%で終に複合材料内部の溶湯不充填等の欠陥
が表面化したためと考えられる。また、繊維体積率が5
容」%未満では引張強ざは繊維強化していない合金と余
り違いがない。これらの結果と、クリープ破断試験結果
とを考え合わせると、繊維体積率平均5〜25容量%が
適当と考えられる。From FIG. 4, the tensile strength and yield strength increase as the fiber volume fraction increases up to a fiber/volume fraction of 25% by volume, but do not increase beyond that. This is thought to be because the penetration resistance of the molten metal into the molded body increases as the fiber volume fraction increases, and as a result, defects such as insufficient molten metal filling inside the composite material eventually surface when the fiber volume fraction is 3CI%. In addition, the fiber volume fraction is 5
The tensile strength is not much different from that of non-fiber reinforced alloys below 20%. Considering these results and the results of the creep rupture test, an average fiber volume fraction of 5 to 25% by volume is considered appropriate.
及」夏液里
β型窒化珪素ウィスカを圧縮成形して作った成形体に、
Nd等を添加したマグネシウム合金を高圧下で含浸、凝
固させることにより、耐熱性に優れた高強度のm維強化
マグネシウム複合材料が得られた。この複合材料は20
0℃引張強ざが約30kgf/s2であり、200℃引
張試験値のバランスが良く、優れたクリープ強度を有し
ている。A molded body made by compression molding Natsuriri β-type silicon nitride whiskers,
By impregnating and solidifying a magnesium alloy containing Nd and the like under high pressure, a high-strength m-fiber reinforced magnesium composite material with excellent heat resistance was obtained. This composite material is 20
The 0°C tensile strength is approximately 30 kgf/s2, the 200°C tensile test values are well balanced, and the material has excellent creep strength.
従って、軽量、低熱膨張と耐熱性が要求される用途、例
えば自動車用エンジン部品、汎用エンジン部品等の用途
に適している。Therefore, it is suitable for applications that require light weight, low thermal expansion, and heat resistance, such as automotive engine parts and general-purpose engine parts.
図1は250トン竪型ダイ力ストマシン金型キヤビテイ
部模式図、図2はβ型窒化珪素ウィスカ強化マグネシウ
ム複合材料模式図、図3はNd含有聞の異なるMg−N
d合金を繊維強化していない場合と繊維強化した場合の
200℃引張試験結果、そして図4はMQ−5%Nd合
金をマトリックスとする複合材料の繊維体積率と200
℃引張強さの関係を示す。
図1および図2において、■・・・可動金型、■・・・
キャビティ、■・・・固定金型、■・・・プラテン、■
・・・スリーブ、■・・・プランジャー、■・・・置中
子、■・・・β型窒化珪素ウィスカ成形体、■・・・セ
ラミック・ベーパー、■・・・マグネシウム合金溶湯を
表わす。
特許出願人 宇部興産株式会社
48rb I6旌る良イしし大わら4トの200’Cう
1張薯戊験糸ぎ」し龜f#L体種竿(’/、)Figure 1 is a schematic diagram of the mold cavity of a 250-ton vertical die force machine, Figure 2 is a schematic diagram of β-type silicon nitride whisker-reinforced magnesium composite material, and Figure 3 is a schematic diagram of Mg-N with different Nd contents.
Figure 4 shows the results of a 200°C tensile test when the d alloy is not reinforced with fibers and when the alloy is reinforced with fibers.
The relationship between temperature and tensile strength is shown. In FIGS. 1 and 2, ■...movable mold, ■...
Cavity, ■... Fixed mold, ■... Platen, ■
... Sleeve, ■... Plunger, ■... Core, ■... β-type silicon nitride whisker molded body, ■... Ceramic vapor, ■... Represents molten magnesium alloy. Patent applicant Ube Industries Co., Ltd. 48rb I6 good quality large straw 4 tons of 200'C 1 piece of cylindrical material
Claims (7)
含有し、残りが実質的にMgであるマグネシウム合金9
5〜75容量%と、β型窒化珪素ウィスカ5〜25容量
%から成るβ型窒化珪素ウィスカ強化マグネシウム複合
材料。(1) Magnesium alloy 9 containing 1% or more and 10% or less of Nd or Nd-based metal, with the remainder being substantially Mg
A β-type silicon nitride whisker-reinforced magnesium composite material comprising 5-75% by volume of β-type silicon nitride whiskers and 5-25% by volume of β-type silicon nitride whiskers.
るものである請求項(1)に記載のβ型窒化珪素ウィス
カ強化マグネシウム複合材料。(2) The β-type silicon nitride whisker-reinforced magnesium composite material according to claim (1), wherein the magnesium alloy further contains 3% or less of Mn.
するものである請求項(1)および(2)に記載のβ型
窒化珪素ウィスカ強化マグネシウム複合材料。(3) The β-type silicon nitride whisker-reinforced magnesium composite material according to claims (1) and (2), wherein the magnesium alloy further contains 1.5% or less of Y.
るものである請求項(1)、(2)および(3)に記載
のβ型窒化珪素ウィスカ強化マグネシウム複合材料。(4) The β-type silicon nitride whisker-reinforced magnesium composite material according to claims (1), (2), and (3), wherein the magnesium alloy further contains 5% or less of Sm.
系金属を含有するものである請求項(1)〜(4)に記
載のβ型窒化珪素ウィスカ強化マグネシウム複合材料。(5) Magnesium alloy further contains 8% or less Ce or Ce
The β-type silicon nitride whisker-reinforced magnesium composite material according to claims (1) to (4), which contains a metal.
にMgであるマグネシウム合金95〜75容量%とβ型
窒化珪素ウィスカ5〜25容量%から成るβ型窒化珪素
ウィスカ強化マグネシウム複合材料。(6) β-type silicon nitride whisker-reinforced magnesium consisting of 95-75% by volume of a magnesium alloy containing 3-10% of Ce-based metal and the remainder being substantially Mg and 5-25% by volume of β-type silicon nitride whiskers Composite material.
るものである請求項(6)に記載のβ型窒化珪素ウィス
カ強化マグネシウム複合材料。(7) The β-type silicon nitride whisker-reinforced magnesium composite material according to claim (6), wherein the magnesium alloy further contains 3% or less of Mn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11749089A JPH02298228A (en) | 1989-05-12 | 1989-05-12 | Beta-type silicon nitride whisker reinforced magnesium composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11749089A JPH02298228A (en) | 1989-05-12 | 1989-05-12 | Beta-type silicon nitride whisker reinforced magnesium composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02298228A true JPH02298228A (en) | 1990-12-10 |
Family
ID=14713015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11749089A Pending JPH02298228A (en) | 1989-05-12 | 1989-05-12 | Beta-type silicon nitride whisker reinforced magnesium composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02298228A (en) |
-
1989
- 1989-05-12 JP JP11749089A patent/JPH02298228A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4657065A (en) | Composite materials having a matrix of magnesium or magnesium alloy reinforced with discontinuous silicon carbide particles | |
US20050279427A1 (en) | Magnesium based amorphous alloy having improved glass forming ability and ductility | |
EP0400574B1 (en) | Fiber reinforced magnesium alloy | |
JPS609837A (en) | Manufacture of composite material | |
CN102618757A (en) | Heat-resistant magnesium alloy | |
EP0217305A2 (en) | Cold worked tri-nickel aluminide alloy compositions | |
CN102618762A (en) | Heat-resisting magnesium alloy | |
JPS613864A (en) | Carbon fiber reinforced magnesium alloy | |
WO1986003997A1 (en) | A metal matrix composite and method for its production | |
US4720434A (en) | Composite material including silicon carbide and/or silicon nitride short fibers as reinforcing material and aluminum alloy with copper and relatively small amount of silicon as matrix metal | |
US5207263A (en) | VLS silicon carbide whisker reinforced metal matrix composites | |
JPH02298228A (en) | Beta-type silicon nitride whisker reinforced magnesium composite | |
JPH0339443A (en) | Magnesium alloy for composite material | |
EP0207314A1 (en) | Composite material including silicon carbide short fibers as reinforcing material and aluminum alloy with copper and magnesium as matrix metal | |
JP4239047B2 (en) | Method for producing magnesium-based composite material and magnesium-based composite material | |
JPH0784637B2 (en) | β-type silicon nitride whisker reinforced magnesium composite material | |
JPS6151618B2 (en) | ||
Gieskes et al. | Metal matrix composites: a study of patents, patent applications and other literature | |
Neussl et al. | Selectively fibre-reinforced components produced by the modified investment casting process | |
Lo et al. | Magnesium matrix composites for elevated temperature applications | |
Muthukumarasamy et al. | The performance of zinc alloy based metal matrix composites produced through squeeze casting | |
Withers et al. | Squeeze cast magnesium matrix composites | |
EP0205084A1 (en) | Composite material including silicon carbide short fibers as reinforcing material and aluminum alloy with copper and relatively small amount of magnesium as matrix metal | |
JPH05277705A (en) | Production of metal matrix composite material reinforced by vls silicon carbide whisker | |
JPS62182235A (en) | Aluminum alloy reinforced with silicon nitride whisker |