JPH03139647A - Correcting method for mask - Google Patents

Correcting method for mask

Info

Publication number
JPH03139647A
JPH03139647A JP1279154A JP27915489A JPH03139647A JP H03139647 A JPH03139647 A JP H03139647A JP 1279154 A JP1279154 A JP 1279154A JP 27915489 A JP27915489 A JP 27915489A JP H03139647 A JPH03139647 A JP H03139647A
Authority
JP
Japan
Prior art keywords
defect
black
light shield
white
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1279154A
Other languages
Japanese (ja)
Inventor
Hironori Ishiyama
石山 裕規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1279154A priority Critical patent/JPH03139647A/en
Publication of JPH03139647A publication Critical patent/JPH03139647A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make corrections with high accuracy without damaging a glass substrate by correcting a black defect by a laser correcting device which has low correction accuracy and forming a white defect on a light shield pattern, and then correcting the white defect by a converged ion beam correcting device which has high correction accuracy. CONSTITUTION:When the black defect 2 (excessive part of light shield film) of the mask for exposure where the light shield pattern 1 is formed of a light shield film on a transparent substrate is removed, the black defect part is irradiated with a converged laser beam to remove the light shield film of the black defect part, and at the same time the light shield film is removed even from a normal light shield pattern adjoining to the black defect part to form the white defect 5 (absence part of light shield film). Then organic gas is blown to the white defect part, which is irradiated with a converged ion beam to polymerize the organic gas, thereby depositing a carbon film on the white defect part. Consequently, the etching process of the glass substrate is omitted and the black defect can be corrected with high accuracy without damaging the glass substrate.

Description

【発明の詳細な説明】 〔概要〕 半導体装置等の製造プロセスに用いるマスクの修正方法
に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This invention relates to a method for repairing a mask used in a manufacturing process of semiconductor devices and the like.

ガラス基板のエツチング工程を省略してガラス基板に損
傷を与えることのない黒欠陥の高精度修正方法の提供を
目的とし。
The object of the present invention is to provide a highly accurate method for correcting black defects without damaging the glass substrate by omitting the etching process of the glass substrate.

透明基板上に遮光膜からなる遮光パターンが形成された
露光用マスクの黒欠陥(遮光膜の余剰部分)を除去する
に際し、該黒欠陥部分に集束レーザビームを照射して、
該黒欠陥部分の遮光膜を除去すると同時に該黒欠陥部分
に隣接する正常な遮光パターンからも遮光膜を除去して
白欠陥(遮光膜の欠如部分)を形成し5次いで該白欠陥
部分に有機ガスを吹きつけ集束イオンビームを照射して
該有機ガスを重合させ、該白欠陥部分にカーボン膜を堆
積させるように構成する。
When removing a black defect (excess portion of the light shielding film) of an exposure mask in which a light shielding pattern made of a light shielding film is formed on a transparent substrate, the black defect portion is irradiated with a focused laser beam,
At the same time as removing the light shielding film in the black defect part, the light shielding film is also removed from the normal light shielding pattern adjacent to the black defect part to form a white defect (the part where the light shielding film is missing). The organic gas is polymerized by blowing gas and irradiating with a focused ion beam, and a carbon film is deposited on the white defect portion.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置等の製造プロセスに用いるマスクの
修正方法に関する。
The present invention relates to a method for repairing a mask used in the manufacturing process of semiconductor devices and the like.

近年、マスク、レチクルの欠陥修正は修正精度が±0.
1 μmが要求されるため、従来のレーザ修正方法に代
わって集束イオンビーム(FIB)修正が主流となりつ
つある。
In recent years, the accuracy of defect correction for masks and reticles has been ±0.
1 μm, focused ion beam (FIB) correction is becoming mainstream in place of traditional laser correction methods.

本発明はガラス基板に損傷を与えない黒欠陥の高精度の
修正方法として適用できる。
The present invention can be applied as a highly accurate method for correcting black defects without damaging glass substrates.

〔従来の技術〕[Conventional technology]

マスクの欠陥は遮光膜に開いたピンホール等の白欠陥と
、遮光膜のはみ出し等の黒欠陥がある。
Defects in the mask include white defects such as pinholes in the light-shielding film, and black defects such as protrusion of the light-shielding film.

従来の黒欠陥修正方法はレーザ修正装置を用いて集束レ
ーザビームを欠陥部分に照射して遮光膜物質を飛ばして
行っていた。
A conventional method for repairing black defects uses a laser repair device to irradiate a focused laser beam onto the defective area to blow away the light-shielding film material.

しかし前記のように、レーザ修正方法では要求される修
正精度を満足することができなくなってきた。このため
にFIB修正装置が開発されて広く用いられるようにな
った。
However, as mentioned above, laser repair methods are no longer able to satisfy the required repair accuracy. For this reason, FIB correction devices have been developed and have become widely used.

FIB修正装置の修正精度は黒欠陥、白欠陥とも±0.
1μm(3σ)であり、従来のレーザ修正装置は±0.
2μm(3σ)が限界であった。
The correction accuracy of the FIB correction device is ±0.0 for both black and white defects.
1 μm (3σ), and conventional laser correction equipment has a correction accuracy of ±0.
The limit was 2 μm (3σ).

ところが、 FIB修正装置による黒欠陥の修正は。However, the correction of black defects by FIB correction equipment is difficult.

修正後にガラス基板に不純物(Gaスティン)が打ち込
まれる。この打ち込まれた不純物層は光の透過率を低下
させてしまう (gラインでの測定で86%にまで低下
する)ので、透過率を回復させるためには不純物層を除
去することが必要となり、そのためには金属遮光膜をマ
スクにしてガラス基板をエツチングしている。この際、
不純物層は厚さ約300人であるので、これ以」二の厚
さのエツチングが必要である。
After modification, impurities (Ga stain) are implanted into the glass substrate. This implanted impurity layer reduces the light transmittance (down to 86% when measured at the g-line), so it is necessary to remove the impurity layer in order to restore the transmittance. To achieve this, the glass substrate is etched using a metal light-shielding film as a mask. On this occasion,
Since the impurity layer has a thickness of approximately 300 nm, etching is required to be 2' thicker.

第2図(1)〜(3)は従来例による黒欠陥のFIR修
正方法を説明するマスクパターンの部分的な平面図であ
る。
FIGS. 2(1) to 2(3) are partial plan views of mask patterns illustrating a conventional FIR correction method for black defects.

第2図(1)において、金属遮光膜からなる正常な遮光
パターン1に黒欠陥2ができている。
In FIG. 2(1), a black defect 2 is formed in a normal light-shielding pattern 1 made of a metal light-shielding film.

3は光の透過部でガラス基板が露出した部分である。3 is a light transmitting part where the glass substrate is exposed.

第2図(2)において、黒欠陥のFIB修正を行った後
は、欠陥除去後のガラス基板表面に打ち込まれた不純物
層4ができる。
In FIG. 2(2), after the FIB correction of the black defect is performed, an impurity layer 4 is formed which is implanted into the surface of the glass substrate after the defect has been removed.

第2図(3)において、 CF4を用いたドライエツチ
ングにより、金属遮光腹合マスクにしてガラス基板をエ
ツチングして不純物層4を除去する。
In FIG. 2(3), the glass substrate is etched by dry etching using CF4 using a metal light-shielding mask to remove the impurity layer 4.

(発明が解決しようとする課題〕 黒欠陥のFIB修正時には、透明となるべき欠陥除去部
分のガラス基板に不純物が打ち込まれるため、ガラス基
板のエツチングが必要であった。
(Problems to be Solved by the Invention) When a black defect is repaired by FIB, impurities are implanted into the glass substrate in the defect-removed portion that should become transparent, so etching of the glass substrate is necessary.

ガラス基板をエツチングすると2次のような障害が発生
する。
When a glass substrate is etched, the following secondary problems occur.

上記の例ではガラス基板のエツチングはCF、を用いた
ドライエツチングによったが、エツチングはドライであ
れ、ウヱットであれ金属遮蔽膜(Cr膜)をエツチング
マスクにして行う。この時のエツチングの選択比は約2
0である。従ってマスクの役目をしているCr膜もガラ
スのエツチング量の約l/20の損傷(ガラスは約30
0人エツチングするので、 Cr膜は約15μmエツチ
ングされる)を受けることになる。このことは耐久性を
必要とするCr膜に損傷を与えることになり問題である
In the above example, the glass substrate was etched by dry etching using CF, but etching is carried out using a metal shielding film (Cr film) as an etching mask, whether dry or wet. The etching selection ratio at this time is approximately 2.
It is 0. Therefore, the Cr film that acts as a mask is also damaged by approximately 1/20 of the amount of etching on the glass (approximately 30
Since zero etching is performed, the Cr film will be etched by about 15 μm). This is a problem because it damages the Cr film, which requires durability.

本発明はガラス基板のエツチング工程を省略してガラス
基板に損傷を与えることのない黒欠陥の高精度修正方法
の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly accurate method for correcting black defects without damaging the glass substrate by omitting the etching process of the glass substrate.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、透明基板上に遮光膜からなる遮光パ
ターンが形成された露光用マスクの黒欠陥(遮光膜の余
剰部分)を除去するに際し、該黒欠陥部分に集束レーザ
ビームを照射して、該黒欠陥部分の遮光膜を除去すると
同時に該黒欠陥部分に隣接する正常な遮光パターンから
も遮光膜を除去して白欠陥(遮光膜の欠如部分)を形成
し1次いで該白欠陥部分に有機ガスを吹きつけ集束イオ
ンビームを照射して該有機ガスを重合させ、該白欠陥部
分にカーボン膜を堆積させるマスクの修正方法により達
成される。
The solution to the above problem is to irradiate a focused laser beam to the black defect portion when removing a black defect (excess portion of the light shielding film) of an exposure mask in which a light shielding pattern made of a light shielding film is formed on a transparent substrate. , At the same time as removing the light shielding film in the black defect part, the light shielding film is also removed from the normal light shielding pattern adjacent to the black defect part to form a white defect (a part where the light shielding film is missing). This is achieved by a mask repair method in which an organic gas is sprayed and a focused ion beam is irradiated to polymerize the organic gas and deposit a carbon film on the white defect area.

〔作用〕[Effect]

本発明は黒欠陥を修正精度の低いレーザ修正装置で修正
して遮光パターンに白欠陥(低精度のため完全に黒欠陥
を除去しようとすると必然的に発生する程度と同等又は
それ以上の大きさを有する白欠陥)を形成し、その後、
修正精度の高いFIB修正装置で白欠陥を修正すること
により、黒欠陥をFIB修正装置で直接修正する時に発
生するガラス基板への損傷を与えることなく高精度の修
正を可能としたものである。
The present invention corrects black defects using a laser correction device with low correction accuracy to create white defects in light-shielding patterns (the size of which is equal to or larger than that which inevitably occurs when trying to completely remove black defects due to low accuracy). white defects) are formed, and then,
By correcting white defects using an FIB correction device with high correction accuracy, it is possible to perform high-precision correction without causing damage to a glass substrate that occurs when a black defect is directly corrected with an FIB correction device.

FIB修正の方がレーザ修正より高精度である理由は、
レーザの最小スポット径が2μmであるのに対して、イ
オンビーム径は0.1μmまで絞ることができるからで
ある。又、FIB修正装置は、欠陥個所の位置合わせ全
自動で行うことが可能で、修正精度を向上させている。
The reason why FIB correction is more accurate than laser correction is as follows.
This is because while the minimum spot diameter of a laser is 2 μm, the ion beam diameter can be narrowed down to 0.1 μm. Furthermore, the FIB repair device can perform fully automatic alignment of defective locations, improving repair accuracy.

〔実施例〕〔Example〕

第1図(1)〜(3)は本発明の一実施例による黒欠陥
の修正方法を説明するマスクパターンの部分的な平面図
である。
FIGS. 1(1) to 1(3) are partial plan views of a mask pattern illustrating a method for correcting black defects according to an embodiment of the present invention.

第1図(1)において、金属遮光膜からなる正常な遮光
パターン1に黒欠陥2ができている。
In FIG. 1(1), a black defect 2 is formed in a normal light-shielding pattern 1 made of a metal light-shielding film.

3は光の透過部でガラス基板が露出した部分である。3 is a light transmitting part where the glass substrate is exposed.

第1図(2)において5黒欠陥のレーザ修正を行った後
に、欠陥除去後の遮光パターンIに白欠陥5が形成され
る。
In FIG. 1(2), after the 5 black defects are laser-corrected, a white defect 5 is formed in the light-shielding pattern I after defect removal.

この場合の黒欠陥のレーザ修正条件の例を次に示す。An example of the laser repair conditions for black defects in this case is shown below.

使用したレーザ塩:  WAG レーザパワー:50mJ 集束スポット径:2μm (MIN) その他:修正個所の位置合わせはすべてマニュアル操作 この場合、白欠陥5の大きさは完全に黒欠陥を除去しよ
うとすると必然的に発生する程度と同等又はそれ以上に
する。
Laser salt used: WAG Laser power: 50 mJ Focused spot diameter: 2 μm (MIN) Others: All alignment of the repaired area is done manually In this case, the size of the white defect 5 is inevitable if you try to completely remove the black defect. equal to or greater than that occurring in

第1図(3)において、白欠陥5のFIB修正を行う。In FIG. 1(3), FIB correction of white defect 5 is performed.

6は白欠陥5の修正された遮光部分である。6 is a light-shielding portion where the white defect 5 has been corrected.

次に、白欠陥のFIB修正条件の例を示す。Next, an example of FIB correction conditions for white defects will be shown.

使用したイオン源:Ga液体金属イオン源加速エネルギ
ー:20KeV 集束スポット径=0.1μm その他:修正個所の位置合わせは全自動FIB修正の手
順は次のようである。
Ion source used: Ga liquid metal ion source Acceleration energy: 20 KeV Focused spot diameter = 0.1 μm Others: The procedure for fully automatic FIB correction for alignment of the correction location is as follows.

■ 欠陥部周辺に有機ガスを吹きつける。■ Spray organic gas around the defect.

■ 欠陥部にのみ集束イオンビームを照射する。■Irradiate the focused ion beam only to the defective area.

■ 均一なカーボン(有機ガスの成分)膜が欠陥部に堆
積する。
■ A uniform carbon (component of organic gas) film is deposited on the defective area.

以上の手順により、白欠陥が修正される。White defects are corrected by the above procedure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ガラス基板のエツ
チング工程を省略でき、従ってガラス基板に損傷を与え
ることのない黒欠陥の高精度修正方法が得られた。
As explained above, according to the present invention, it is possible to omit the etching step of the glass substrate, and therefore, a highly accurate method for repairing black defects without damaging the glass substrate has been obtained.

図において 1属遮光膜からなる正常な遮光パターン÷2は黒欠陥。In the figure A normal light-shielding pattern made of a Group 1 light-shielding film divided by 2 is a black defect.

3は光の透過部でガラス基板が露出した部分。3 is the light transmitting part where the glass substrate is exposed.

4はFIB修正で打ち込まれた不純物層。4 is an impurity layer implanted by FIB correction.

5は黒欠陥のレーザ修正にできた白欠陥。5 is a white defect created by laser correction of a black defect.

6は白欠陥の修正部分の遮光膜6 is the light-shielding film in the white defect correction area

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)〜(3)は本発明の一実施例による黒欠陥
の修正方法を説明するマスクパターンの部分的な平面図
。 第2図(1)〜(3)は従来例による黒欠陥のFIB修
正方法を説明するマスクパターンの部分的な平面図であ
る。 6 実施例の平面図 第  1  図 従来例の平面図 第  2  図
FIGS. 1(1) to 1(3) are partial plan views of mask patterns illustrating a method for correcting black defects according to an embodiment of the present invention. FIGS. 2(1) to 2(3) are partial plan views of mask patterns illustrating a conventional FIB correction method for black defects. 6 Plan view of the embodiment Fig. 1 Plan view of the conventional example Fig. 2

Claims (1)

【特許請求の範囲】  透明基板上に遮光膜からなる遮光パターンが形成され
た露光用マスクの黒欠陥(遮光膜の余剰部分)を除去す
るに際し、 該黒欠陥部分に集束レーザビームを照射して、該黒欠陥
部分の遮光膜を除去すると同時に該黒欠陥部分に隣接す
る正常な遮光パターンからも遮光膜を除去して白欠陥(
遮光膜の欠如部分)を形成し、次いで該白欠陥部分に有
機ガスを吹きつけ集束イオンビームを照射して該有機ガ
スを重合させ、該白欠陥部分にカーボン膜を堆積させる
ことを特徴とするマスクの修正方法。
[Claims] When removing black defects (excess portions of the light shielding film) of an exposure mask in which a light shielding pattern made of a light shielding film is formed on a transparent substrate, the black defect portion is irradiated with a focused laser beam. , At the same time as removing the light shielding film from the black defect part, the light shielding film is also removed from the normal light shielding pattern adjacent to the black defect part to remove the white defect (
A carbon film is deposited on the white defect by spraying an organic gas onto the white defect and irradiating the white defect with a focused ion beam to polymerize the organic gas. How to modify a mask.
JP1279154A 1989-10-26 1989-10-26 Correcting method for mask Pending JPH03139647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1279154A JPH03139647A (en) 1989-10-26 1989-10-26 Correcting method for mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279154A JPH03139647A (en) 1989-10-26 1989-10-26 Correcting method for mask

Publications (1)

Publication Number Publication Date
JPH03139647A true JPH03139647A (en) 1991-06-13

Family

ID=17607205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279154A Pending JPH03139647A (en) 1989-10-26 1989-10-26 Correcting method for mask

Country Status (1)

Country Link
JP (1) JPH03139647A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382484A (en) * 1992-08-21 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Method of correcting defects in the pattern of phase shift mask
JP2005539273A (en) * 2002-09-18 2005-12-22 エフ・イ−・アイ・カンパニー Photolithographic mask modification
DE102005004070B3 (en) * 2005-01-28 2006-08-03 Infineon Technologies Ag Lithographic mask`s defective material removing method for highly integrated circuit, involves applying absorbing material in outer region after removal of defective material to form transmitting region with desired phase difference on mask
JP2011238800A (en) * 2010-05-11 2011-11-24 Dainippon Printing Co Ltd Manufacturing method of reflective mask and reflective mask
JP2011238801A (en) * 2010-05-11 2011-11-24 Dainippon Printing Co Ltd Manufacturing method of reflective mask
JP2012073553A (en) * 2010-09-30 2012-04-12 Hoya Corp Defect correcting method of photomask, manufacturing method of photomask, photomask, and pattern transfer method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382484A (en) * 1992-08-21 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Method of correcting defects in the pattern of phase shift mask
JP2005539273A (en) * 2002-09-18 2005-12-22 エフ・イ−・アイ・カンパニー Photolithographic mask modification
US7662524B2 (en) 2002-09-18 2010-02-16 Fei Company Photolithography mask repair
DE102005004070B3 (en) * 2005-01-28 2006-08-03 Infineon Technologies Ag Lithographic mask`s defective material removing method for highly integrated circuit, involves applying absorbing material in outer region after removal of defective material to form transmitting region with desired phase difference on mask
JP2007534993A (en) * 2005-01-28 2007-11-29 キモンダ アクチエンゲゼルシャフト Method for removing defective material from lithography mask
JP2011238800A (en) * 2010-05-11 2011-11-24 Dainippon Printing Co Ltd Manufacturing method of reflective mask and reflective mask
JP2011238801A (en) * 2010-05-11 2011-11-24 Dainippon Printing Co Ltd Manufacturing method of reflective mask
JP2012073553A (en) * 2010-09-30 2012-04-12 Hoya Corp Defect correcting method of photomask, manufacturing method of photomask, photomask, and pattern transfer method

Similar Documents

Publication Publication Date Title
JP2004309515A (en) Method for correcting defect in gray tone mask
US20060093925A1 (en) Method for repairing opaque defects in photolithography masks
JPH03139647A (en) Correcting method for mask
US6030731A (en) Method for removing the carbon halo caused by FIB clear defect repair of a photomask
JPH02115842A (en) Method for correcting defect of photomask
JPH07295204A (en) Method for correcting phase shift mask
JP2675044B2 (en) Method of manufacturing mask for X-ray exposure
JPS6347769A (en) Method for correcting pattern defect
JPH04116657A (en) Photomask and its production
JPS60235422A (en) Correction of defect of mask pattern
JPS59105320A (en) Correcting method of photo-mask fault and defect
KR100930382B1 (en) How to fix pattern defects in photomask
KR100298175B1 (en) Method for fabricating photomask
JPS6085525A (en) Mask repairing method
JPH05313354A (en) Method for correcting defect of reticule mask
JPS6163029A (en) Method for correction of chromium mask
JPS63218959A (en) Correcting method for photomask pattern
JPS60245135A (en) Correcting method for photomask
TWI292783B (en) Method for repair of photomasks
JP3318847B2 (en) Repair method of residual defect of shifter
JPH075677A (en) Method for correcting photomask
JPS627691B2 (en)
JPH0792658A (en) Retouching method for phase shift reticle
JPH021850A (en) Method of correcting photomask
JPS63128348A (en) Mask correcting method