JPH0313816A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPH0313816A
JPH0313816A JP14978889A JP14978889A JPH0313816A JP H0313816 A JPH0313816 A JP H0313816A JP 14978889 A JP14978889 A JP 14978889A JP 14978889 A JP14978889 A JP 14978889A JP H0313816 A JPH0313816 A JP H0313816A
Authority
JP
Japan
Prior art keywords
optical
phase difference
optical disc
beams
rotary encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14978889A
Other languages
Japanese (ja)
Inventor
Tadao Nagai
永井 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teac Corp
Original Assignee
Teac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teac Corp filed Critical Teac Corp
Priority to JP14978889A priority Critical patent/JPH0313816A/en
Publication of JPH0313816A publication Critical patent/JPH0313816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high resolution by projecting optical beams having the phase difference of 1/4 with respect to the phase difference of an optical disk in the neighboring circumferential direction, and detecting the reflected beams respectively. CONSTITUTION:A bit 21 has the width of about 0.6mum and the length of about 100mum in the direction of the radius. The bits 21 are formed in the circumferential direction on an optical disk at the interval of about 0.6mum in the neighboring pattern. Thus, a bit pattern 20 is formed. Laser light beams having three beam spots A, B and C are projected in an optical pickup from laser units with an LD driving circuit. The phases of the beam spots A, B and C are shifted by 90 deg. with the period of the bit 21 as 360 deg.. The two reflected light beams of A and B are detected and processed with optical sensors 35 and 36. Namely, the reflected light beams from the beam spots A and B are used as the pulse reflected light beams in two phases. The reflected light from the beam spot B can be used for focus control.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はロータリーエンコーダに関し、回転角度を計測
するロータリーエンコーダに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotary encoder, and more particularly, to a rotary encoder that measures a rotation angle.

従来から精密工作機械、望遠鏡等の広い分野で高精度の
回転角度計測が要望されている。
High-precision rotation angle measurement has been required in a wide range of fields such as precision machine tools and telescopes.

(従来の技術) 従来のロータリーエンコーダは写真技術を用いてガラス
円盤上の固定スリットパターンと回転スリットパターン
を形成し、回転スリットパターンを通過した光が固定ス
リットパターンを通過するときに発生するモアレ縞を受
光素子で検出して回転検出信号を得ている。
(Prior art) A conventional rotary encoder uses photographic technology to form a fixed slit pattern and a rotating slit pattern on a glass disk, and eliminates moire fringes that occur when light that has passed through the rotating slit pattern passes through the fixed slit pattern. is detected by a light receiving element to obtain a rotation detection signal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のロータリーエンコーダは写真技術でスリットパタ
ーンを形成するため、高精度の回転角測定のために回転
スリットパターンのスリット数を増加するにはガラス円
盤の直径を大きくしなければならず、0−タリーエンコ
ーダが大型化し、また6価になるという問題があった。
In conventional rotary encoders, the slit pattern is formed using photographic technology, so in order to increase the number of slits in the rotary slit pattern for high-precision rotation angle measurement, the diameter of the glass disk must be increased. There was a problem that the encoder became larger and became a hexavalent encoder.

本発明は上記の点に鑑みてなされたもので、小型でかつ
、高精度の回転角度検出を行なうロータリーエンコーダ
を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a rotary encoder that is small and that detects a rotation angle with high precision.

(課題を解決するための手段〕 本発明のロータリーエンコーダにおいて、光ディスクは
、半径方向に延在する複数のピットを同一円周上に等角
度開隔で記録されている。
(Means for Solving the Problems) In the rotary encoder of the present invention, the optical disc has a plurality of pits extending in the radial direction recorded on the same circumference at equiangular intervals.

再生装置は、光ディスクの隣接するピットの円周方向の
位相差に対して1/4の位相差を持つ少なくとも2つの
光ビームを照射し、光ディスクによる2つの反射ビーム
夫々を検出して互いに90度位相の異なる第1及び第2
の検出信号を出力する。
The playback device irradiates at least two light beams having a phase difference of 1/4 with respect to the phase difference in the circumferential direction of adjacent pits of the optical disc, detects each of the two reflected beams by the optical disc, and separates each other by 90 degrees. First and second with different phases
outputs a detection signal.

〔作用〕[Effect]

本発明においては、光ディスクを用いているため、直径
100M程度の小型の光ディスクの円周上に数10万に
及ぶ多数のピットを形成でき、このピットを2つの光ビ
ームで検出して90度位相の異なる2つの検出信号を得
て光ディスクの1回転を上記ピット数の4倍の粘度で高
精度に検出できる。また小型化の制約となっていた回転
体を光ディスクとして小!化できるため、ロータリーエ
ンコーダ全体も小型となる。
In the present invention, since an optical disk is used, a large number of pits, numbering several hundred thousand, can be formed on the circumference of a small optical disk with a diameter of about 100M, and these pits are detected with two light beams and the 90 degree phase is detected. By obtaining two detection signals with different numbers, one revolution of the optical disc can be detected with high precision at a viscosity four times as large as the number of pits. In addition, the rotating body, which was a constraint on miniaturization, can be made smaller as an optical disk! Therefore, the rotary encoder as a whole can be made smaller.

〔実施例〕 第1図は本発明のロータリーエンコーダの一実施例の構
成図、第2図はこのロータリーエンコーダに用いる光デ
ィスクの製造gi置の一実施例の構成図を示す。
[Embodiment] FIG. 1 is a block diagram of an embodiment of a rotary encoder of the present invention, and FIG. 2 is a block diagram of an embodiment of an optical disk manufacturing equipment used in this rotary encoder.

まず、光ディスクの製造について説明するに、第2図中
、10はガラス又はアクリル樹脂等の直径100a++
程度の透明基板にテルル系の媒体を蒸着しており、レー
ザビームを照射して媒体の一部を溶解させてピットを形
成するライトワンス形の光ディスクである。光ディスク
10には回転@11が固定されている。
First, to explain the manufacturing of optical discs, in Fig. 2, 10 is a diameter 100a++ of glass or acrylic resin, etc.
This is a write-once optical disc in which a tellurium-based medium is deposited on a transparent substrate of about 100 mL, and pits are formed by irradiating a laser beam to melt part of the medium. The rotation @11 is fixed on the optical disc 10.

モータ12はモータドライブ回路13の駆動により例え
ば250秒で1回転するよう等速回転し、光ディスク1
0を回転さゼる。このモータ12の回転軸には基準FG
発生器14が取付けられており、例えば1回転当り25
万パルス即ち1秒当り1000パルスの第3図(A)に
示す如き回転検出パルスを発生し、この回転検出パルス
はFG出力回路15で増幅されてレンズ!IAvJ回路
16及びLD駆動回路17夫々に供給される。
The motor 12 is driven by the motor drive circuit 13 and rotates at a constant speed, for example, making one revolution every 250 seconds, and the optical disc 1
Rotate 0. The rotation shaft of this motor 12 has a reference FG.
A generator 14 is installed, for example 25 per revolution.
A rotation detection pulse of 10,000 pulses, that is, 1000 pulses per second, as shown in FIG. The signal is supplied to the IAvJ circuit 16 and the LD drive circuit 17, respectively.

レンズ駆動回路16は回転検出パルスから第3図(B)
に示す如き鋸歯状波のトラッキング信号を生成し光ピツ
クアップ18のトラッキング回路に供給する。またLD
AI8117回路17は回転検出パルスから第3図(C
)に示す如きレーザダイオード駆動信号を生成し光ピツ
クアップ18のレーザダイオードにする。このレーザダ
イオード駆動信号はレーザダイオードの出力をHレベル
のとき記録パワーとし、しレベルのとぎ再生パワーとす
る信号である。
The lens drive circuit 16 receives the rotation detection pulse from the rotation detection pulse as shown in FIG. 3(B).
A sawtooth wave tracking signal as shown in FIG. 1 is generated and supplied to the tracking circuit of the optical pickup 18. Also LD
The AI8117 circuit 17 outputs the rotation detection pulse from the rotation detection pulse in Figure 3 (C
) is generated to drive the laser diode of the optical pickup 18. This laser diode drive signal is a signal that sets the output of the laser diode as recording power when it is at H level, and as playback power when the output is at H level.

光ピツクアップ18はレーザダイオード駆動信号のレベ
ルに応じたパワーでレーザダイオードよりレーザビーム
を発射し、またトラッキング信号のレベルに応じてレー
ザビームのスポットを光ディスク10の半径方向に10
0μ腸程度偏移させる。
The optical pickup 18 emits a laser beam from a laser diode with a power corresponding to the level of the laser diode drive signal, and also sets a spot of the laser beam 10 in the radial direction of the optical disk 10 according to the level of the tracking signal.
Shift the intestine by approximately 0μ.

上記光ピツクアップ18は光ディスク10の回転中心か
ら例えば41.6麿の位置に固定されている。
The optical pickup 18 is fixed at a position, for example, 41.6 mm from the center of rotation of the optical disc 10.

また、光ピツクアップ18は光ディスク10の反射ビー
ムを光センサで受光し、その受光信号がホーカスサーボ
回路19に供給され、ホーカスサーボ回路19は例えば
非点収差法によりホーカス調整を行なう。このホーカス
サーボはレーザダイオード駆動信号のHレベル期間及び
Lレベル期間共に動作する。
Further, the optical pickup 18 receives a reflected beam from the optical disk 10 with an optical sensor, and the received light signal is supplied to a focus servo circuit 19, which performs focus adjustment using, for example, an astigmatism method. This focus servo operates during both the H level period and the L level period of the laser diode drive signal.

これによって第4図(A)に示す如く光ディスク10に
は半径略41゜6ml+のピットパターン20が記録さ
れる。このピットパターンは同図(B)に示す如く、円
周方向の幅略0.6μmで半径方向の長さ略100μ−
のピット21が略0.6μ−間隔で隣接するものである
、光ディスク10の円周上には25万個のピット21が
形成される。
As a result, a pit pattern 20 with a radius of approximately 41.degree. 6 ml+ is recorded on the optical disk 10 as shown in FIG. 4(A). As shown in Figure (B), this pit pattern has a width of approximately 0.6 μm in the circumferential direction and a length of approximately 100 μm in the radial direction.
250,000 pits 21 are formed on the circumference of the optical disk 10, in which the pits 21 are adjacent to each other at approximately 0.6 μm intervals.

この光ディスク10のピットパターン形成は従来のライ
トワンス形光ディスクの記録再生装置技術を利用してい
るので比較的簡単に行なうことができ、ピットパターン
20は従来の写真技術によるものと比してはるかに^密
度となる。
The formation of pit patterns on the optical disc 10 is relatively easy as it uses conventional write-once type optical disc recording and reproducing device technology, and the pit pattern 20 is formed much more easily than when using conventional photographic technology. ^ It becomes density.

第1図において、ピットパターンが記録された光ディス
ク10の回転軸11は回転角度を計測する被計測回転軸
30に固定され、この被計測回転軸30と共に光ディス
ク10が回転する。
In FIG. 1, a rotating shaft 11 of an optical disc 10 on which a pit pattern has been recorded is fixed to a measuring rotating shaft 30 for measuring a rotation angle, and the optical disc 10 rotates together with this measuring rotating shaft 30.

光ピツクアップ31は光ディスクの回転中心から略47
.6mのピットパターン位置に固定されており、[Dド
ライブ駆動回路32からレーザダイオード駆動信号を供
給されて光ピツクアップ31内のレーザダイオードは常
時再生パワーのレーザビームを発射する。このレーザビ
ームは光ピツクアップ31内の回折格子により3つのビ
ームに分割されて光ディスク10に照射される。
The optical pickup 31 is approximately 47 mm from the rotation center of the optical disk.
.. It is fixed at a pit pattern position of 6 m, and the laser diode in the optical pickup 31 is supplied with a laser diode drive signal from the D drive drive circuit 32 and constantly emits a laser beam with reproduction power. This laser beam is divided into three beams by a diffraction grating in the optical pickup 31 and irradiated onto the optical disk 10.

このとき、第5図(A)に示す如くピットパターンの隣
接するピット21を360度の位相差として3つのビー
ムスポットA、B、Cは互いに90度の位相差となるよ
うに設定する。これらの3つのビームの光ディスク10
による反射ビームA′B’ 、C’ は第5図(B)に
示す光ピツクアップ31内の光センサ35.36.37
夫々で受光し電気信号に変換されホーカスサーボ回路3
3及び再生回路34夫々に供給される。光センサ35の
検出信号は再生回路34内の非反転アンプ38で増幅さ
れて第6図(A)に示す如き第1検出信号とされ端子3
9より出力される。また光センサ36は4分割されてお
り、光センサ36の対角関係にあるa、dの加算出力と
す、cの加算出力とがホーカスサーボ回路33内差動ア
ンプ40で差動増幅されホーカスエラー信号が生成され
る。このホーカスエラー信号は端子41から出力され光
ピツクアップ31のホーカスサーボ系に供給される。ま
た、上記光センサ36のa、bの加算出力及びす、cの
加算出力は加算アンプ42で加算増幅されて第6図(B
)に示す第2検出信号とされ端子43より出力される。
At this time, as shown in FIG. 5A, the three beam spots A, B, and C are set so that the adjacent pits 21 of the pit pattern have a phase difference of 360 degrees, and the three beam spots A, B, and C have a phase difference of 90 degrees from each other. Optical disc 10 of these three beams
The reflected beams A'B' and C' are reflected by the optical sensors 35, 36, and 37 in the optical pickup 31 shown in FIG. 5(B).
Each receives light and converts it into an electrical signal, which is then sent to the focus servo circuit 3.
3 and the reproduction circuit 34, respectively. The detection signal of the optical sensor 35 is amplified by the non-inverting amplifier 38 in the reproducing circuit 34 to become a first detection signal as shown in FIG.
It is output from 9. The optical sensor 36 is divided into four parts, and the summed outputs of a and d, which are in a diagonal relationship with each other, and the summed output of c are differentially amplified by a differential amplifier 40 in the focus servo circuit 33. An error signal is generated. This focus error signal is output from the terminal 41 and supplied to the focus servo system of the optical pickup 31. Further, the addition outputs of a, b and addition outputs of s, c of the optical sensor 36 are added and amplified by an addition amplifier 42 as shown in FIG.
) is output from the terminal 43 as a second detection signal.

第1.第2検出信号夫々は光ディスク10の回転に従っ
て90度の位相差を持つパルス信号であり、光ディスク
10の回転方向によってぃfれが一方の信号が他方の信
号に対して90度進む。
1st. Each of the second detection signals is a pulse signal having a phase difference of 90 degrees as the optical disk 10 rotates, and one signal leads the other signal by 90 degrees depending on the rotation direction of the optical disk 10.

光デイスク10上には25万個のピット21が形成され
ているため第1.第2検出信号の位相差によって光ディ
スク10の1回転を100万分割することができる。
Since 250,000 pits 21 are formed on the optical disk 10, the first. One revolution of the optical disc 10 can be divided into one million parts by the phase difference of the second detection signal.

ところで3分割されたレーザビームのうち2つのビーム
スポットA、B及び光センサ35.36があれば第1.
第2検出信号を得ることができるが、レーザビームを3
分割し、かつ3つの光セン+J36〜37を用いている
のは、現在市販されている光ピツクアップ31を用いて
いるためである。
By the way, if there are two beam spots A and B among the three divided laser beams and optical sensors 35 and 36, the first.
The second detection signal can be obtained, but the laser beam
The reason for the division and the use of three optical sensors +J36 to 37 is because the optical pickup 31, which is currently commercially available, is used.

このように光ディスク10及び従来の光デイスク再生技
術を利用して、直径100M程度のロータリー1ンコー
ダで1回転を100万分割することができる、また、第
1.第2検出信号を正弦波波形としてその電圧を数10
分割すれば更に高精度の回転角度計測を行なうことがで
きる。
As described above, by using the optical disc 10 and conventional optical disc playback technology, one rotation can be divided into one million parts by one rotary encoder with a diameter of about 100 m. Assuming that the second detection signal has a sine wave waveform, its voltage can be calculated by several tens of digits.
By dividing, it is possible to measure the rotation angle with even higher accuracy.

また、ピット21は光ディスク10の半径方向に長さ略
100μ雪で記録されているため、光ピツクアップ31
はトラッキングリーボの必要がない。
Furthermore, since the pits 21 are recorded in the radial direction of the optical disc 10 as snow with a length of approximately 100 μm, the optical pickup 31
There is no need for tracking ribo.

(発明の効果〕 上述の如く、本発明のロータリーエンコーダによれば、
高精度の回転角度検出を行なうことができ、かつ、装置
全体が小型で済み、実用上きわめて有用である。
(Effects of the Invention) As described above, according to the rotary encoder of the present invention,
The rotation angle can be detected with high precision, and the entire device can be small, making it extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のロータリーエンコーダの一実施例の構
成図、第2図は本発明のロータリーエンコーダに用いる
光ディスクの製選装置の・一実施例の構成図、第3図は
第1図の各部の(ff1号波形図、第4図はピットパタ
ーンを示す図、第5図は本発明のロータリーエンコーダ
を説明するための図、第6図は検出信号の波形図である
。 10・・・光ディスク、11・・・回転軸、14・・・
基準FG発生器、16・・・レンズ駆動回路、17.3
2・・・[−D駆動回路、18.31・・・光ピツクア
ップ、19.33・・・ホーカスサーボ回路、2o・・
・ピットパターン、21・・・ピット、34・・・再生
回路。
FIG. 1 is a block diagram of an embodiment of the rotary encoder of the present invention, FIG. 2 is a block diagram of an embodiment of the optical disc manufacturing apparatus used in the rotary encoder of the present invention, and FIG. 3 is a block diagram of an embodiment of the rotary encoder of the present invention. (FF1 waveform diagram of each part, FIG. 4 is a diagram showing a pit pattern, FIG. 5 is a diagram for explaining the rotary encoder of the present invention, and FIG. 6 is a waveform diagram of a detection signal. 10... Optical disc, 11... Rotating shaft, 14...
Reference FG generator, 16... Lens drive circuit, 17.3
2... [-D drive circuit, 18.31... Optical pickup, 19.33... Focus servo circuit, 2o...
- Pit pattern, 21...pit, 34...reproduction circuit.

Claims (1)

【特許請求の範囲】 半径方向に延在する複数のピットを同一円周上に等角度
間隔で記録した光ディスクと、 該光ディスクの隣接するピットの円周方向の位相差に対
して1/4の位相差を持つ少なくとも2つの光ビームを
照射し、該光ディスクによる2つの反射ビーム夫々を検
出して互いに90度位相の異なる第1及び第2の検出信
号を出力する再生装置とを有し、 該第1及び第2の検出信号で該光ディスクの回転角度を
計測することを特徴とするロータリーエンコーダ。
[Claims] An optical disc in which a plurality of pits extending in the radial direction are recorded at equal angular intervals on the same circumference, and a phase difference of 1/4 in the circumferential direction between adjacent pits of the optical disc. a reproducing device that irradiates at least two light beams having a phase difference, detects each of the two reflected beams from the optical disk, and outputs first and second detection signals having a phase difference of 90 degrees from each other; A rotary encoder characterized in that the rotation angle of the optical disc is measured using first and second detection signals.
JP14978889A 1989-06-13 1989-06-13 Rotary encoder Pending JPH0313816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14978889A JPH0313816A (en) 1989-06-13 1989-06-13 Rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14978889A JPH0313816A (en) 1989-06-13 1989-06-13 Rotary encoder

Publications (1)

Publication Number Publication Date
JPH0313816A true JPH0313816A (en) 1991-01-22

Family

ID=15482727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14978889A Pending JPH0313816A (en) 1989-06-13 1989-06-13 Rotary encoder

Country Status (1)

Country Link
JP (1) JPH0313816A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144024A (en) * 1985-12-18 1987-06-27 Mitsubishi Electric Corp Displacement detector
JPS6478112A (en) * 1987-09-18 1989-03-23 Victor Company Of Japan Optical encoder and optical rotation detecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144024A (en) * 1985-12-18 1987-06-27 Mitsubishi Electric Corp Displacement detector
JPS6478112A (en) * 1987-09-18 1989-03-23 Victor Company Of Japan Optical encoder and optical rotation detecting device

Similar Documents

Publication Publication Date Title
US6388987B2 (en) Information recording medium having wobbled groove structure and plural zones
KR19980032557A (en) Recording medium
GB2255187A (en) Method and apparatus for measuring and determining a rotation angle of a rotating object
US5602388A (en) Absolute and directional encoder using optical disk
EP0090420B1 (en) Device for optically recording and reading of information
EP0523334B1 (en) Optical information recording medium and reproducing apparatus for reproducing information from the medium
US6057976A (en) Apparatus for detecting rotational displacement information of a rotating object
JPH0313816A (en) Rotary encoder
US6744706B2 (en) Optical system with tracking controller
JPH01112110A (en) Optical rotary encoder
JPS60100013A (en) Apparatus for detection of rotation
JPH0235244B2 (en)
JPS6157084A (en) Tracking servo method
JP2527728B2 (en) Optical encoder
JPH042917A (en) Rotary encoder apparatus
JPS63166026A (en) Adjusting method for position of optical head of optical disk player
JP2567934B2 (en) Rotation detector
JP2667685B2 (en) Optical memory device and tracking error detection method for optical memory device
JPH06103612A (en) Information recording disk and disk driving device
JPH02181607A (en) Manufacture of rotation detector and rotary disk
JP3652139B2 (en) Tracking control circuit
JP2002260237A (en) Optical disk device
JPH0663782B2 (en) Optical rotation detection method
JPH01213519A (en) Optical rotation detector
JPH0366028A (en) Optical disk driving device