JPH03139605A - High-strength optical fiber of quartz glass system and production thereof - Google Patents

High-strength optical fiber of quartz glass system and production thereof

Info

Publication number
JPH03139605A
JPH03139605A JP1277263A JP27726389A JPH03139605A JP H03139605 A JPH03139605 A JP H03139605A JP 1277263 A JP1277263 A JP 1277263A JP 27726389 A JP27726389 A JP 27726389A JP H03139605 A JPH03139605 A JP H03139605A
Authority
JP
Japan
Prior art keywords
refractive index
cladding
fiber
strength
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1277263A
Other languages
Japanese (ja)
Other versions
JP2855531B2 (en
Inventor
Yoshihiro Ouchi
大内 義博
Tetsuya Sakai
哲弥 酒井
Shinichi Tomita
伸一 富田
Akira Wada
朗 和田
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1277263A priority Critical patent/JP2855531B2/en
Publication of JPH03139605A publication Critical patent/JPH03139605A/en
Application granted granted Critical
Publication of JP2855531B2 publication Critical patent/JP2855531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To increase the refractive index of a surface strengthening layer higher than the refractive index of a clad and to eliminate the propagation of multimodes by drawing a perform under the drawing tension under which the refractive index of the strengthening layer attains the refractive index equal to or higher than the refractive index of the clad. CONSTITUTION:Fluorine is doped into the surface strengthening layer of the high-strength fiber of a quartz system consisting of the core/clad/surface strengthening layer to lower the softening temp. to the temp. lower than the softening temp. of the clad and to allow compressive stresses to remain so that the refractive index is equal to or higher than the refractive index of the clad. The transmission characteristic of this fiber is not the propagation to accompany the multimodes but the perfect single mode in this way and the propagation of the multimodes is eliminated. The breaking strength which compares favorably with the breaking strength of the conventional high-strength fibers is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、最外層に表面強化層が形成された石英ガラ
ス系高強度光ファイバおよびその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silica glass-based high-strength optical fiber having a surface reinforcing layer formed on its outermost layer, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

伝送損失特性を低下させることなく高強度を有する石英
ガラス系光ファイバとして第3図に示すものが検討され
ている。図において、1はGe ドープシリカコア、2
はシリカクラッド、3は圧縮応力が残留せしめられたF
ドープシリカ表面強化層で、その軟化温度がシリカクラ
ッド2よりも低いために線引き中にクラッドよりも後か
ら固化し、クラッドが線引き時に受けた引張応力の開放
により収縮するときに圧縮応力が残留される。その結果
、光ファイバがその圧縮応力に見合う以上の引張張力を
受けるまで実質的に引張張力を受けることにならないの
で、ファイバ表面傷の成長が抑制され高強度化が図られ
たファイバとなる。
The fiber shown in FIG. 3 has been studied as a silica glass optical fiber that has high strength without reducing transmission loss characteristics. In the figure, 1 is a Ge-doped silica core, 2
is silica clad, 3 is F with residual compressive stress
This is a doped silica surface reinforcement layer whose softening temperature is lower than that of silica cladding 2, so it solidifies later than the cladding during wire drawing, and compressive stress remains when the cladding contracts due to the release of the tensile stress received during wire drawing. . As a result, since the optical fiber is not substantially subjected to tensile tension until it receives a tensile tension greater than the compressive stress, the growth of fiber surface flaws is suppressed, resulting in a fiber with increased strength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、通常このファイバの元になるプリフォー
ムの製造に当たっては、専ら表面強化層となる部分の軟
化温度がクラッドのそれよりも十分低くなるようにとい
う配慮がなされ、そのため表面強化層となる部分へのふ
っ素のドープ量が3mg/g程度のプリフォームが作ら
れ、これを線引張力150g程度で線引してファイバと
していた。ところが、得られたファイバの屈折率分布は
第4図のように表面強化層の屈折率がクラッドのそれよ
りも低くなっており、そのためコアークラッド部で3M
ファイバを構成しても、クラッドを第2のコアとし表面
層を第2のクラッドとするマルチモードも伝搬し光学的
に不都合が生じるという問題があった。
However, when manufacturing the preform that is the basis of this fiber, care is taken to ensure that the softening temperature of the part that will become the surface reinforcement layer is sufficiently lower than that of the cladding. A preform with a fluorine doping amount of about 3 mg/g was prepared, and this was drawn into a fiber with a drawing tension of about 150 g. However, in the refractive index distribution of the obtained fiber, as shown in Figure 4, the refractive index of the surface reinforcing layer is lower than that of the cladding, and therefore the core cladding part has a refractive index of 3M.
Even when the fiber is constructed, there is a problem in that a multimode in which the cladding is the second core and the surface layer is the second cladding also propagates, causing optical problems.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者等は、この問題点を解決すべく鋭意研究した
結果、クラッドと表面強化層との屈折率差がFをドープ
したことにより本来低下する推定値よりも小さい、すな
わち表面強化層に圧縮応力が付与されて光弾性効果によ
り屈折率が高められたということから、もっと表面強化
層に圧縮応力を付与して光弾性効果を高めれば、さらに
屈折率が上昇してクラッドと等しいかもしくはそれ以」
−になしうるとの知見を得た。この発明はこの知見に基
づいてなされたもので、その特徴とする第1の請求項の
発明は、コアークランド−表面強化層からなる石英ガラ
ス系高強度光ファイバであって、前記表面強化層がふっ
素がドープされて軟化温度がクラッドよりも低くなされ
、かつ圧縮応力が残留せしめられて屈折率がクラッドと
等しいかもしくはそれ以上になされてなる石英ガラス系
高強度光ファイバにある。
As a result of intensive research to solve this problem, the inventors found that the refractive index difference between the cladding and the surface-strengthened layer was smaller than the estimated value that would originally decrease due to doping with F, that is, Since stress is applied and the refractive index is increased due to the photoelastic effect, if more compressive stress is applied to the surface reinforcement layer to increase the photoelastic effect, the refractive index will further increase and become equal to or even higher than that of the cladding. I”
- We obtained the knowledge that it can be done. This invention has been made based on this knowledge, and the invention of claim 1 is characterized by a silica glass-based high-strength optical fiber comprising a core land-surface reinforcing layer, wherein the surface reinforcing layer The fiber is doped with fluorine so that its softening temperature is lower than that of the cladding, and compressive stress remains to make the refractive index equal to or higher than that of the cladding.

また、第2の請求項の発明は、コア−クラッド−表面強
化層からなり、表面強化層にふっ素がドープされて軟化
温度および屈折率がクラッドのそれよりも低くなされた
石英ガラス系光ファイバプリフォームを、その屈折率が
クラッドのそれと等しいかもしくはそれ以上となる線引
張力で線引きする石英ガラス系高強度光ファイバの製造
方法にある。
The invention of the second claim also provides a silica glass optical fiber comprising a core, a cladding, and a surface reinforcing layer, in which the surface reinforcing layer is doped with fluorine to have a softening temperature and a refractive index lower than those of the cladding. The present invention provides a method for manufacturing a silica glass-based high-strength optical fiber, in which the reformed fiber is drawn with a drawing tension such that the refractive index thereof is equal to or higher than that of the cladding.

第1図は、クラッドと表面強化層との間の比屈折率差〔
△−−((表面強化層の屈折率−クラフトの屈折率)/
クラッドの屈折率)X100%〕に対する線引張力との
関係を示している。すなわち、表面強化層にFをドープ
し、クラッドにはFをドープするかもしくはドープしな
い場合の両者の相対的なFのドープ量差に基づく比屈折
率差△−を種々変えてプリフォームを作り、そうして得
られたプリフォームを種々の線引張力で線引きして得ら
れるファイバの表面強化層の屈折率を測定し、その屈折
率がクラッドと等しい点を結んでそれを直線Aで示し、
斜線部分はその屈折率がクラッドよりも大きな部分を示
している。そこで直線Aから斜線領域内の線引張力で線
引きすればクラッドを第2のコアとするマルチモードの
伝搬を阻止できる。
Figure 1 shows the relative refractive index difference between the cladding and the surface reinforcement layer [
△−−((refractive index of surface reinforcement layer − refractive index of kraft)/
The graph shows the relationship between the drawing tension and the refractive index of the cladding (X100%). That is, preforms are made by doping the surface reinforcement layer with F and doping the cladding with F or not doping the cladding, and varying the relative refractive index difference △- based on the relative difference in the amount of F doped between the two. The refractive index of the surface reinforcing layer of the fiber obtained by drawing the preform thus obtained at various drawing tensions is measured, and the points where the refractive index is equal to that of the cladding are connected and indicated by a straight line A. ,
The shaded area indicates a portion whose refractive index is greater than that of the cladding. Therefore, by drawing a line from the straight line A with a drawing tension within the shaded area, multi-mode propagation using the cladding as the second core can be prevented.

〔実施例I〕[Example I]

直径5mmのGeOz(6wt%)  SiOz(94
wt%)コア、5i(hクラッド(外径58n+m) 
、F −5ing表面強化層(F含有量0.5mg/g
 、外径60mm)の石英ガラス系光ファイバプリフォ
ーム(クラッドと表面強化層の△−=0.05%)を線
引張力150g7−線引きして外径125nの3Mファ
イバとし、その上に250μm厚さにUV樹脂をコーテ
ィングした。得られたファイバの屈折率分布を第2図に
示す。図から明らかなように、表面強化層の屈折率nは
、1.4591であり、クラッドのそれよりも高くなっ
ている。
GeOz (6wt%) SiOz (94
wt%) core, 5i (h cladding (outer diameter 58n+m)
, F-5ing surface reinforcement layer (F content 0.5 mg/g
A quartz glass optical fiber preform (Δ-=0.05% of cladding and surface reinforcement layer) with an outer diameter of 60 mm was drawn at a drawing tension of 150 g7 to form a 3M fiber with an outer diameter of 125 nm, and a 250 μm thick It was coated with UV resin. The refractive index distribution of the obtained fiber is shown in FIG. As is clear from the figure, the refractive index n of the surface reinforcement layer is 1.4591, which is higher than that of the cladding.

また、このファイバの伝送特性を測定したところ、従来
のそれがクラッド部をコアとするマルチモードを伴う伝
搬であるのに対して、この発明のファイバは完全なシン
グルモードファイバであり、マルチモードの伝搬は認め
られなかった。
In addition, when we measured the transmission characteristics of this fiber, we found that while the conventional fiber propagates with multimode with the cladding as the core, the fiber of this invention is a completely single mode fiber and has multimode propagation. No transmission was observed.

さらに、その破断強度を測定したところ、従来の高強度
ファイバのそれと比較して遜色ないものであった。
Furthermore, when its breaking strength was measured, it was comparable to that of conventional high-strength fibers.

〔実施例H〕[Example H]

直径5mn+のGeOx(5wt%)  SiOz(9
5wt%)コア、F−3in2クラツド(F含有量0.
5mg/g 、外径58mm) 、F−SiOz表面強
化層(F含有量1.0mg/g、外径60mm)の石英
ガラス系光ファイバプリフォーム(クラッドと表面強化
層のへm=〇、05%)を線引張力150gで線引きし
て外径125μmの3Mファイバとし、その上に250
 Im厚さにUV樹脂をコーティングした。このときの
表面強化層の屈折率nば1.4584であって、クラッ
ドのそれよりも5X10−’だけ高かった。
GeOx (5 wt%) SiOz (9
5wt%) core, F-3in2 clad (F content 0.
5mg/g, outer diameter 58mm), silica glass optical fiber preform with F-SiOz surface reinforcement layer (F content 1.0mg/g, outer diameter 60mm) (height of cladding and surface reinforcement layer m = 〇, 05 %) was drawn with a drawing tension of 150 g to form a 3M fiber with an outer diameter of 125 μm, and on top of it
Coated with UV resin to Im thickness. The refractive index n of the surface reinforcement layer at this time was 1.4584, which was higher than that of the cladding by 5×10−′.

かくして得られたファイバの伝送特性を測定したが、実
施例■と同様にマルチモードの伝搬は見られなかった。
The transmission characteristics of the fiber thus obtained were measured, but as in Example 2, no multimode propagation was observed.

また、破断強度も実施例Iとほとんど差異はなかった。Furthermore, there was almost no difference in breaking strength from Example I.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上のようにFドープシリカによる表面強
化層を有するファイバを形成するにあたり、元になるプ
リフォームの線引張力を表面強化層の屈折率がクラッド
のそれと等しいかもしくはそれ以上になる線引張力で線
引きするので、表面強化層には単に圧縮応力が残留する
だけでなく、その屈折率がクラッドよりも低くなること
がないのでマルチモードの伝搬のない高強度ファイバを
得ることができる。
In forming a fiber having a surface-strengthened layer made of F-doped silica as described above, this invention aims to reduce the drawing tension of the original preform to a line at which the refractive index of the surface-strengthened layer is equal to or higher than that of the cladding. Since the fiber is drawn using tensile force, not only compressive stress remains in the surface reinforcing layer, but also the refractive index of the surface reinforcing layer does not become lower than that of the cladding, making it possible to obtain a high-strength fiber without multimode propagation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、表面強化層とクラッドとの相対Fドープ量と
線引張力との関係を示すグラフ、第2図は、この発明に
よる高強度ファイバの屈折率分布図、第3図は、従来の
高強度ファイバの断面図、第4図は、従来の高強度ファ
イバの屈折率分布図である。 図において、3:表面強化層。
Fig. 1 is a graph showing the relationship between the relative F doping amount of the surface reinforcement layer and the cladding and the drawing tension, Fig. 2 is a refractive index distribution diagram of the high-strength fiber according to the present invention, and Fig. 3 is the conventional FIG. 4 is a cross-sectional view of the high-strength fiber of FIG. 4, which is a refractive index distribution diagram of the conventional high-strength fiber. In the figure, 3: surface reinforcement layer.

Claims (1)

【特許請求の範囲】 1、コア−クラッド−表面強化層からなる石英ガラス系
高強度光ファイバであって、前記表面強化層がふっ素が
ドープされて軟化温度がクラッドよりも低くされ、かつ
圧縮応力が残留せしめられて屈折率がクラッドと等しい
かもしくはそれ以上とされてなることを特徴とする石英
ガラス系高強度光ファイバ。 2、コア−クラッド−表面強化層からなり、表面強化層
にふっ素がドープされて軟化温度および屈折率がクラッ
ドのそれよりも低くされた石英ガラス系光ファイバプリ
フォームを、上記表面強化層の屈折率がクラッドのそれ
と等しいかもしくはそれ以上となる線引張力で線引きす
ることを特徴とする石英ガラス系高強度光ファイバの製
造方法。
[Claims] 1. A silica glass-based high-strength optical fiber consisting of a core, a cladding, and a surface-strengthened layer, wherein the surface-strengthened layer is doped with fluorine to have a softening temperature lower than that of the cladding, and has a compressive stress. A silica glass-based high-strength optical fiber characterized by having a cladding having a refractive index equal to or higher than that of the cladding. 2. A silica glass-based optical fiber preform consisting of a core, a cladding, and a surface-strengthening layer, in which the surface-strengthening layer is doped with fluorine to have a softening temperature and a refractive index lower than those of the cladding, is heated by the refraction of the surface-strengthening layer. 1. A method for producing a silica glass-based high-strength optical fiber, which comprises drawing with a drawing tension such that the tensile strength is equal to or higher than that of the cladding.
JP1277263A 1989-10-26 1989-10-26 Quartz glass-based high-strength optical fiber and method of manufacturing the same Expired - Fee Related JP2855531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277263A JP2855531B2 (en) 1989-10-26 1989-10-26 Quartz glass-based high-strength optical fiber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277263A JP2855531B2 (en) 1989-10-26 1989-10-26 Quartz glass-based high-strength optical fiber and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03139605A true JPH03139605A (en) 1991-06-13
JP2855531B2 JP2855531B2 (en) 1999-02-10

Family

ID=17581085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277263A Expired - Fee Related JP2855531B2 (en) 1989-10-26 1989-10-26 Quartz glass-based high-strength optical fiber and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2855531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015933A (en) * 2015-07-01 2017-01-19 株式会社フジクラ Optical fiber grating, sensor, optical filter, and method for manufacturing optical fiber grating
KR102007442B1 (en) * 2017-11-30 2019-08-05 주식회사 에이엠제이 Preparing method of strengthened glass fiber and strengthened glass fiber thereof and electronic fiber including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662204A (en) * 1979-10-25 1981-05-28 Nippon Telegr & Teleph Corp <Ntt> Optical transmission fiber and its manufacture
JPS641415A (en) * 1987-06-23 1989-01-05 Mitsui Toatsu Chem Inc Resin sheet for embedded pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662204A (en) * 1979-10-25 1981-05-28 Nippon Telegr & Teleph Corp <Ntt> Optical transmission fiber and its manufacture
JPS641415A (en) * 1987-06-23 1989-01-05 Mitsui Toatsu Chem Inc Resin sheet for embedded pipe

Also Published As

Publication number Publication date
JP2855531B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP4345180B2 (en) Optical fiber preform manufacturing method, optical fiber preform and optical fiber manufacturing method
JPH07115878B2 (en) Method for producing optical fiber with high mechanical resistance by drawing with large tensile force
JPH0389204A (en) Mono-polarized mode optical fiber and manufacture thereof
JPH03139605A (en) High-strength optical fiber of quartz glass system and production thereof
KR100878709B1 (en) A method for fabricating optical fiber using adjustment of oxygen stoichiometry
JP2582062B2 (en) Optical fiber drawing method
JPS63189809A (en) Single mode optical fiber
JPH10186156A (en) Stepped dispersion shift optical fiber
JPH0281004A (en) Optical fiber and its production
JP3948055B2 (en) Optical fiber manufacturing method and optical fiber
JPS62167235A (en) Production of base material for optical fiber
JPH04254431A (en) Quartz optical fiber preform and method for drawing this material
JPH02113205A (en) Optical fiber
JP2828251B2 (en) Optical fiber coupler
JP4225387B2 (en) Image fiber and manufacturing method thereof
KR100203566B1 (en) Method of producing optical fiber and base material therefor
JPH0378707A (en) High-strength optical fiber
JPH03113404A (en) Optical fiber
JPH0812367A (en) Dispersion shift single mode optical fiber
JPH1045421A (en) Production of optical fiber
JPH04317432A (en) Production of elliptic-core type polarization plane maintaining optical fiber
JPH0557215B2 (en)
JPH04362603A (en) Low-loss optical fiber
JPS6252509A (en) Wide-band optical fiber
JPH04251809A (en) High-reliability optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees