JPH03138554A - Humidity measuring instrument - Google Patents

Humidity measuring instrument

Info

Publication number
JPH03138554A
JPH03138554A JP27673589A JP27673589A JPH03138554A JP H03138554 A JPH03138554 A JP H03138554A JP 27673589 A JP27673589 A JP 27673589A JP 27673589 A JP27673589 A JP 27673589A JP H03138554 A JPH03138554 A JP H03138554A
Authority
JP
Japan
Prior art keywords
humidity
temperature
deterioration
detecting element
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27673589A
Other languages
Japanese (ja)
Other versions
JP2855708B2 (en
Inventor
Yoshihisa Masuo
善久 増尾
Masaru Kubo
大 久保
Tsuguji Tanaka
田中 嗣治
Toshio Yomo
四方 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP27673589A priority Critical patent/JP2855708B2/en
Publication of JPH03138554A publication Critical patent/JPH03138554A/en
Application granted granted Critical
Publication of JP2855708B2 publication Critical patent/JP2855708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To eliminate the need for calibration which uses special equipment by providing a humidity detecting element, a temperature detecting element, a means which measures humidity and temperature from their outputs, and a means which discriminates whether the humidity exceeds a specific value or not. CONSTITUTION:The subject instrument is constituted of the humidity detecting element 1, an A/D converter 2 which converts its output signal into a digital signal, the temperature detecting element 3, an A/D converter 4 which converts its output signal into a digital signal, a CPU 5 which inputs digital signals from a them, a timer 6, a memory part 7, and a display part 8. The CPU 5 calculates the cumulative value of the continuance of a high-temperature and high-humidity state from the humidity and temperature measured by using the humidity detecting element 1 and temperature detecting element 3 and decides deterioration according to the cumulative value. Consequently, the deterioration can be recognized quantitatively and the humidity detecting element 1 can indicate its deterioration without using any special instrument. Further, the humidity detecting element 1 can be replaced within a permissible range and the humidity can be measured with an invariably small measurement error.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、湿度計測装置、特に湿度検出素子の劣化量
を出力し得る湿度計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a humidity measuring device, and particularly to a humidity measuring device capable of outputting the amount of deterioration of a humidity detecting element.

(ロ)従来の技術 一般に湿度計測装置のセンサ(素子)としては、抵抗型
や静電容量型の温度センサが使用され、湿度により変化
する抵抗値や容量値に応じた信号を出力し、この信号に
基づき湿度を計測している。
(b) Conventional technology In general, resistance-type or capacitance-type temperature sensors are used as sensors (elements) in humidity measuring devices, and output signals according to resistance or capacitance values that change depending on humidity. Humidity is measured based on the signal.

しかし、この種の湿度センサは、高温、高温状態で長期
間使用されると特性変化が生じ、測定誤差が大きくなる
。そのため、従来は、湿度発生槽と校正用の湿度計を用
いて定期的に校正を行い、極端に測定誤差の大きいもの
は素子が劣化したものとして交換していた。
However, when this type of humidity sensor is used at high temperatures for a long period of time, its characteristics change and measurement errors become large. Therefore, in the past, calibration was performed periodically using a humidity generation tank and a hygrometer for calibration, and if the measurement error was extremely large, the element was assumed to be deteriorated and replaced.

(ハ)発明が解決しようとする課題 従来の湿度計測装置は、自身に湿度検出素子の劣化を検
出する機能を備えていないので、上記のように湿度発生
槽と校正用の湿度計を用い、定期的に校正を行わねばな
らなかった。そのため、校正用の機器を備えておかねば
ならず、また定期的に校正を行わねばならぬという煩雑
さがあった。
(c) Problems to be Solved by the Invention Conventional humidity measuring devices do not have a function to detect deterioration of the humidity detecting element, so as described above, a humidity generating tank and a hygrometer for calibration are used. Calibration had to be done periodically. Therefore, it is necessary to prepare equipment for calibration, and the calibration must be performed periodically, which is complicated.

その上、校正から次の校正までの間に素子の劣化が進む
と、その間測定誤差が発生するという問題があった。
Furthermore, there is a problem in that if the element deteriorates between calibrations and the next calibration, measurement errors occur during that period.

この発明は、上記問題点に着目してなされたものであっ
て、検出装置自身に劣化量を出力する機能を持たせ、特
別の機器を用いた校正の不用な湿度計測装置を提供する
ことを目的としている。
This invention has been made in view of the above-mentioned problems, and aims to provide a humidity measuring device that does not require calibration using special equipment by providing the detection device itself with a function to output the amount of deterioration. The purpose is

(ニ)課題を解決するための手段及び作用この発明の湿
度計測装置は、湿度検出素子と、温度検出素子と、前記
素子出力により湿度と温度を計測する手段と、計測した
湿度が所定値を越えたか否かを判別する手段と、計測し
た温度が所定値を越えたか否かを判別する手段と、前記
湿度及び若しくは温度が所定値を越えた時間を累積する
累積手段と、この累積手段の累積値を劣化量として出力
する手段とから構成されている。
(d) Means and Effects for Solving the Problems The humidity measuring device of the present invention includes a humidity detecting element, a temperature detecting element, a means for measuring humidity and temperature based on the output of the element, and a humidity measuring device in which the measured humidity reaches a predetermined value. a means for determining whether the measured temperature exceeds a predetermined value; a means for determining whether the measured temperature exceeds a predetermined value; an accumulating means for accumulating the time during which the humidity and/or temperature exceeds a predetermined value; and means for outputting the cumulative value as the amount of deterioration.

この湿度計測装置では、計測された湿度、温度が所定値
を越えたか否かが判別され、例えば湿度、温度が所定値
を越えている場合に、その越えている時間を累積し、そ
の累積値を劣化量として出力する。したがって、湿度、
温度が所定値を越えている状態、すなわち高温、高温状
態が続くと、時間累積値が大となり、出力される劣化量
が大となる。この劣化量により劣化の進行度合を知るこ
とができる。
This humidity measuring device determines whether or not the measured humidity and temperature exceed a predetermined value. For example, when the humidity and temperature exceed a predetermined value, the time during which the humidity and temperature have exceeded the predetermined value is accumulated, and the cumulative value is is output as the amount of deterioration. Therefore, humidity,
When the temperature exceeds a predetermined value, that is, when the high temperature and high temperature conditions continue, the time cumulative value becomes large and the amount of deterioration output becomes large. The degree of progress of deterioration can be determined from this amount of deterioration.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

第1図は、この発明が実施される湿度計測装置のハード
構成を示すブロック図である。この湿度計測装置は、湿
度検出素子1と、この湿度検出素子1の出力信号をデジ
タル信号に変換するA/D変換器2と、温度検出素子3
と、この温度検出素子3の出力信号をデジタル信号に変
換するA/D変換器4と、A/D変換器2.4からのデ
ジタル信号を取り込むCPU5と、タイマ6と、メモリ
部7と、表示部8とから構成されている。
FIG. 1 is a block diagram showing the hardware configuration of a humidity measuring device in which the present invention is implemented. This humidity measuring device includes a humidity detecting element 1, an A/D converter 2 that converts an output signal of the humidity detecting element 1 into a digital signal, and a temperature detecting element 3.
, an A/D converter 4 that converts the output signal of the temperature detection element 3 into a digital signal, a CPU 5 that takes in the digital signal from the A/D converter 2.4, a timer 6, and a memory section 7. It is composed of a display section 8.

湿度検出素子1は、例えば抵抗型湿度センサが使用され
る。CPU5は、A/D変換器2を介して取り込まれる
湿度検出素子1の出力信号と、A/D変換器4を介して
取り込まれる温度検出素子3の出力信号とにより、温度
補償のなされた湿度を計測する機能を備えている。
As the humidity detection element 1, for example, a resistance type humidity sensor is used. The CPU 5 uses the output signal of the humidity detection element 1 taken in via the A/D converter 2 and the output signal of the temperature detection element 3 taken in via the A/D converter 4 to generate a temperature-compensated humidity signal. It has a function to measure.

湿度センサでは、結露状態の連続継続時間を結露量とす
ると、結露量が一種のストレスとなって劣化の進行が促
進される。また、湿度センサでは、高温、高温〔約40
℃以上、90%RH(相対湿度)以上〕で劣化の進行が
促進される。そのため、この実施例装置で、結露の発生
を判別し、継続時間を計測し、累積して劣化量として出
力する機能と、高温、高温状態を検出し、高温、高温と
なる時間を累積し、その累積値を劣化量として出力する
機能を備えている。これら2つの劣化検知処理の実行は
CPU5で実行され、実行に際し、使用されるデータは
メモリ部7に記憶されている。
In a humidity sensor, if the continuous duration of a dew condensation state is defined as the amount of dew condensation, the amount of dew condensation becomes a type of stress and accelerates the progress of deterioration. In addition, the humidity sensor detects high temperatures, high temperatures [approximately 40
℃ or higher and 90% RH (relative humidity) or higher], the progress of deterioration is accelerated. Therefore, this example device has a function to determine the occurrence of dew condensation, measure the duration, and output the accumulated amount as the amount of deterioration, as well as a function to detect high temperature and high temperature state, and to accumulate the time at high temperature and high temperature. It has a function to output the cumulative value as the amount of deterioration. These two deterioration detection processes are executed by the CPU 5, and the data used during the execution is stored in the memory unit 7.

この実施例では、結露量劣化検知と高温、高温劣化検知
の2つの劣化検知処理機能を備えているが、いずれか一
方の処理のみでも十分に湿度センサの劣化検知は可能で
ある。
Although this embodiment has two deterioration detection processing functions: detection of dew condensation amount deterioration and high temperature/high temperature deterioration detection, it is possible to sufficiently detect deterioration of the humidity sensor with only one of the processes.

CPU5は、結露量劣化検知、高温、高温劣化検知のい
ずれにおいても、累積値が所定値を越えると、センサエ
ラー信号を表示部8に出力して表示する機能を備えてい
る。
The CPU 5 has a function of outputting and displaying a sensor error signal on the display unit 8 when the cumulative value exceeds a predetermined value in any of dew condensation amount deterioration detection, high temperature, and high temperature deterioration detection.

結露時間tQ(min(分))は、4m1nを越えて、
大きくなれば、これに応じてストレスも増大するので、
第3図に示すような結露時間tQとストレス量α8の関
係を示すテーブルがメモリ部7に記憶されている。この
テーブルにおいて、K、<Klく・・・〈Kllであり
、α8I〈α8゜〈・・・〈αB+、である。
The dew condensation time tQ (min (minutes)) exceeds 4 m1n,
As you get older, your stress will increase accordingly.
A table showing the relationship between the dew condensation time tQ and the stress amount α8 as shown in FIG. 3 is stored in the memory unit 7. In this table, K<Klku...<Kll, and α8I<α8°<...<αB+.

また、高温状態(例えば90%RH以上)で、高温状態
が続くほど、ストレスも増大するので、第4図に示すよ
うな素子温度情報TX (’C)とストレス量α1の関
係を示すテーブルがメモリ部7に記憶されている。この
テーブルにおいて温度T1<Tz <・”<T(n−1
)<Tnであり、応じてストレス量αいもα、、<αA
t<・・・〈αA7  である。
In addition, in a high temperature state (for example, 90% RH or higher), the stress increases as the high temperature state continues, so a table showing the relationship between the element temperature information TX ('C) and the stress amount α1 as shown in Fig. 4 is prepared. It is stored in the memory section 7. In this table, temperature T1<Tz<・"<T(n-1
)<Tn, and accordingly the stress amount α is α, , <αA
t<...<αA7.

次に第2図(a)、第2図(ロ)に示すフロー図を参照
して、上記実施例湿度計測装置の劣化検知処理動作につ
いて説明する。
Next, with reference to the flowcharts shown in FIGS. 2(a) and 2(b), the deterioration detection processing operation of the humidity measuring device of the above embodiment will be described.

〈高温・高温劣化検知〉 劣化検知処理実行周期は、tp=1minであり、1 
min毎にステップST(以下STと略す)■の“°処
理タイミングかパの判定がYESとなり、次に計測した
湿度H,が95%RH以上か判定する(Sr2)。湿度
HXが95%RH以上でない場合に判定NoとなりSr
1に移る。湿度HXが95%RH以上であれば、5T2
(7)判定YESt’5T13に移る。5T13以降は
、結n量劣化検知処理であり、これについては後述する
<High temperature/high temperature deterioration detection> The deterioration detection processing execution cycle is tp = 1 min, and 1
Every min, the judgment of "°processing timing or pa" in step ST (hereinafter abbreviated as ST) becomes YES, and then it is judged whether the measured humidity H, is 95%RH or more (Sr2).When the humidity HX is 95%RH If it is not above, the judgment will be No and Sr
Move to 1. If the humidity HX is 95%RH or higher, 5T2
(7) Determination YESt'5T13. The process from 5T13 onwards is a process for detecting the deterioration of the N amount, which will be described later.

Sr1で、フラグFp−0か、つまり結露量劣化検知処
理終了か、の判定がなされ、頭初Fp=0であるから判
定Noとなり、Sr1に移り、ここから高温、高湿劣化
検知処理に入る。先ずSr1で計測した湿度H6が90
%RH以上であるか否か判定する。湿度HXが90%R
H以上でない場合、ここでは高温でないとし、標準寿命
ストレス設定を行う。すなわち値α、をα、とじて記憶
する(Sr1)。次に、このα、とじて記憶されたもの
を、今回のtP間におけるストレス量α。
At Sr1, it is determined whether the flag Fp-0, that is, whether the dew condensation amount deterioration detection process has ended or not.Since the initial Fp=0, the determination is No, and the process moves to Sr1, where the high temperature and high humidity deterioration detection process begins. . First, the humidity H6 measured with Sr1 is 90
%RH or more is determined. Humidity HX is 90%R
If it is not higher than H, it is assumed here that the temperature is not high, and standard life stress setting is performed. That is, the value α is stored as α (Sr1). Next, this α is stored as the stress amount α during the current tP.

とじて記憶する(Sr1)。また、メモリ部7に記憶さ
れるストレス積算値り、を続出し、前回までのストレス
積算値ΣS (n−1) とする(Sr8)。
and store it (Sr1). Further, the stress cumulative value RI stored in the memory unit 7 is successively stored, and is set as the stress cumulative value ΣS (n-1) up to the previous time (Sr8).

次に、前回までのストレス積算値ΣS (n−1)に今
回のストレス量α。を加算し、今回までのストレス積算
値ΣS (n)を算出する(Sr1)。そして、このス
トレス積算値ΣS (n)をデータD、としてメモリ部
7に記憶する一方(STIO)、この今回までのストレ
ス積算値ΣS (n)と劣化判定基準量ΣS MAXと
比較し、ΣS MAX≦ΣS (n)か否か判定する(
STII)、ΣS (n)がΣS )IAXに達してい
ない場合、5TIIの判定Noで今回の処理を終了する
。そして、さらに次のl minが到来すると、またS
TI以降の処理を実行する。今、αc=1とし、ΣSM
AX =35040Hrに設定していると、湿度HXが
9o%RH未満の状態で、連続して4年間、湿度計測を
続けると、計測を開始してから、4年の経過でΣS (
n)が35040Hrとなり、5TIIの判定がYES
となり、センサエラー処理が実行され、表示部8のL 
E Dが点灯される。これにより、湿度検出素子が劣化
したことを報知する(ST12)。
Next, the current stress amount α is added to the stress cumulative value ΣS (n-1) up to the previous time. is added to calculate the cumulative stress value ΣS (n) up to this time (Sr1). Then, this stress cumulative value ΣS (n) is stored in the memory unit 7 as data D (STIO), while this stress cumulative value ΣS (n) up to this time is compared with the deterioration judgment reference amount ΣS MAX, and ΣS MAX Determine whether ≦ΣS (n) (
STII), ΣS (n) has not reached ΣS )IAX, the current process ends with a determination No of 5TII. Then, when the next l min arrives, S
Executes processing after TI. Now let αc=1 and ΣSM
If you set AX = 35040Hr and continue to measure humidity for 4 years with humidity HX below 9o%RH, ΣS (
n) becomes 35040Hr, and the judgment of 5TII is YES.
Then, sensor error processing is executed, and L on the display section 8 is displayed.
ED is lit. This notifies that the humidity detection element has deteriorated (ST12).

湿度HXが90%RH未満で計測を継続して4年で湿度
検出素子の劣化を判定するものであるから、湿度H,が
90%RH以上で計測を継続して行われると、もっとも
早い時期に劣化が判定される。すなわちSr1で“Hヶ
≧90%RHか゛の判定がYESの場合、高温であり、
この場合は、計測された温度TXより、ストレス量α、
を算出する。例えば温度T、がT2〈TX<T3である
とすると、第4図のテーブルを参照してメモリ部7より
ストレス量αA3が読み出され、このストレス量α、3
が今回のストレス量α。とじて記憶され(Sr1)、そ
れまでのストレス量積算値ΣS (n−1)に、今回の
ストレス量α。(αA3)を加算して、今回までのスト
レス積算値ΣS (n)を算出する(Sr8.5T9)
。ストレス量αA3は標準ストレス量α。より、何倍か
大きく設定してあり、したがって1p間にα。ずつ累積
してゆくのに比し、1p間毎にαA3ずつ累積してゆく
と、ΣS□8に達するのが、4年よりもはるかに早く達
することになり、センサエラーの表示が早くなされるこ
とになる。計測温度T、がT a < T X < T
 5であると累積されるストレス量はαA5であり1、
α。〈α、、であるから、累積値ΣS (n)がΣS□
8に達するのが、さらに早くなる。このように、この実
施例では、高温状態で、より高温な状態が継続する程、
大きな劣化量が出力され、湿度検出素子が劣化したと判
定する時期が早くなるようにしている。
Since the deterioration of the humidity detection element is determined after 4 years of continuous measurement when humidity HX is less than 90% RH, the earliest possible time is if measurement is continued when humidity H is 90% RH or higher. Deterioration is determined. In other words, if the determination of "H≧90%RH" is YES in Sr1, the temperature is high;
In this case, from the measured temperature TX, the stress amount α,
Calculate. For example, if the temperature T is T2<TX<T3, the stress amount αA3 is read out from the memory unit 7 with reference to the table in FIG.
is the current stress amount α. (Sr1), and the current stress amount α is added to the previous stress amount integrated value ΣS (n-1). (αA3) to calculate the cumulative stress value ΣS (n) up to this time (Sr8.5T9)
. The stress amount αA3 is the standard stress amount α. It is set several times larger than that, and therefore α between 1p. However, if αA3 is accumulated every 1p, ΣS□8 will be reached much earlier than 4 years, and a sensor error will be displayed earlier. It turns out. The measured temperature T is T a < T X < T
5, the accumulated stress amount is αA5 and 1,
α. 〈α, , so the cumulative value ΣS (n) is ΣS□
It will reach 8 even faster. In this way, in this example, the higher the temperature continues, the more
A large amount of deterioration is output, and the timing at which it is determined that the humidity detection element has deteriorated is made earlier.

〈結露量劣化検知〉 計測湿度HXが95%RH以上であると、ここでは結露
状態であると判定している。結露状態と判定するのは、
計測湿度HXが95%〜100%RHの適宜の値に設定
してよいが95%としているのは、周囲温度25°Cに
おける測定精度が±5%RHであり、さらに5%RHの
差を温度換算比較すると約0.5°Cの変動分に相当し
、この値は制御環境の安定性を考慮すると十分小さいと
判断できるからである。
<Detection of deterioration in amount of dew condensation> If the measured humidity HX is 95% RH or more, it is determined here that there is dew condensation. Dew condensation is determined by:
The measured humidity HX may be set to an appropriate value between 95% and 100% RH, but the reason why it is set to 95% is that the measurement accuracy at an ambient temperature of 25°C is ±5% RH, and the difference of 5% RH is This is because when compared in terms of temperature, this corresponds to a variation of about 0.5°C, and this value can be judged to be sufficiently small considering the stability of the control environment.

Sr1でIHX≧95%RHか”の判定がYESとなる
と、結露状態になったことを意味し、5713に移り、
フラグF、=1か、つまり結露量劣化検知処理中か否か
判定する。結露状態に達した頭初は、この判定がNOで
あり、ここで結露保持時間t9をリセットしく5T14
)、フラグF9を“1゛とし、結露量劣化をスタートす
る(ST15)。そして、それまでの結露保持時間tQ
(n−11にも、を加算して、今回までの結露保持時間
t q (r+1を算出する(ST16)。次に、結露
保持時間L Q +I11が4 min以上であるか判
定しく5T17)、+07.≧4 minでない場合は
、判定Noで結露によるストレスを考慮せず、Sr1に
移る。5TI7でt、、、、)≧4 minであると、
表示部8の結露アラーム表示用のLEDのセグメントを
点灯し、湿度検出素子が結露状態にあることを報知して
(STlB)、Sr1に移る。計測湿度HXが95%R
H以上の間は、結露状態が続いているものとして、Sr
2.5T13、・・・、5T1B、・・・の処理を繰り
返し、結露保持時間t□0)の測定を継続する。この間
は、結露量劣化によるストレス量の積算処理は行わない
If the judgment of “IHX≧95%RH in Sr1” is YES, it means that condensation has occurred, and the process moves to 5713.
It is determined whether flag F=1, that is, whether dew condensation amount deterioration detection processing is in progress. At the beginning when the condensation state is reached, this judgment is NO, and the condensation retention time t9 should be reset at 5T14.
), flag F9 is set to "1", and dew condensation amount deterioration is started (ST15).Then, the dew condensation retention time tQ up to that point is
(N-11 is also added to calculate the dew condensation retention time tq (r+1) up to this time (ST16).Next, it is determined whether the dew condensation retention time LQ+I11 is 4 min or more 5T17), +07. If it is not 4 min, the judgment is No and the stress due to dew condensation is not taken into account and the process moves to Sr1.If 5TI7 is t,,,,)≧4 min,
The LED segment for displaying the dew condensation alarm on the display section 8 is turned on to notify that the humidity detection element is in a dew condensation state (ST1B), and the process moves to Sr1. Measured humidity HX is 95%R
If the Sr
2. Repeat the processes of 5T13, . . . , 5T1B, . . . and continue measuring the dew condensation retention time t□0). During this time, the stress amount due to the deterioration of the amount of dew condensation is not integrated.

やがて、計測湿度H8が95%RHより小さくなると、
つまり結露状態が途切れると、Sr2の判定Noとなり
、Sr1に移る。Sr1で、フラグFpがそれまで1″
であるから、゛結露量劣化検知処理終了か”′の判定が
YESとなり、ここで、フラグFpを“0パとしく5T
19)、結露保持時間j Q (11−11> 4 m
inか否かを判定しく5T20)、LQTn−1+が4
 min以下の場合は、この結露状態は無視し、Sr1
に飛ぶ。
Eventually, when the measured humidity H8 becomes smaller than 95%RH,
In other words, when the dew condensation state is interrupted, the determination of Sr2 becomes No, and the process moves to Sr1. In Sr1, flag Fp is 1″ until then
Therefore, the determination of ``Is the dew condensation amount deterioration detection processing completed?'' is YES, and here, the flag Fp is set to ``0'' and set to 5T.
19), condensation retention time j Q (11-11> 4 m
5T20), LQTn-1+ is 4
If it is less than min, ignore this dew condensation and Sr1
fly to

Sr20で結露量保持時間jQ(n−11が4m1nを
越えていると、結露量によるストレス有として、第3図
に示したメモリ部7のストレス量選択テーブルを参照し
て結露量保持時間1.に対応するストレス量α8を読出
しくSr21 )、このストレス量α8を加算用のスト
レス量α。とじて記憶する。第3図に示すストレス量α
。、αB2、・・・αB0は、Hr(時間)オーダの大
きな値である。
If the dew condensation retention time jQ(n-11 exceeds 4 m1n in Sr20, it is assumed that there is stress due to the dew condensation amount, and the dew condensation retention time 1. Read out the stress amount α8 corresponding to Sr21), and add this stress amount α8 to the stress amount α. Close it and memorize it. Stress amount α shown in Figure 3
. , αB2, . . . αB0 are large values on the order of Hr (time).

例えば結露保持時間t9かに4以上に3未満であると、
ストレスαB4がα。とじて記憶される(Sr22)。
For example, if the condensation retention time t9 is 4 or more and less than 3,
Stress αB4 is α. It is stored together (Sr22).

そして、Sr8に移り、それまでのストレス量の累積値
り、をメモリ部7から読み出して、それまでの累積スト
レス量ΣS (n−1)として記憶し、このストレス量
ΣS (n−1)に、ストレス量α。(α+14)を加
算し、今回の累積ストレス量ΣS (n)を算出しく5
T9)、このΣS (n)を1 メモリ部7にり、とじて記憶する(STIO)−方、劣
化判定基準量ΣS MAXとストレス積算値ΣS (n
)を比較し、ΣS08くΣS (n)でない場合は、1
.経過後の次の処理タイミングが到来するまで待機する
が、ΣSMAX <ΣS (n)の場合は、表示部8の
センサエラーLEDを点灯し、湿度検出素子が劣化した
とみなすべき時機にきていることを報知する。
Then, the process moves to Sr8, and the cumulative stress amount up to that point is read out from the memory unit 7 and stored as the cumulative stress amount ΣS (n-1) up to that point, and this stress amount ΣS (n-1) is , stress amount α. (α+14) to calculate the current cumulative stress amount ΣS (n).
T9), this ΣS (n) is stored in the memory unit 7 (STIO), and the deterioration judgment reference amount ΣS MAX and the stress integrated value ΣS (n
), and if ΣS08 is not ΣS (n), then 1
.. The process waits until the next processing timing arrives after the elapsed time, but if ΣSMAX <ΣS (n), the sensor error LED on the display unit 8 should be lit and the time has come to consider that the humidity detection element has deteriorated. inform about something.

結露時間t、llかに+ 、Kz 、K3 、・・・と
大きいほど、ストレス量も極端に増大するので劣化量の
累積が大幅に促進され、4年の標準寿命に対し、はるか
に早い時期に寿命が到来し、かつこれを的確に報知でき
る。
As the dew condensation time increases (t, ll +, Kz, K3, etc.), the amount of stress increases extremely, so the accumulation of deterioration is greatly accelerated, and the time is much earlier than the standard life of 4 years. has reached the end of its lifespan, and this can be accurately notified.

なお、上記実施例において、高温状態における計測温度
に対応するストレス量を求めるのに、温度とストレス量
の関係をテーブル化してメモリに記憶しているが、これ
に代え、温度とストレスの関係を示す近似式を記憶して
おき、計測温度をこの近似式に適用し、ストレス量を算
出してもよい。
In the above embodiment, in order to obtain the amount of stress corresponding to the measured temperature in a high temperature state, the relationship between temperature and stress amount is created in a table and stored in the memory, but instead of this, the relationship between temperature and stress is The approximate equation shown may be stored and the measured temperature may be applied to this approximate equation to calculate the stress amount.

また、上記実施例において、計測湿度が90%2 RH以上で高温とし、高温状態において温度に応じ、累
積するストレス量を変えているが、湿度も何段階かに分
け、湿度と温度の組合せに応じ、ストレス量を変更する
ようにしてもよい。
In addition, in the above example, when the measured humidity is 90% 2 RH or more, the temperature is considered high temperature, and the amount of accumulated stress is changed according to the temperature in the high temperature state, but the humidity is also divided into several stages, and the combination of humidity and temperature is changed. The amount of stress may be changed accordingly.

また、上記実施例では、高温、高湿の場合にストレス量
を重みづけして加算するようにしているが、温度が高い
場合に、あるいは湿度が高い場合に、ストレス量をそれ
ぞれ重みづけ加算するようにしてもよい。
In addition, in the above embodiment, the amount of stress is weighted and added in the case of high temperature and high humidity, but the amount of stress is weighted and added when the temperature is high or humidity is high. You can do it like this.

(へ)発明の効果 この発明によれば、湿度検出素子及び温度検出素子を用
いて計測される湿度、温度より、高温高温状態の継続時
間の累積値を算出し、この累積値より劣化を判定するも
のであるから、劣化を量的に把握でき、特別の計器を使
用しなくても、自身で湿度検出素子の劣化を報知するこ
とができ、許容の範囲で早めに湿度検出素子が交換可能
となり、常に小さい測定誤差で湿度計測を行うことがで
きる。
(f) Effects of the Invention According to this invention, the cumulative value of the duration of the high temperature state is calculated from the humidity and temperature measured using the humidity detection element and the temperature detection element, and deterioration is determined from this cumulative value. Because of this, deterioration can be grasped quantitatively, and the deterioration of the humidity detection element can be notified by oneself without the use of a special instrument, and the humidity detection element can be replaced as early as possible. Therefore, it is possible to always measure humidity with a small measurement error.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明が実施される湿度計測装置のハード
構成を示すブロック図、第2図(a)、第2図(b)は
、同湿度計測装置の劣化検知処理動作を説明するための
フロー図、第3図は、同湿度計測装置のメモリ部に記憶
される結露時間とストレス量との対応を示すテーブル図
、第4図は、同湿度計測装置のメモリ部に記憶される素
子温度情報とストレス量との対応を示すテーブル図であ
る。 1:湿度検出素子、3:温度検出素子、5:cpu、 
    6:タイマ、 7:メモリ部、  8:表示部。
FIG. 1 is a block diagram showing the hardware configuration of a humidity measuring device in which the present invention is implemented, and FIGS. 2(a) and 2(b) are for explaining the deterioration detection processing operation of the humidity measuring device. 3 is a table diagram showing the correspondence between dew condensation time and stress amount stored in the memory section of the humidity measuring device, and FIG. 4 is a table diagram showing the correspondence between the dew condensation time and stress amount stored in the memory section of the humidity measuring device. FIG. 3 is a table diagram showing the correspondence between temperature information and stress amount. 1: Humidity detection element, 3: Temperature detection element, 5: CPU,
6: Timer, 7: Memory section, 8: Display section.

Claims (1)

【特許請求の範囲】[Claims] (1)湿度検出素子と、温度検出素子と、前記素子出力
により湿度と温度を計測する手段と、計測した湿度が所
定値を越えたか否かを判別する手段と、計測した温度が
所定値を越えたか否かを判別する手段と、前記湿度及び
若しくは温度が所定値を越えた時間を累積する累積手段
と、この累積手段の累積値を劣化量として出力する手段
とを備えたことを特徴とする湿度計測装置。
(1) A humidity detection element, a temperature detection element, a means for measuring humidity and temperature based on the output of the element, a means for determining whether the measured humidity exceeds a predetermined value, and a means for determining whether the measured humidity exceeds a predetermined value. It is characterized by comprising means for determining whether or not the humidity and/or temperature exceeds a predetermined value, an accumulation means for accumulating the time during which the humidity and/or temperature exceeds a predetermined value, and means for outputting the cumulative value of the accumulation means as an amount of deterioration. Humidity measuring device.
JP27673589A 1989-10-24 1989-10-24 Humidity measuring device Expired - Fee Related JP2855708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27673589A JP2855708B2 (en) 1989-10-24 1989-10-24 Humidity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27673589A JP2855708B2 (en) 1989-10-24 1989-10-24 Humidity measuring device

Publications (2)

Publication Number Publication Date
JPH03138554A true JPH03138554A (en) 1991-06-12
JP2855708B2 JP2855708B2 (en) 1999-02-10

Family

ID=17573614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27673589A Expired - Fee Related JP2855708B2 (en) 1989-10-24 1989-10-24 Humidity measuring device

Country Status (1)

Country Link
JP (1) JP2855708B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030999A (en) * 1996-07-16 1998-02-03 Toyota Central Res & Dev Lab Inc Method and sensor for detection of heat history
JP2000131174A (en) * 1998-10-28 2000-05-12 Yokogawa Electric Corp Pressure-measuring device
JP2005201900A (en) * 2003-12-23 2005-07-28 Mettler Toledo Gmbh Method and apparatus for determining condition of measurement probe
JP2006153857A (en) * 2004-10-26 2006-06-15 Nissan Motor Co Ltd Deterioration detection system of hydrogen sensor, deterioration detection method, and deterioration detection system of hydrogen concentration measuring means
JP2009092523A (en) * 2007-10-09 2009-04-30 Hioki Ee Corp Method for determining detrioration of moisture sensor and moisture measurement device
JP2012202954A (en) * 2011-03-28 2012-10-22 Chugoku Electric Power Co Inc:The Measuring equipment
CN103592342A (en) * 2013-11-20 2014-02-19 四川研成通信科技有限公司 Soil humidity detecting device
JP2018112446A (en) * 2017-01-11 2018-07-19 Kyb株式会社 Instrument state monitor system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030999A (en) * 1996-07-16 1998-02-03 Toyota Central Res & Dev Lab Inc Method and sensor for detection of heat history
JP2000131174A (en) * 1998-10-28 2000-05-12 Yokogawa Electric Corp Pressure-measuring device
JP2005201900A (en) * 2003-12-23 2005-07-28 Mettler Toledo Gmbh Method and apparatus for determining condition of measurement probe
JP2006153857A (en) * 2004-10-26 2006-06-15 Nissan Motor Co Ltd Deterioration detection system of hydrogen sensor, deterioration detection method, and deterioration detection system of hydrogen concentration measuring means
JP2009092523A (en) * 2007-10-09 2009-04-30 Hioki Ee Corp Method for determining detrioration of moisture sensor and moisture measurement device
JP2012202954A (en) * 2011-03-28 2012-10-22 Chugoku Electric Power Co Inc:The Measuring equipment
CN103592342A (en) * 2013-11-20 2014-02-19 四川研成通信科技有限公司 Soil humidity detecting device
JP2018112446A (en) * 2017-01-11 2018-07-19 Kyb株式会社 Instrument state monitor system

Also Published As

Publication number Publication date
JP2855708B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US4018219A (en) Heart rate variability measurement
US8025438B2 (en) Electronic clinical thermometer, method of controlling the same, and control program
US4572213A (en) Abnormal condition detecting system in an electronic thermometer
JPH03138554A (en) Humidity measuring instrument
US7778791B2 (en) Electronic clinical thermometer, method of controlling the same, and control program
JP4523099B2 (en) Battery voltage detection circuit and battery voltage detection method
US9753891B2 (en) Field device
US4273136A (en) Electronic sphygmomanometer
JP2904477B2 (en) How to read barometric pressure in weather forecast
JPS61159121A (en) Electronic thermometer
JPH03138551A (en) Humidity measuring instrument
US4549549A (en) Electronic sphygmomanometer
JP7266376B2 (en) Waveform display device and waveform display program
JPS6129727A (en) Electronic thermometer
JPH0554616B2 (en)
JPH0622937U (en) Resistance value converter for resistance thermometer
JPH0532740Y2 (en)
CN113654723A (en) Batch calibration method and system of pressure sensors and weighing cabinet
JPS6110732A (en) Electronic clinical thermometer
JP2886766B2 (en) Oxygen sensor drive
JPS61264228A (en) Electronic thermometer
JPH0620723A (en) Secondary battery residual quantity display device and display method
JPS6126012B2 (en)
JPS61189425A (en) Electronic clinical thermometer
JP2019045181A (en) Measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees