JPH03139602A - Production of grating pattern - Google Patents

Production of grating pattern

Info

Publication number
JPH03139602A
JPH03139602A JP27924189A JP27924189A JPH03139602A JP H03139602 A JPH03139602 A JP H03139602A JP 27924189 A JP27924189 A JP 27924189A JP 27924189 A JP27924189 A JP 27924189A JP H03139602 A JPH03139602 A JP H03139602A
Authority
JP
Japan
Prior art keywords
ion beam
substrate
irradiated
lattice
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27924189A
Other languages
Japanese (ja)
Inventor
Hiroaki Morimoto
森本 博明
Shuichi Matsuda
修一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27924189A priority Critical patent/JPH03139602A/en
Publication of JPH03139602A publication Critical patent/JPH03139602A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form fine patterns with good controllability by irradiating a substrate with a focused ion beam from the direction inclined by a specific angle to selectively generate lattice defects in the substrate in the regions irradiated with the ion beam and selectively etching away the regions irradiated with the ion beam. CONSTITUTION:The substrate 1 is irradiated with the focused ion beam 5 from the direction inclined by the angle larger than theta in the direction perpendicular to the substrate 1 when the average value of the range of the ion beam in the substrate 1 is RP, the average value of the spread in a transverse direction is DELTAX and theta is the value derived from tantheta=RP/DELTAX. The lattice defects are generated only in the regions 6 irradiated with the ion beam in the substrate 1 and the regions 6 irradiated with the ion beam are selectively etched away by the wet etching. The controllability of shape working is improved in this way and the fine lattice patterns are formed. The influence by the intrasurface nonuniformity of a resist is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学素子等に用いられる格子パターンの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a grating pattern used in optical elements and the like.

〔従来の技術〕[Conventional technology]

光学素子等に用いられる格子−パターンは、断面が、第
4図fdlに示すような非対称な形状をしていることが
効率の上で望ましい。このような格子パターンを形成す
る従来方法を第4図を用いて説明する。
In terms of efficiency, it is desirable that the cross-section of a grating pattern used in an optical element or the like has an asymmetrical shape as shown in FIG. 4fdl. A conventional method for forming such a lattice pattern will be explained with reference to FIG.

まず、写真製版技術を用いて基板1の上にレジストパタ
ーン2を形成する(第4図(a))。
First, a resist pattern 2 is formed on a substrate 1 using photolithography (FIG. 4(a)).

次に、斜め方向からイオンビームシャワー3を照射する
(第4図(b))。
Next, the ion beam shower 3 is irradiated from an oblique direction (FIG. 4(b)).

イオンビーム照射によって、レジストに覆われていない
部分はエツチングされ、また、レジストパターンも工・
ノチングされて減少していく (第4図(C))。
By ion beam irradiation, the parts not covered by the resist are etched, and the resist pattern is also etched.
It is notched and decreases (Fig. 4 (C)).

エツチングが進行すると、レジストパターンノ減少に応
じて非対称形状の格子パターンが形成される(第4図(
d))。
As etching progresses, an asymmetrical lattice pattern is formed as the resist pattern decreases (see Figure 4).
d)).

C発明が解決しようとする課題〕 このような従来の製造方法においては次の■。Problems to be solved by invention C] In such a conventional manufacturing method, the following ■.

■に示すような問題があった。There was a problem as shown in ■.

■レジストパターンを形成する写真製版工程の解像度に
限界があり、微細な形状を持つ格子パターンの形成が困
難であり、制御性も悪い。
■There is a limit to the resolution of the photolithography process for forming resist patterns, making it difficult to form lattice patterns with fine shapes and poor controllability.

■レジストパターンの減少が必ずしも均一に起こらない
ため、格子パターン形状の面内均一性が良好でない。
(2) Since the resist pattern does not necessarily decrease uniformly, the in-plane uniformity of the lattice pattern shape is not good.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、形状加工の制御性が良く、かつ
微細な格子パターンの形成が可能であり、さらにレジス
トの面内不均一性による影響の無い格子パターンの製造
方法を得ることにある。
The present invention has been made in view of these points, and its purpose is to provide good controllability of shape processing, enable the formation of fine lattice patterns, and further reduce in-plane non-uniformity of the resist. An object of the present invention is to obtain a method for manufacturing a lattice pattern that is not affected by gender.

〔課題を解決するための手段〕[Means to solve the problem]

このような課題を解決するために本発明は、基板中での
イオンビームの飛程の平均値がR2であり、横方向の広
がりの平均値がΔXであり、θがtanθ=Rp/ΔX
から導かれる値であるとき、基板に垂直な方向に対して
θより大きい角度だけ傾いた方向から集束したイオンビ
ームを照射し、イオンビーム照射領域のみに選択的に基
板中に格子欠陥を生ぜしめ、ウェットエツチングによっ
てイオンビーム照射領域を選択的にエツチング除去する
ようにしたものである。
In order to solve such problems, the present invention provides that the average value of the range of the ion beam in the substrate is R2, the average value of the lateral spread is ΔX, and θ is tanθ=Rp/ΔX.
When the value is derived from The ion beam irradiation area is selectively etched away by wet etching.

〔作用〕[Effect]

本発明による格子パターンの製造方法においては、加工
形状がイオンビームの飛程等の物理的な値によって精度
良く規定される。
In the method for manufacturing a grating pattern according to the present invention, the processed shape is defined with high precision by physical values such as the range of the ion beam.

〔実施例〕〔Example〕

以下、本発明による格子パターンの製造方法の一実施例
を第1図〜第3図を用いて説明する。
An embodiment of the method for manufacturing a lattice pattern according to the present invention will be described below with reference to FIGS. 1 to 3.

第1図は、基板に垂直な方向から集束イオンビームを照
射した場合に基板中に生じる格子欠陥分布を示す分布図
であり、同図において、1は基板、5は集束イオンビー
ム、6は格子欠陥分布(イオンビーム照射領域)である
FIG. 1 is a distribution diagram showing the lattice defect distribution that occurs in the substrate when the substrate is irradiated with a focused ion beam from a direction perpendicular to the substrate. In the figure, 1 is the substrate, 5 is the focused ion beam, and 6 is the lattice defect distribution. Defect distribution (ion beam irradiation area).

第2図は、基板に対しθだけ傾いた方向から集束イオン
ビームを照射した場合に基板中に生じる格子欠陥分布を
示す分布図であり、1は基板、5は集束イオンビーム、
6は格子欠陥分布である。
FIG. 2 is a distribution diagram showing the lattice defect distribution generated in the substrate when the substrate is irradiated with a focused ion beam from a direction inclined by θ, where 1 is the substrate, 5 is the focused ion beam,
6 is the lattice defect distribution.

第3図は、第2図に示した試料をウェットエツチングす
ることにより形成された格子パターンを示すパターン図
であり、4は格子パターン図である。
FIG. 3 is a pattern diagram showing a lattice pattern formed by wet etching the sample shown in FIG. 2, and 4 is a lattice pattern diagram.

次に、各図について更に詳細に説明する。Next, each figure will be explained in more detail.

200keVの窒素(N”)イオンビーム5を直径0.
1μmに集束し、この集束したイオンビーム5を5iO
z基板Iに垂直に照射したときに生ずる格子欠陥分布6
を第1図に示す。同図では、斜線が蜜なほど格子欠陥密
度が高いことを示す。
A 200 keV nitrogen (N'') ion beam 5 with a diameter of 0.
The focused ion beam 5 is focused to 1 μm, and the focused ion beam 5 is
Lattice defect distribution that occurs when z substrate I is irradiated perpendicularly 6
is shown in Figure 1. In the figure, the closer the diagonal lines are, the higher the lattice defect density is.

イオンビーム5の飛程の平均(liRPの深さで最も高
い格子欠陥密度を示す。また、イオンビームの横方向へ
の広がりの平均値をΔXとする。200keVのN+イ
オンビーム5をSiO2基板1に照射したときは、Rp
=0.43pm、ΔX=0.14μmである。
The average range of the ion beam 5 (indicates the highest lattice defect density at the depth of liRP. Also, the average value of the lateral spread of the ion beam is ΔX. The 200 keV N+ ion beam 5 is When irradiated with Rp
= 0.43 pm, ΔX = 0.14 μm.

ここで、RP/ΔX=0.4310.14=3.07=
tanθ となるθ(#72°)だけ、基板10法線方向(−点鎖
線の方向)から傾けた方向から、集束イオンビーム5を
基板1に入射させると、第2図に示すような格子欠陥分
布6が生ずる。
Here, RP/ΔX=0.4310.14=3.07=
When the focused ion beam 5 is incident on the substrate 1 from a direction tilted from the normal direction of the substrate 10 (the direction of the - dotted chain line) by θ (#72°) that is tanθ, lattice defects as shown in FIG. Distribution 6 results.

次に、基板1を塩酸中に10分間浸すと、イオンビーム
照射によって生じた格子欠陥発生領域6が選択的にエツ
チング除去され、第3図に示すような鋸歯状の非対称な
格子パターン4が形成される。
Next, when the substrate 1 is immersed in hydrochloric acid for 10 minutes, the lattice defect generation region 6 generated by the ion beam irradiation is selectively etched away, and a sawtooth asymmetric lattice pattern 4 as shown in FIG. 3 is formed. be done.

イオンビーム5の入射角度が前記θの値よりも小さいと
、エツチング断面は鋸歯状にならず、えぐれた形状にな
る。
If the incident angle of the ion beam 5 is smaller than the value of θ, the etched cross section will not have a sawtooth shape but will have a gouged shape.

イオンの種類・エネルギーを変えることによりRP、Δ
Xの値は変わるので、エツチング断面の制御を行なうこ
とは容易゛である。
By changing the type and energy of ions, RP, Δ
Since the value of X changes, it is easy to control the etched cross section.

なお、上記実施例では、SiO□基板1に対しN”4オ
ンビームを照射し、塩酸によってエツチングを行なって
いるが、基板、イオン種、エツチング液はいずれも限定
されるものではない。
In the above embodiment, the SiO□ substrate 1 is irradiated with N''4 on-beam and etched with hydrochloric acid, but the substrate, ion species, and etching solution are not limited.

また、上記実施例は格子パターンについて示しているが
、プリズム、ミラー等の他の光学素子にも適用できる。
Further, although the above embodiments are shown in terms of lattice patterns, they can also be applied to other optical elements such as prisms and mirrors.

C発明の効果〕 以上説明したように本発明は、θがjanθ=Rp/Δ
Xから導かれる値であるとき、基板に垂直な方向に対し
てθより大きい角度だけ傾いた方向から集束したイオン
ビームを照射し、イオンビーム照射領域のみに選択的に
基板中に格子欠陥を生ぜしめ、ウェットエツチングによ
ってイオンビーム照射領域を選択的にエツチング除去す
るようにしたことにより、加工形状をイオンビームの飛
程の平均値Rp等の物理的な値によって精度良く規定す
ることができるので、形状加工の制御性が良く、かつ微
細なパターンの形成が可能であるという効果がある。
C Effects of the Invention] As explained above, the present invention has the advantage that θ is janθ=Rp/Δ
When the value is derived from By selectively etching and removing the ion beam irradiated area by wet etching, the processed shape can be defined with high precision by physical values such as the average value Rp of the range of the ion beam. It has the advantage of good controllability of shape processing and the ability to form fine patterns.

また、レジストを使用しないので、加工形状の面内均一
性が良好になる効果がある。
Furthermore, since no resist is used, there is an effect that the in-plane uniformity of the processed shape is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基板に垂直な方向から集束イオンビームを照射
した場合に基板中に生じる格子欠陥分布を示す分布図、
第2図は基板に対しθだけ傾いた方向から集束イオンビ
ームを照射した場合に基板中に生じる格子欠陥分布を示
す分布図、第3図は第2図に示した試料をウェットエツ
チングすることにより形成された格子パターンを示すパ
ターン図、第4図は従来の格子パターンの製造方法を説
明するだめの断面図である。
Figure 1 is a distribution diagram showing the lattice defect distribution that occurs in a substrate when a focused ion beam is irradiated from a direction perpendicular to the substrate.
Figure 2 is a distribution diagram showing the lattice defect distribution generated in the substrate when the focused ion beam is irradiated from a direction tilted by θ to the substrate, and Figure 3 is a distribution diagram showing the lattice defect distribution generated in the substrate by wet etching the sample shown in Figure 2. A pattern diagram showing the formed lattice pattern, and FIG. 4 is a cross-sectional view for explaining a conventional method of manufacturing a lattice pattern.

Claims (1)

【特許請求の範囲】  基板中でのイオンビームの飛程の平均値がR_pであ
り、横方向の広がりの平均値がΔXであり、θがtan
θ=R_p/ΔXから導かれる値であるとき、 基板に垂直な方向に対してθより大きい角度だけ傾いた
方向から集束したイオンビームを照射し、イオンビーム
照射領域のみに選択的に基板中に格子欠陥を生ぜしめ、
ウェットエッチングによって前記イオンビーム照射領域
を選択的にエッチング除去することを特徴とする格子パ
ターンの製造方法。
[Claims] The average value of the range of the ion beam in the substrate is R_p, the average value of the lateral spread is ΔX, and θ is tan.
When the value is derived from θ=R_p/ΔX, a focused ion beam is irradiated from a direction tilted by an angle greater than θ with respect to the direction perpendicular to the substrate, and the ion beam is selectively irradiated into the substrate only in the ion beam irradiation area. causing lattice defects,
A method for manufacturing a lattice pattern, characterized in that the ion beam irradiation area is selectively etched away by wet etching.
JP27924189A 1989-10-25 1989-10-25 Production of grating pattern Pending JPH03139602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27924189A JPH03139602A (en) 1989-10-25 1989-10-25 Production of grating pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27924189A JPH03139602A (en) 1989-10-25 1989-10-25 Production of grating pattern

Publications (1)

Publication Number Publication Date
JPH03139602A true JPH03139602A (en) 1991-06-13

Family

ID=17608409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27924189A Pending JPH03139602A (en) 1989-10-25 1989-10-25 Production of grating pattern

Country Status (1)

Country Link
JP (1) JPH03139602A (en)

Similar Documents

Publication Publication Date Title
CN1036868C (en) Dry etching method and its application
EP0735428B1 (en) Fine pattern forming method and fine pattern device
JP3849272B2 (en) Etching method of quartz substrate
JPH03139602A (en) Production of grating pattern
CN110294453A (en) A kind of high-aspect-ratio micro-nano structure and preparation method thereof
JPH1172606A (en) Pattern etching method for sic
JPH04293234A (en) Etching method of sic
JP2725663B2 (en) Fine structure forming method
JPH06349779A (en) Method for formation of pattern on surface of substrate
JPH0159574B2 (en)
JPH03196521A (en) Manufacture of semiconductor device
JPH04284620A (en) Manufacture of semiconductor device
JPS60208834A (en) Formation of pattern
JPH02199401A (en) Production of diffraction grating
JPH01189923A (en) Manufacture of semiconductor device
JPS5997104A (en) Production of echelette type diffraction grating
JPH1078667A (en) Fine processing method
JPH04263203A (en) Production of blaze reflection diffraction grating
JP4025886B2 (en) Method for microfabrication of crystalline TiO2 and micromachined crystal TiO2
JPH021848A (en) Method of forming circular pattern on metallic plate
KR100278742B1 (en) Method of forming fine pattern of highly reflective material
JPS61138202A (en) Production of diffraction grating
JPH088196A (en) Formation of tungsten pattern
JPS63304625A (en) Registering pattern
JPH01316932A (en) Manufacture of semiconductor device