JPH03138551A - Humidity measuring instrument - Google Patents

Humidity measuring instrument

Info

Publication number
JPH03138551A
JPH03138551A JP27811089A JP27811089A JPH03138551A JP H03138551 A JPH03138551 A JP H03138551A JP 27811089 A JP27811089 A JP 27811089A JP 27811089 A JP27811089 A JP 27811089A JP H03138551 A JPH03138551 A JP H03138551A
Authority
JP
Japan
Prior art keywords
dew condensation
humidity
amount
deterioration
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27811089A
Other languages
Japanese (ja)
Other versions
JP2814392B2 (en
Inventor
Yoshihisa Masuo
善久 増尾
Jutaro Nishimura
寿太郎 西村
Tsuguji Tanaka
田中 嗣治
Toshio Yomo
四方 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP27811089A priority Critical patent/JP2814392B2/en
Publication of JPH03138551A publication Critical patent/JPH03138551A/en
Application granted granted Critical
Publication of JP2814392B2 publication Critical patent/JP2814392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To provide a detector itself with a function which outputs the quantity of deterioration and to eliminate the need for calibration using special equipment by calculating the continuance of the dew condensation state of a humidity detecting element as the quantity of dew condensation and deciding the deterioration from the cumulative value. CONSTITUTION:The subject instrument is constituted of the humidity detecting element 1, an A/D converter 2 which converts the output signal into a digital signal, a temperature detecting element 3, an A/D converter 4 which converts its output signal into a digital signal, a CPU 5 which inputs those digital signals, a timer 6, a memory part 7, and a display part 8. Then when it is decided whether measured humidity corresponds to the dew condensation state or not and the dew condensation state is discriminated, the continuance of the dew condensation is measured. Then the quantity of the change with the lapse of time corresponding to the dew condensation time is calculated, and cumulated and stored, and the cumulative stored value is outputted as the quantity of deterioration. Namely, when the cumulative stored quantity is large, it is known that the deterioration of the humidity detecting element 1 due to the dew condensation is advanced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、湿度計測装置、特に湿度検出素子の劣化量
を出力し得る湿度計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a humidity measuring device, and particularly to a humidity measuring device capable of outputting the amount of deterioration of a humidity detecting element.

(ロ)従来の技術 一般に湿度計測装置のセンサ(素子)としては、抵抗型
や静電容量型の温度センサが使用され、湿度により変化
する抵抗値や容量値に応じた信号を出力し、この信号に
基づき湿度を計測している。
(b) Conventional technology In general, resistance-type or capacitance-type temperature sensors are used as sensors (elements) in humidity measuring devices, and output signals according to resistance or capacitance values that change depending on humidity. Humidity is measured based on the signal.

しかし、この種の湿度センサは、感湿膜部が結露状態と
なり、長期間続くと、結露水の流出時に伝導キャリアが
減少し、急激な特性変化が生じ、測定誤差が大きくなる
。そのため、従来は、湿度発生槽と校正用の湿度計を用
いて定期的に校正を行い、極端に測定誤差の大きいもの
は素子が劣化したものとして交換していた。
However, in this type of humidity sensor, if the moisture sensitive membrane part becomes dew condensed and continues for a long period of time, conductive carriers decrease when dew condensed water flows out, causing a sudden change in characteristics and increasing measurement errors. Therefore, in the past, calibration was performed periodically using a humidity generation tank and a hygrometer for calibration, and if the measurement error was extremely large, the element was assumed to be deteriorated and replaced.

(ハ)発明が解決しようとする課題 従来の湿度計測装置は、自身に湿度検出素子の劣化を検
出する機能を備えていないので、上記のように湿度発生
槽と校正用の湿度計を用い、定期的に校正を行わねばな
らなかった。そのため、校正用の機器を備えておかねば
ならず、また定期的に校正を行わねばならぬという煩雑
さがあった。
(c) Problems to be Solved by the Invention Conventional humidity measuring devices do not have a function to detect deterioration of the humidity detecting element, so as described above, a humidity generating tank and a hygrometer for calibration are used. Calibration had to be done periodically. Therefore, it is necessary to prepare equipment for calibration, and the calibration must be performed periodically, which is complicated.

その上、校正から次の校正までの間に素子の劣化が進む
と、その間測定誤差が発生するという問題があった。
Furthermore, there is a problem in that if the element deteriorates between calibrations and the next calibration, measurement errors occur during that period.

この発明は、上記問題点に着目してなされたものであっ
て、検出装置自身に劣化量を出力する機能を持だぜ、特
別の機器を用いた校正の不用な湿度計測装置を提供する
ことを目的としている。
This invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a humidity measuring device which has a function of outputting the amount of deterioration in the detection device itself and does not require calibration using special equipment. It is an object.

(ニ)課題を解決するための手段及び作用この発明の湿
度計測装置は、湿度検出素子と、この湿度検出素子の出
力に基づいて湿度を計測する手段と、結露状態か否かを
判別する手段と、結露状態と判別されてから結露状態で
無しと判別されるまでの結露時間を計測する手段と、こ
の計測した結露時間に応じた経時変化量を算出する手段
と、この経時変化量を累積記憶する手段と、この累積記
憶量を湿度検出素子の劣化量として出力する手段とから
構成されている。
(d) Means and operation for solving the problems The humidity measuring device of the present invention includes a humidity detecting element, a means for measuring humidity based on the output of the humidity detecting element, and a means for determining whether or not there is condensation. a means for measuring the dew condensation time from when it is determined that there is condensation to when it is determined that there is no condensation; a means that calculates the amount of change over time according to the measured time of dew condensation; and a means for accumulating the amount of change over time. It consists of a storage means and a means for outputting the cumulative storage amount as the amount of deterioration of the humidity detection element.

この湿度計測装置では、例えば湿度計測手段で計測され
る湿度より結露状態か否か判別され、結露状態であると
判別されると、この結露状態の発生から終了するまでの
結露時間が計測される。そして、この結露時間に応じた
経時変化量が算出され、この経時変化量を累積記憶し、
この累積記憶量が劣化量として出力される。結露時間が
長いほど、劣化もより進行し、また累積値も大きくなる
ものであるから、劣化量、つまり累積記憶量が大きいと
、結露による湿度検出素子の劣化が進行していることを
知ることができる。
In this humidity measuring device, for example, it is determined whether or not there is condensation based on the humidity measured by the humidity measuring means, and if it is determined that there is condensation, the time from the occurrence of the condensation to the end of the condensation is measured. . Then, the amount of change over time is calculated according to this dew condensation time, and this amount of change over time is stored cumulatively.
This cumulative storage amount is output as the amount of deterioration. The longer the dew condensation time is, the more the deterioration progresses, and the cumulative value becomes larger. Therefore, if the amount of deterioration, that is, the cumulative amount of memory, is large, it is known that the deterioration of the humidity detection element due to dew condensation is progressing. Can be done.

(ボ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(B) Examples The present invention will now be explained in more detail with reference to Examples.

第1図は、この発明が実施される湿度計測装置のハード
構成を示すブロック図である。この湿度計測装置は、湿
度検出素子1と、この湿度検出素子1の出力信号をデジ
タル信号に変換するA/D変換器2と、温度検出素子3
と、この温度検出素子3の出力信号をデジタル信号に変
換するA/D変換器4と、A/D変換器2.4からのデ
ジタル信号を取り込むCPU5と、タイマ6と、メモリ
部7と、表示部8とから構成されている。
FIG. 1 is a block diagram showing the hardware configuration of a humidity measuring device in which the present invention is implemented. This humidity measuring device includes a humidity detecting element 1, an A/D converter 2 that converts an output signal of the humidity detecting element 1 into a digital signal, and a temperature detecting element 3.
, an A/D converter 4 that converts the output signal of the temperature detection element 3 into a digital signal, a CPU 5 that takes in the digital signal from the A/D converter 2.4, a timer 6, and a memory section 7. It is composed of a display section 8.

湿度検出素子1は、例えば抵抗型温度センサが使用され
る。CPU5は、A/D変換器2を介して取り込まれる
湿度検出素子1の出力信号と、A/D変換器4を介して
取り込まれる温度検出素子3の出力信号とにより、温度
補償のなされた湿度を計測する機能を備えている。
As the humidity detection element 1, for example, a resistance type temperature sensor is used. The CPU 5 uses the output signal of the humidity detection element 1 taken in via the A/D converter 2 and the output signal of the temperature detection element 3 taken in via the A/D converter 4 to generate a temperature-compensated humidity signal. It has a function to measure.

湿度センサでは、結露状態の連続継続時間を結露量とす
ると、結露量が一種のストレスとなって劣化の進行が促
進される。また、湿度センサでは、高温、高温〔約40
°C以上、90%RH(相対湿度)以上〕で劣化の進行
が促進される。そのため、この実施例装置で、結露の発
生を判別し、継続時間を計測し、累積して劣化量として
出力する機能と、高温、高温状態を検出し、高温、高温
となる時間を累積し、その累積値を劣化量として出力す
る機能を備えている。これら2つの劣化検知処理の実行
はCPU5で実行され、実行に際し、使用されるデータ
はメモリ部7に記憶されている。
In a humidity sensor, if the continuous duration of a dew condensation state is defined as the amount of dew condensation, the amount of dew condensation becomes a type of stress and accelerates the progress of deterioration. In addition, the humidity sensor detects high temperatures, high temperatures [approximately 40
°C or higher and 90% RH (relative humidity) or higher], the progress of deterioration is accelerated. Therefore, this example device has a function to determine the occurrence of dew condensation, measure the duration, and output the accumulated amount as the amount of deterioration, as well as a function to detect high temperature and high temperature state, and to accumulate the time at high temperature and high temperature. It has a function to output the cumulative value as the amount of deterioration. These two deterioration detection processes are executed by the CPU 5, and the data used during the execution is stored in the memory unit 7.

この実施例では、結露量劣化検知と高温、高温劣化検知
の2つの劣化検知処理機能を備えているが、いずれか一
方の処理のみでも十分に湿度センサの劣化検知は可能で
ある。
Although this embodiment has two deterioration detection processing functions: detection of dew condensation amount deterioration and high temperature/high temperature deterioration detection, it is possible to sufficiently detect deterioration of the humidity sensor with only one of the processes.

CPU5は、結露量劣化検知、高温、高温劣化検知のい
ずれにおいても、累積値が所定値を越えると、センサエ
ラー信号を表示部8に出力して表示する機能を備えてい
る。
The CPU 5 has a function of outputting and displaying a sensor error signal on the display unit 8 when the cumulative value exceeds a predetermined value in any of dew condensation amount deterioration detection, high temperature, and high temperature deterioration detection.

結露時間t、、(min(分)〕は、44m1を越えて
、大きくなれば、これに応じてストレスも増大するので
、第3図に示すような結露時間tqとストレス量α6の
関係を示すテーブルがメモリ部7に記憶されている。こ
のテーブルにおいて、K、<K2く・・・〈K、lであ
り、応じてα8.〈α、2〈・・・〈αB11である。
As the dew condensation time t, (min (minutes)) increases beyond 44 m1, the stress increases accordingly, so the relationship between the dew condensation time tq and the stress amount α6 is shown in Figure 3. A table is stored in the memory section 7. In this table, K, <K2, . . . , <K, l, and accordingly α8.

なお、結露量より劣化換算量(ストレス量)を算出する
方法は、湿度検出素子の結露回数と結露時間と経時変化
量(劣化量)の関係の経時冊特性(実測データ)により
推定する。
Note that the method of calculating the deterioration conversion amount (stress amount) from the amount of dew condensation is estimated based on the temporal characteristics (actual measurement data) of the relationship between the number of dew condensation times of the humidity detection element, the dew condensation time, and the amount of change over time (deterioration amount).

また、高温状態(例えば90%RH以上)で、高温状態
が続くほど、ストレスも増大するので、第4図に示すよ
うな素子温度情報TX (’C)とストレス量α1の関
係を示すテーブルがメモリ部7に記憶されている。この
テーブルにおいて温度はT+ <Tz <−<T(n4
)<Tnであり、応じてストレス量αヶもα1.〈α1
□く・・・くαA、、である。
In addition, in a high temperature state (for example, 90% RH or higher), the stress increases as the high temperature state continues, so a table showing the relationship between the element temperature information TX ('C) and the stress amount α1 as shown in Fig. 4 is prepared. It is stored in the memory section 7. In this table, the temperature is T+ <Tz <-<T(n4
)<Tn, and accordingly the stress amount α is also α1. <α1
□Ku...KuαA,,.

次に第2図(a)、第2図(b)に示すフロー図を参照
して、上記実施例湿度計測装置の劣化検知処理動作につ
いて説明する。
Next, with reference to the flowcharts shown in FIGS. 2(a) and 2(b), the deterioration detection processing operation of the humidity measuring device of the above embodiment will be described.

〈高温・高湿劣化検知〉 劣化検知処理実行周期は、tp=1mtnであり、l 
min毎にステップST(以下STと略す)■の“処理
タイミングか°°の判定がYESとなり、次に計測した
湿度I(。が95%RH以上か判定する(Sr1)。湿
度HXが95%RHでない場合に判定NoとなりSr1
に移る。湿度HXが95%RH以上であれば、Sr1の
判定YESで5TI3に移る。5T13以降は、結霜量
劣化検知処理であり、これについては後述する。
<High temperature/high humidity deterioration detection> The deterioration detection process execution cycle is tp=1mtn, and l
Every min, the determination of "processing timing" in step ST (hereinafter abbreviated as ST) becomes YES, and then it is determined whether the measured humidity I (.) is 95% RH or more (Sr1). Humidity HX is 95% If it is not RH, the judgment will be No and Sr1
Move to. If the humidity HX is 95%RH or more, the determination of Sr1 is YES and the process moves to 5TI3. 5T13 and subsequent steps are frost amount deterioration detection processing, which will be described later.

Sr1で、結露が発生していない状態では゛フラグFP
−0か゛、つまり°゛結結霜量化化検知処理終了”、の
判定がNOとなり、Sr1に移り、ここから高温、高湿
劣化検知処理に入る。先ずSr1で計測した湿度HXが
90%RH以上であるか否か判定する。湿度HXが90
%RH以上でない場合、ここでは高温でないとし、標準
寿命ストレス設定を行う。すなわち値α。をα。とじて
記憶する(Sr1)。次に、このα、として記憶された
ものを、今回のtP間におけるストレス量α。
When Sr1 is used and no condensation occurs, the flag FP is set.
-0, that is, the judgment of "Frost formation amount detection processing completed" is NO, and the process moves to Sr1, from which high temperature and high humidity deterioration detection processing begins. First, the humidity HX measured in Sr1 is 90% RH. Determine whether or not the humidity is above 90.
If the temperature is not higher than %RH, it is assumed that the temperature is not high and the standard life stress setting is performed. i.e. the value α. α. and store it (Sr1). Next, what is stored as α is the stress amount α during the current tP.

とじて記憶する(Sr1)。また、メモリ部7に記憶さ
れるストレス積算値り、を続出し、前回までのストレス
積算値Σ5(n−1)とする(Sr1)。
and store it (Sr1). Further, the stress cumulative value RI stored in the memory unit 7 is successively stored, and is set as the stress cumulative value Σ5(n-1) up to the previous time (Sr1).

次に、前回までのストレス積算値ΣS (n−1)に今
回のストレス量α。を加算し、今回までのストレス積算
値ΣS (n)を算出する(Sr9)。そして、このス
トレス積算値ΣS (n)をデータD、とじてメモリ部
7に記憶する一方(ST10)、この今回までのストレ
ス積算値ΣS (n)と劣化判定基準量ΣS MAXと
比較し、ΣS )IAX≦ΣS (n)か否か判定する
(STII)。ΣS (n)がΣSイ、×に達していな
い場合、5TIIの判定NOで今回の処理を終了する。
Next, the current stress amount α is added to the stress cumulative value ΣS (n-1) up to the previous time. is added to calculate the cumulative stress value ΣS (n) up to this time (Sr9). Then, this stress cumulative value ΣS (n) is stored as data D in the memory unit 7 (ST10), and the stress cumulative value ΣS (n) up to this time is compared with the deterioration judgment reference amount ΣS MAX, and ΣS ) It is determined whether IAX≦ΣS (n) (STII). If ΣS (n) has not reached ΣS i, ×, the current process ends with a NO determination in 5TII.

そして、さらに次の1 minが到来すると、またST
I以降の処理を実行する。今、αc−1とし、Σ5HA
X =35040Hrに設定していると、湿度H,が9
0%RH未満の状態で、連続して4年間、湿度計測を続
けると、計測を開始してから、4年の経過でΣS (n
)が35040Hrとなり、5TIIの判定がYESと
なり、センサエラー処理が実行され、表示部8のLED
が点灯される。これにより、湿度検出素子が劣化したこ
とを報知する(ST12)。
Then, when the next 1 min arrives, the ST
Execute the processing after I. Now, let αc-1 and Σ5HA
When setting X = 35040Hr, humidity H, is 9
If you continue measuring humidity for 4 years in a state where the RH is less than 0%RH, ΣS (n
) becomes 35040 hours, the judgment of 5TII becomes YES, sensor error processing is executed, and the LED of display unit 8
is lit. This notifies that the humidity detection element has deteriorated (ST12).

湿度HXが90%R8未満で計測を継続して4年で湿度
検出素子の劣化を判定するものであるから、湿度I(X
が90%RH以上で計測を継続して行われると、もっと
も早い時期に劣化が判定される。ずなわちSr1で8.
290%RHか”°の判定がYESの場合、高温であり
、この場合は、計測された温度TXより、ストレス量α
、を算出する。例えば温度T、がT2<TX<T3であ
るとすると、第4図のテーブルを参照してメモリ部7よ
りストレス量α。が読み出され、このストレス量αA3
が今回のストレス量α。とじて記憶され(Sr1)、そ
れまでのストレス量積算値ΣS (n−1)に、今回の
ストレス量α0 (α。、)を加算して、今回までのス
トレス積算値ΣS (n)を算出する(Sr1.5T9
)。ストレス量α。は標準ストレス量αゎより、何倍か
大きく設定してあり、したがってt2間にαゎずつ累積
してゆくのに比し、1p間毎にα、、ずつ累積してゆく
と、ΣS MAXに達するのが、4年よりもはるかに早
く達することになり、センサエラーの表示が早くなされ
ることになる。計測温度T8が’ra <T、 <’r
5であると対応するストレス量はαA、であり、αA、
<αA、であるから、累積値ΣS (n)がΣS 、4
AXに達するのが、さらに早くなる。このように、この
実施例では、高湿状態で、より高温な状態が継続する程
、大きな劣化量が出力され、湿度検出素子が劣化したと
判定する時期が早くなるようにしている。
Humidity I(X
If measurement is continuously performed at 90% RH or higher, deterioration is determined at the earliest stage. Sr1 and 8.
If the determination of 290% RH is YES, the temperature is high, and in this case, from the measured temperature TX, the stress amount α
, is calculated. For example, if the temperature T is T2<TX<T3, the stress amount α is calculated from the memory unit 7 with reference to the table in FIG. is read out, and this stress amount αA3
is the current stress amount α. The current stress amount α0 (α.,) is added to the previous stress amount cumulative value ΣS (n-1) to calculate the current stress amount cumulative value ΣS (n). (Sr1.5T9
). Stress amount α. is set several times larger than the standard stress amount αゎ. Therefore, compared to accumulating αゎ during t2, if αゎ is accumulated every 1p, ΣS MAX This will be reached much earlier than four years, and sensor errors will be indicated sooner. Measured temperature T8 is 'ra <T, <'r
5, the corresponding stress amount is αA, and αA,
<αA, so the cumulative value ΣS (n) is ΣS ,4
It will reach AX even faster. In this way, in this embodiment, the longer the high humidity and high temperature conditions continue, the greater the amount of deterioration is output, and the earlier it is determined that the humidity detection element has deteriorated.

〈結露量劣化検知〉 計測湿度HXが95%RH以上であると、ここでは結露
状態であると判定している。結露状態と判定するのは、
計測湿度HXが95%〜100%RHの適宜の値に設定
してよいが95%としているのは、周囲温度25°Cに
おける測定精度が±5%RHであり、さらに5%RHの
差を温度換算比較すると約0.5°Cの変動分に相当し
、この値は制御環境の安定性を考慮すると十分小さいと
判断できるからである。
<Detection of deterioration in amount of dew condensation> If the measured humidity HX is 95% RH or more, it is determined here that there is dew condensation. Dew condensation is determined by:
The measured humidity HX may be set to an appropriate value between 95% and 100% RH, but the reason why it is set to 95% is that the measurement accuracy at an ambient temperature of 25°C is ±5% RH, and the difference of 5% RH is This is because when compared in terms of temperature, this corresponds to a variation of about 0.5°C, and this value can be judged to be sufficiently small considering the stability of the control environment.

Sr1で°IHX≧95%RHか°”の判定がYESと
なると、結露状態になったことを意味し、5T13に移
り、フラグFp=1か、つまり結露量劣化検知処理中か
否か判定する。結露状態に達した頭初は、この判定がN
oであり、ここで結露保持時間t9をリセットしく5T
14)、フラグF、。
If the determination of ``IHX≧95%RH or °'' is YES in Sr1, it means that a dew condensation state has occurred, and the process moves to 5T13, where it is determined whether the flag Fp=1, that is, whether dew condensation amount deterioration detection processing is in progress. .At the beginning when the condensation state has been reached, this judgment is N.
o, and here the condensation retention time t9 should be reset to 5T.
14),Flag F,.

をII I IIとし、結露量劣化をスタートする(S
T15)。そして、それまでの結露保持時間t9いにt
、を加算して、今回までの結露保持時間tq (1を算
出する(ST16)。次に、結露保持時間t Q (I
llが4 min以上であるか判定しく5T17)、t
 q fn+≧4 minでない場合は、判定Noで結
露によるストレスを考慮せず、Sr1に移る。5TI7
で(、q (n)≧4 minであると、表示部8の結
露アラーム表示用のLEDのセグメントを点灯し、湿度
検出素子が結露状態にあることを報知して(S718)
、Sr1に移る。計測湿度H,が95%RH以上の間は
、結露状態が続いているものとして、Sr1.5T13
、・・・、5T1B、・・・の処理を繰り返し、結露保
持時間t9い、の測定を継続する。この間は、結露量劣
化によるストレス量の積算処理は行わない。
II II II and start deterioration of dew condensation (S
T15). Then, the condensation retention time t9 until then is t
, to calculate the condensation retention time tQ (1) up to this time (ST16). Next, the condensation retention time tQ (I
5T17), t
If q fn+≧4 min is not satisfied, the determination is No and stress due to dew condensation is not considered and the process moves to Sr1. 5TI7
If (, q (n)≧4 min), the LED segment for displaying a condensation alarm on the display unit 8 is lit to notify that the humidity detection element is in a condensation state (S718).
, move on to Sr1. While the measured humidity H, is 95%RH or higher, it is assumed that dew condensation continues.
, 5T1B, . . . are repeated, and the measurement of the dew condensation retention time t9 is continued. During this time, the stress amount due to the deterioration of the amount of dew condensation is not integrated.

やがて、計測湿度HXが95%RHより小さくなると、
つまり結露状態が途切れると、Sr1の判定NOとなり
、Sr1に移る。Sr1で、フラグFpがそれまで゛1
パであるから、“結露量劣化検知処理終了か°°の判定
がYESとなり、ここで、フラグFpを“0゛′としく
5T19)、結露保持時間L Q (11−11> 4
 minか否かを判定しく5T20)、jQ(n−11
が4 min以下の場合は、コノ結露状態は無視し、S
r1に飛ぶ。
Eventually, when the measured humidity HX becomes less than 95%RH,
That is, when the dew condensation state is interrupted, the determination of Sr1 becomes NO, and the process moves to Sr1. In Sr1, the flag Fp was ``1'' until then.
Since the dew condensation amount deterioration detection process is completed, the determination of "°°" is YES, and the flag Fp is set to "0" (5T19), and the dew condensation holding time L Q (11-11> 4
5T20), jQ(n-11
If it is less than 4 min, ignore the condensation condition and
Jump to r1.

5T20で結露量保持時間jQ(n−11が4 min
を越えていると、結露量によるストレス有として、第3
図に示したメモリ部7のストレス量選択テーブルを参照
して結露量保持時間tqに対応するストレス量αおを読
出しく5T21)、このストレス量α8を加算用のスト
レス量α。とじて記憶する。第3図に示すストレス量α
4、α8□、・・・1 αB0は、Hr(時間)オーダの大きな値である。
At 5T20, the dew condensation amount retention time jQ (n-11 is 4 min
If it exceeds the 3rd level, it is considered that there is stress due to the amount of dew condensation.
With reference to the stress amount selection table in the memory section 7 shown in the figure, read out the stress amount α corresponding to the dew condensation amount holding time tq (5T21), and use this stress amount α8 as the stress amount α for addition. Close it and memorize it. Stress amount α shown in Figure 3
4, α8□, . . . 1 αB0 is a large value on the order of Hr (time).

例えば結露保持時間り、lかに、であると、ストレスα
B4がα。とじて記憶される(ST22)。そして、S
r8に移り、それまでのストレス量の累積値DMをメモ
リ部7から読み出して、それまでの累積ストレス量ΣS
 (n−1)として記憶し、このストレス量ΣS (n
−1)に、ストレス量α。(αB4)を加算し、今回の
累積ストレス量ΣS (n)を算出しく5T9)、この
ΣS (n)をメモリ部7にり。
For example, if the condensation retention time is 1, the stress α
B4 is α. It is stored together (ST22). And S
Proceeding to r8, the cumulative stress amount DM up to that point is read out from the memory section 7, and the cumulative stress amount ΣS up to that point is read out from the memory unit 7.
(n-1), and this stress amount ΣS (n
−1), stress amount α. (αB4) to calculate the current cumulative stress amount ΣS (n) (5T9), and store this ΣS (n) in the memory section 7.

として記憶する(STIO)一方、劣化判定基準量ΣS
 WAXとストレス積算値ΣS (n)を比較し、ΣS
MAX<ΣS (n)でない場合は、t、経過後の次の
処理タイミングが到来するまで待機するが、ΣSM□〈
ΣS (n)の場合は、表示部8のセンサエラーLED
を点灯し、湿度検出素子が劣化したとみなすべき時機に
きていることを報知する。
(STIO) On the other hand, the deterioration judgment reference amount ΣS
Compare WAX and stress cumulative value ΣS (n),
If MAX<ΣS (n), it waits until the next processing timing arrives after t has elapsed, but ΣSM□〈
In the case of ΣS (n), the sensor error LED on the display section 8
lights up to notify you that it is time to consider that the humidity detection element has deteriorated.

結露時間tqかに+ 、Kg 、K3、・・・と大きい
ほど、ストレス量も極端に増大するので劣化量の累積が
大幅に促進され、4年の標準寿命に対し、はるかに早い
時期に寿命が到来し、かつこれを的2 確に報知できる。
As the dew condensation time increases (tqKani+, Kg, K3, etc.), the amount of stress increases extremely, so the accumulation of deterioration is greatly accelerated, and the lifespan ends much earlier than the standard lifespan of 4 years. has arrived, and can be accurately announced.

なお、上記実施例において、結露状態における結露時間
に対応するストレス量を求めるのに結露時間とストレス
量の関係をテーブル化してメモリ部に記憶しているが、
これに代え、結露時間とストレス量の関係を示す近似式
を記憶しておき、計測された結露時間をこの近似式に適
用してストレス量を算出してもよい。
In the above embodiment, in order to obtain the stress amount corresponding to the dew condensation time in the dew condensation state, the relationship between the dew condensation time and the stress amount is created in a table and stored in the memory section.
Alternatively, an approximation formula showing the relationship between dew condensation time and stress amount may be stored, and the stress amount may be calculated by applying the measured dew condensation time to this approximation formula.

(へ)発明の効果 この発明によれば、湿度検出素子の結露状態の連続継続
時間を結露量として算出し、算出した結露量の劣化換算
量を累積し、この累積値より劣化を判定するものである
から、劣化を量的に把握でき、特別の計器を使用しなく
ても、自身で湿度検出素子の劣化を報知することができ
、許容の範囲で早めに湿度検出素子が交換可能となり、
常に小さい測定誤差で湿度計測を行うことができる。
(F) Effects of the Invention According to this invention, the continuous duration of the condensation state of the humidity detection element is calculated as the amount of dew condensation, the amount of deterioration converted from the calculated amount of dew condensation is accumulated, and the deterioration is determined from this cumulative value. Therefore, the deterioration can be grasped quantitatively, the deterioration of the humidity detection element can be notified by oneself without using a special instrument, and the humidity detection element can be replaced as early as possible.
Humidity measurement can always be performed with small measurement errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明が実施される湿度計測装置のハード
構成を示すブロック図、第2図(a)、第2図(1))
は、同湿度計測装置の劣化検知処理動作を説明するため
のフロー図、第3図は、同湿度計測装置のメモリ部に記
憶される結露時間とストレス量との対応を示すテーブル
図、第4図は、同湿度計測装置のメモリ部に記憶される
素子温度情報とストレス量との対応を示すテーブル図で
ある。 1:湿度検出素子、3:温度検出素子、5:CPU、 
    6Fタイマ、 7:メモリ部、  8:表示部。
FIG. 1 is a block diagram showing the hardware configuration of a humidity measuring device in which the present invention is implemented; FIG. 2(a), FIG. 2(1))
3 is a flowchart for explaining the deterioration detection processing operation of the humidity measuring device, FIG. 3 is a table diagram showing the correspondence between dew condensation time and stress amount stored in the memory section of the humidity measuring device, and FIG. The figure is a table diagram showing the correspondence between element temperature information and stress amount stored in the memory section of the humidity measuring device. 1: Humidity detection element, 3: Temperature detection element, 5: CPU,
6F timer, 7: Memory section, 8: Display section.

Claims (1)

【特許請求の範囲】[Claims] (1)湿度検出素子と、この湿度検出素子の出力に基づ
いて湿度を計測する手段と、結露状態か否かを判別する
手段と、結露状態と判別されてから結露状態で無しと判
別されるまでの結露時間を計測する手段と、この計測し
た結露時間に応じた経時変化量を算出する手段と、この
経時変化量を累積記憶する手段と、この累積記憶量を湿
度検出素子の劣化量として出力する手段とを備えたこと
を特徴とする湿度計測装置。
(1) A humidity detection element, a means for measuring humidity based on the output of the humidity detection element, a means for determining whether there is condensation, and a means for determining whether there is condensation or not. means for measuring the dew condensation time, means for calculating the amount of change over time according to the measured time for dew condensation, means for cumulatively storing the amount of change over time, and the cumulative amount of storage as the amount of deterioration of the humidity detection element. A humidity measuring device comprising: a means for outputting an output.
JP27811089A 1989-10-25 1989-10-25 Humidity measuring device Expired - Fee Related JP2814392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27811089A JP2814392B2 (en) 1989-10-25 1989-10-25 Humidity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27811089A JP2814392B2 (en) 1989-10-25 1989-10-25 Humidity measuring device

Publications (2)

Publication Number Publication Date
JPH03138551A true JPH03138551A (en) 1991-06-12
JP2814392B2 JP2814392B2 (en) 1998-10-22

Family

ID=17592765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27811089A Expired - Fee Related JP2814392B2 (en) 1989-10-25 1989-10-25 Humidity measuring device

Country Status (1)

Country Link
JP (1) JP2814392B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812164A (en) * 2019-04-10 2020-10-23 美蓓亚三美株式会社 Adhering moisture detection device, adhering moisture detection method, electrical device, and log output system
WO2023144141A1 (en) * 2022-01-25 2023-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electronic sensor for sensing an environmental parameter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607689A (en) * 2017-09-26 2018-01-19 佛山市川东磁电股份有限公司 A kind of agricultural humidity sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812164A (en) * 2019-04-10 2020-10-23 美蓓亚三美株式会社 Adhering moisture detection device, adhering moisture detection method, electrical device, and log output system
WO2023144141A1 (en) * 2022-01-25 2023-08-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electronic sensor for sensing an environmental parameter

Also Published As

Publication number Publication date
JP2814392B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US8025438B2 (en) Electronic clinical thermometer, method of controlling the same, and control program
JP5273794B2 (en) Method and apparatus for estimating SOC value of secondary battery, and degradation determination method and apparatus
US20110098966A1 (en) Electronic clinical thermometer and operation control method
JP2011075580A (en) Predictive temperature measurement system
WO2005003800A1 (en) Apparatus, methods and computer program products for estimation of battery reserve life using adaptively modified state of health indicator-based reserve life models
IE45354B1 (en) Measuring instruments
US4008405A (en) Motion detection circuit for electronic weighing system
US4572213A (en) Abnormal condition detecting system in an electronic thermometer
US7778791B2 (en) Electronic clinical thermometer, method of controlling the same, and control program
JP2001110459A (en) Battery pack having capacity correcting function
JPH03138554A (en) Humidity measuring instrument
JP2904477B2 (en) How to read barometric pressure in weather forecast
JPH03138551A (en) Humidity measuring instrument
AU659809B2 (en) Electronic clinical thermometer
JPS613019A (en) Electronic clinical thermometer
JP3236710B2 (en) Measurement device for RMS values
US20080118984A1 (en) Biosensing system and related biosensing method
JP2003151645A (en) Battery residual power detecting method and electric apparatus
JPS6129727A (en) Electronic thermometer
EP0580462B1 (en) Process and device for the correction of thermal errors in the acquisition of electric parameters
JPH0554616B2 (en)
EP0561349B1 (en) Electronic clinical thermometer
JPH01129177A (en) Battery state detector
JPH01221623A (en) Electronic balance
JPH0620723A (en) Secondary battery residual quantity display device and display method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees