JPH03136236A - Liquid phase epitaxial growth and growth device - Google Patents

Liquid phase epitaxial growth and growth device

Info

Publication number
JPH03136236A
JPH03136236A JP27471189A JP27471189A JPH03136236A JP H03136236 A JPH03136236 A JP H03136236A JP 27471189 A JP27471189 A JP 27471189A JP 27471189 A JP27471189 A JP 27471189A JP H03136236 A JPH03136236 A JP H03136236A
Authority
JP
Japan
Prior art keywords
substrate
contact
raw material
epitaxial layer
material melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27471189A
Other languages
Japanese (ja)
Inventor
Yoshiaki Haneki
良明 羽木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27471189A priority Critical patent/JPH03136236A/en
Publication of JPH03136236A publication Critical patent/JPH03136236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To contrive to make the high-yield manufacture of a wafer possible at the time of formation of an epitaxial layer of a multilayer structure by a method wherein a substrate is brought into contact to the surface on the upper side of a raw melt to be cooled and an epitaxial growth of the first layer of the epitaxial layer is made to perform, then, while a GaAs polycrystal is brought into contact to the lower side of the raw melt in a state keeping the substrate intact, it is heated. CONSTITUTION:In a liquid phase epitaxial growth method of forming an epitaxial layer of a multilayer structure on the surface of a GaAs substrate 4, the substrate 4 is brought into contact to the surface on the upper side of the first raw melt 5 in a substrate 2 with prescribed raw melts 5 to 8 housed in a plurality of its opening parts, to to cooled and a first epitaxial layer is grown and thereafter, a GaAs polycrystal 11 is brought into contact to the surface on the lower side of the melt 5 to be heated in the state keeping as the upper side of the melt 5 is brought into contact to the substrate 4, then, the substrate 4 is moved, the substrate 4 is brought into contact to the surface on the upper side of the second raw melt 6, to be cooled and a process of growing a second epitaxial layer is repeated. Thereby, the crystal of the already existing epitaxial layer is not disturbed by a partial fusion and the like at the time of heat-up and the problem of a reduction in the yield of the formation of a substrate grown epitaxially in a multilayer structure can be dissolved.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は電子デバイス、光デバイスに用いる多層構造
のエピタキシャル層をQaAS基板の表面に形成させる
液相エピタキシャル成長方法及び成長装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a liquid phase epitaxial growth method and a growth apparatus for forming a multilayered epitaxial layer on the surface of a QaAS substrate for use in electronic devices and optical devices.

「従来の技術」 従来から半導体基板、特に化合物半導体基板の表面に多
層構造のエピタキシャル層を成長させるにはスライドボ
ートを用いた液相エピタキシャル成長法が行われている
"Prior Art" Conventionally, a liquid phase epitaxial growth method using a slide boat has been used to grow a multilayered epitaxial layer on the surface of a semiconductor substrate, particularly a compound semiconductor substrate.

この液相エピタキシャル成長は、第5図に示すように、
カーボン基体1と複数個の開口部9(融液溜め)をもう
けた基体2の間に半導体基板4、例えばGaAs基板4
を固定したスライダー3を挿入する。北方の基体2の開
口部9にはそれぞれにエピタキシャル成長させる原料の
融液すなわち第1原料融液5、第2原料融液6・・・・
・・を収容する。
This liquid phase epitaxial growth, as shown in Figure 5,
A semiconductor substrate 4, for example a GaAs substrate 4, is placed between a carbon substrate 1 and a substrate 2 having a plurality of openings 9 (melt reservoirs).
Insert slider 3 with fixed . Melts of raw materials to be epitaxially grown, that is, a first raw material melt 5, a second raw material melt 6, are respectively placed in the opening 9 of the northern base 2.
Accommodates...

エピタキシャル成長をさせる1こは第2図に示したよう
な温度プログラムを用いる。すなわち半導体基板と原料
融液を温度T1  に昇温し、温度が安定した後スライ
ダー3を移動して半導体基板を第1原料融液5に接触さ
せる。次いで温度をT1からT2に降温させると第1原
料融液5が半導体基板4の表面に結晶して成長し、エピ
タキシャルの第1層目が形成される。次いでスライダー
3を移動して半導体基板4を第1原料融液5から分離し
て第1原料融液5と第2原料融液6の間に半導体基板を
待機させて温度をT3まで昇温し、温度が安定するとス
ライダー3を移動して半導体基板4を第2原料融液6と
接触させて、温度をT3からT4まで降温するとエピタ
キシャル層の第2層目が形成される。この工程を第3.
第4と繰り返すことにより多層構造のエピタキシャル層
を形成することができる。
For epitaxial growth, a temperature program as shown in FIG. 2 is used. That is, the semiconductor substrate and the raw material melt are heated to a temperature T1, and after the temperature becomes stable, the slider 3 is moved to bring the semiconductor substrate into contact with the first raw material melt 5. Next, when the temperature is lowered from T1 to T2, the first raw material melt 5 crystallizes and grows on the surface of the semiconductor substrate 4, forming an epitaxial first layer. Next, the slider 3 is moved to separate the semiconductor substrate 4 from the first raw material melt 5, the semiconductor substrate is placed on standby between the first raw material melt 5 and the second raw material melt 6, and the temperature is raised to T3. When the temperature stabilizes, the slider 3 is moved to bring the semiconductor substrate 4 into contact with the second raw material melt 6, and when the temperature is lowered from T3 to T4, the second epitaxial layer is formed. This step is the third step.
By repeating the fourth step, an epitaxial layer with a multilayer structure can be formed.

「発明が解決しようとする課題」 前記従来のスライドボート法でエピタキシャル成長を行
うと、エピタキシャル層を形成させた後、スライダーを
移動して半導体基板を分離すると基板表面に原料融液が
部分的に残留する。残留融液があると、基板を次ぎの原
料融液に移動して接触させる前の昇温工程で残留融液の
ある部分のエピタキシャル層が溶融し、エピタキシャル
層の結晶が乱れたりしてエピタキシャル成長した基板の
歩留が著しく低下するという課題があった。
"Problems to be Solved by the Invention" When epitaxial growth is performed using the conventional slide boat method, after forming an epitaxial layer, when the slider is moved to separate the semiconductor substrate, the raw material melt partially remains on the surface of the substrate. do. If there is residual melt, the epitaxial layer in the area with the residual melt melts during the temperature raising process before moving the substrate to the next raw material melt and bringing it into contact, causing the crystals of the epitaxial layer to become disordered and resulting in epitaxial growth. There was a problem in that the yield of substrates decreased significantly.

「課題を解決するための手段」 この発明は基板(ウェーハ9表面に多層構造のエピタキ
シャル層を形成する液相エピタキシャル成長方法におい
て、固定した平板状のカーボン基体と複数の開口部のそ
れぞれに原料融液を収容したカーボン基体との間に上側
にGaAs多結晶を収容したスライダーをもうけ、また
開口部を有する基体の下側に半導体の単結晶基板(ウェ
ーハ)を下側に収容したスライダーをもうけた構造の装
置を用いるものである。そして装置の温度を上昇して安
定したのち下側のスライダーを移動して基板を原料融液
の上側表面に接触させて降温し第1層のエピタキシャル
成長をさせ5次いでそのままの状態で下側のスライダー
を移動してGaAs多結晶を原料融液の下側に接触させ
つつ昇温し、上側のスライダーを移動して基板を第2原
料像液に接触させて降温して第1エピタキシャル層の表
面に第2のエピタキシャル層を成長させる。この操作を
繰り返して多層構造のエピタキシャル成長層を形成せし
めることを特徴とする液相エピタキシャル成長方法及び
装置である。
``Means for Solving the Problems'' This invention is a liquid phase epitaxial growth method for forming an epitaxial layer with a multilayer structure on the surface of a substrate (wafer 9), in which a raw material melt is applied to a fixed flat carbon substrate and each of a plurality of openings. A structure in which a slider containing a GaAs polycrystal is provided on the upper side between the carbon substrate containing the carbon substrate, and a slider containing a semiconductor single crystal substrate (wafer) on the lower side of the base having an opening. After the temperature of the device is raised and stabilized, the lower slider is moved to bring the substrate into contact with the upper surface of the raw material melt, and the temperature is lowered to allow epitaxial growth of the first layer. In this state, the lower slider is moved to bring the GaAs polycrystal into contact with the lower side of the raw material melt to raise the temperature, and the upper slider is moved to bring the substrate into contact with the second raw material image liquid to lower the temperature. This liquid phase epitaxial growth method and apparatus are characterized in that a second epitaxial layer is grown on the surface of the first epitaxial layer.This operation is repeated to form an epitaxial growth layer having a multilayer structure.

以下具体例の図面を用いて本発明を説明する。The present invention will be explained below using drawings of specific examples.

第1図は本発明に用いる装置の例の断万図であり、従来
の装置を示す第5図と同じ部分には同じ符号をふしであ
る。図面のように、2枚のカーボン基体、即ち平板状の
基体1と複数の原料融液を収容する開口部9を有するカ
ーボン基体2をもうけ、その間にQaAS多結晶11を
上側に固定したスライダー10がもうけられている。カ
ーボン基体2の丘には下側に半導体基板(ウェーハ)4
を固定したスライダー3がもうけられている。従って各
スライダー5,4を移動すると原料融液の上側表面は半
導体基板4と接触し、下側表面はGaAs多結晶が接触
する。
FIG. 1 is an exploded view of an example of the device used in the present invention, and the same parts as in FIG. 5, which shows the conventional device, are given the same reference numerals. As shown in the drawing, a slider 10 has two carbon substrates, that is, a flat plate-shaped substrate 1 and a carbon substrate 2 having an opening 9 for accommodating a plurality of raw material melts, and a QaAS polycrystal 11 is fixed on the upper side between them. is being made. A semiconductor substrate (wafer) 4 is placed on the lower side of the hill of the carbon substrate 2.
A slider 3 with fixed . Therefore, when each slider 5, 4 is moved, the upper surface of the raw material melt comes into contact with the semiconductor substrate 4, and the lower surface comes into contact with the GaAs polycrystal.

本発明ではこのような装置を用いて、基板4を原料融液
に接触させて下面にエピタキシャル層を成長させたのち
、原料融液のhiに基板が接触している状態で下側のス
ライダー10を移動してGaAs多結晶11を接触させ
て昇温する。温度が安定するとスライダー3を移動して
基板4を次ぎの原料融液に接触させて降温して次のエピ
タキシャル層を形成する。このようにして順次多層のエ
ピタキシャル層を形成する。
In the present invention, using such an apparatus, after bringing the substrate 4 into contact with the raw material melt and growing an epitaxial layer on the lower surface, the lower slider 10 is grown while the substrate is in contact with hi of the raw material melt. is brought into contact with the GaAs polycrystal 11, and the temperature is raised. When the temperature becomes stable, the slider 3 is moved to bring the substrate 4 into contact with the next raw material melt, and the temperature is lowered to form the next epitaxial layer. In this way, multiple epitaxial layers are sequentially formed.

「作用」 第1図に示すような装置により多層のエピタキシャル層
を成長させるには第2図に示すような温度プログラムを
用いる。
"Operation" To grow a multilayer epitaxial layer using the apparatus shown in FIG. 1, a temperature program as shown in FIG. 2 is used.

すなわち先ず温度を、第2図の示すT1 に安定させて
スライダー3を移動してGaAS基板4を第1原料融液
5に接触させてT2まで降温させると第1層のエピタキ
シャル成長層が形成される。
That is, first, the temperature is stabilized at T1 shown in FIG. 2, the slider 3 is moved to bring the GaAS substrate 4 into contact with the first raw material melt 5, and the temperature is lowered to T2, thereby forming the first epitaxial growth layer. .

次ぎにスライダー3すなわちGaAS基板4を移動する
ことなしに、スライダー10を移動してGaAS多結晶
11を第1原料融液5の下側に接触させる。そうすると
第1原料融液5内の温度の揺らぎにより原料融液内にG
aASクラスター(微小な分子の結合体)が形成される
。このクラスターは原料融液内の比重差によって原料融
液の上部に上昇する。従って原料融液の上部では過飽和
(ASの)、下部で未飽和という状態が作りだされ、上
部の基板表面ではエピタキシャル層が成長しようとし、
下部ではGaAS多結晶が溶融しようとする現象が発生
する。ここで基板の表面でのエピタキシャル層が成長し
ようとする成長速度を相殺するように原料融液の温度を
所定の昇温レートで1昇させると、基板表面にエピタキ
シャル成長をさせずにT、まで昇温することができる。
Next, without moving the slider 3, that is, the GaAS substrate 4, the slider 10 is moved to bring the GaAS polycrystal 11 into contact with the lower side of the first raw material melt 5. Then, due to the fluctuation of the temperature in the first raw material melt 5, G in the raw material melt.
An aAS cluster (a combination of minute molecules) is formed. This cluster rises to the top of the raw material melt due to the difference in specific gravity within the raw material melt. Therefore, a state is created in which the upper part of the raw material melt is supersaturated (AS) and the lower part is unsaturated, and an epitaxial layer tries to grow on the upper substrate surface.
In the lower part, a phenomenon occurs in which the GaAS polycrystal tries to melt. If the temperature of the raw material melt is increased by 1 at a predetermined temperature increase rate to offset the growth rate at which the epitaxial layer grows on the surface of the substrate, it will rise to T without epitaxial growth on the surface of the substrate. It can be warmed up.

次ぎにスライダー3によってGaAS基板を移動して第
2原料融液6と接触させて温度をT3からT4 まで降
温すると第2層のエピタキシャル層を形成することがで
きる。この工程を繰り返すと多層構造のエピタキシャル
層を形成することができる。
Next, the GaAS substrate is moved by the slider 3 and brought into contact with the second raw material melt 6, and the temperature is lowered from T3 to T4, thereby forming a second epitaxial layer. By repeating this process, an epitaxial layer with a multilayer structure can be formed.

以北のように本発明の装置と方法を用いると、原料融液
からGaAS基板を分離して部分的に原料融液が残留し
た状態で昇温するという工程がない。
When the apparatus and method of the present invention are used as described above, there is no step of separating the GaAS substrate from the raw material melt and raising the temperature with the raw material melt partially remaining.

従って昇温時に既存のエピタキシャル層が部分的溶融等
によって結晶が乱されず、多層エピタキシャル成長した
基板の歩留の低下という課題を解消することができる。
Therefore, the crystals of the existing epitaxial layer are not disturbed due to partial melting or the like when the temperature is increased, and the problem of reduced yield of multilayer epitaxially grown substrates can be solved.

「実施例」 第1図の装置を用い、第4図に示すような温度プログラ
ムを用いて、第5図に示すようなシングルへテロ構造の
2層エピタキシャル成長層を有する発光ダイオード用の
基板を造った。
``Example'' Using the apparatus shown in FIG. 1 and the temperature program shown in FIG. 4, a substrate for a light emitting diode having two epitaxial growth layers of a single heterostructure as shown in FIG. 5 was manufactured. Ta.

第1原料融液として100gのQa中にGaAsを8g
、Zn50#およびAI を300ダを投入した原料融
液を、第2原料融液として100gのQa中にGaAS
7 g+  Te 0.511P、  AI  600
mgを投入した原料融液を用いた。下側のスライダーに
は10gのGaAS多結晶を収容した。
8g of GaAs in 100g of Qa as the first raw material melt
, Zn50# and AI at 300 da were added as a second raw material melt in 100 g of Qa.
7 g+ Te 0.511P, AI 600
A raw material melt containing 1.0 mg of raw material was used. The lower slider contained 10 g of GaAS polycrystal.

上側のスライダーにQaAS基板をとりつけ、第4図に
示すように、Tl−900°Cとし温度安定後に第1原
料融液に接触させてT2−850°Cまで降温速度1°
C/wで降温してエピタキシャル成長をさせてエピタキ
シャル層の第1層を造った。
The QaAS substrate was attached to the upper slider, and as shown in Fig. 4, the temperature was stabilized at Tl-900°C, and then brought into contact with the first raw material melt, and the temperature was lowered at a rate of 1° to T2-850°C.
The first layer of the epitaxial layer was formed by epitaxial growth while lowering the temperature at C/w.

次ぎにGaAS多結晶を原料融液に接触させて昇温速度
0.01°C/躯でTS−870°Cまで昇温した。
Next, the GaAS polycrystal was brought into contact with the raw material melt, and the temperature was raised to TS-870°C at a heating rate of 0.01°C/body.

次いでGaAS基板を移動して第2原料融液に接触させ
て降温速度1°C/釧でT4−600°Cまで降温して
第2層のエピタキシャル層を成長させた。
Next, the GaAS substrate was moved and brought into contact with the second raw material melt, and the temperature was lowered to T4-600°C at a cooling rate of 1°C/Jin to grow a second epitaxial layer.

比較のため同じGaAS基板(ウェーハ)を用いて、従
来方法のように、第1層のエピタキシャル成長をした後
、GaAS多結晶を第1原料融液に接触させることなく
GaAS基板を原料融液から分離した状態でT2−85
0°CからT3−870°Cまで昇温し、次いで第2原
料融液に接触させて降温して前記と同様のシングルへテ
ロ構造の2層エピタキシャル層を有する基板を造った。
For comparison, the same GaAS substrate (wafer) was used, and after the first layer was epitaxially grown as in the conventional method, the GaAS substrate was separated from the raw material melt without bringing the GaAS polycrystal into contact with the first raw material melt. T2-85 with
The temperature was raised from 0°C to T3-870°C, and then the temperature was lowered by contacting with the second raw material melt to produce a substrate having a two-layer epitaxial layer with a single heterostructure similar to that described above.

得られたエピタキシャル層を有する基板(ウェーハ)か
ら発光ダイオードを造った。ウェーハー枚から1000
個のLEDチップを抜き取り、輝度を測定して比較した
。その際に500mcd以下のチップを不良品とした。
A light emitting diode was made from the substrate (wafer) with the epitaxial layer obtained. 1000 from wafer
Each LED chip was extracted and the brightness was measured and compared. At that time, chips with a diameter of 500 mcd or less were considered defective.

結果は次表の通りであった。The results are shown in the table below.

表 この結果から本発明の方法を用いると従来方法に比し不
良チップ数が少なく、歩留が向上することが分かる。
From the results shown in the table, it can be seen that when the method of the present invention is used, the number of defective chips is reduced compared to the conventional method, and the yield is improved.

「発明の効果」 以上に詳しく説明したように本発明の方法および装置を
用いると、多層構造のエピタキシャル成長層を有する基
板を造る時にエピタキシャル成長工程の間に、前にでき
たエピタキシャル層を残留する原料融液による溶融等に
より害することなく次きのエピタキシャル層を成長する
ことができ、多層構造のエピタキシャル層を作製する時
に高歩留のウェーハの製造が可能となる効果を有するも
のである。
"Effects of the Invention" As explained in detail above, when the method and apparatus of the present invention are used, during the epitaxial growth process when manufacturing a substrate having a multilayered epitaxial layer, the raw material fusion that leaves the previously formed epitaxial layer can be used. The next epitaxial layer can be grown without being damaged by melting or the like due to the liquid, and this has the effect of making it possible to manufacture wafers with high yield when manufacturing epitaxial layers with a multilayer structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の断面を示す概念図
、第2図は多層構造のエピタキシャル成長をさせる時の
温度プログラムを示すグラフである。第3図は実施例の
場合のシングルへテロ構造のエピタキシャル成長をさせ
る場合の温度プログラムを示すグラフであり、第4図は
シングルへテロ構造のウェーハの断面を示す説明図であ
る。第5図は従来の液層エピタキシャル成長装置の断面
を示す概念図である。 1:カーボン基体 2:開口部を有するカーボン基体 3.10ニスライダー 4+  14 : oaAs基板(ウェーハ)5、 6
. 7. 8:原料融液 9:開口部     11 : GaAS多結晶12.
13:エピタキシャル成長層
FIG. 1 is a conceptual diagram showing a cross section of an apparatus for implementing the method of the present invention, and FIG. 2 is a graph showing a temperature program for epitaxial growth of a multilayer structure. FIG. 3 is a graph showing a temperature program for epitaxial growth of a single heterostructure in the example, and FIG. 4 is an explanatory diagram showing a cross section of a wafer with a single heterostructure. FIG. 5 is a conceptual diagram showing a cross section of a conventional liquid layer epitaxial growth apparatus. 1: Carbon substrate 2: Carbon substrate with openings 3.10 Nislider 4+ 14: oaAs substrate (wafer) 5, 6
.. 7. 8: Raw material melt 9: Opening 11: GaAS polycrystal 12.
13: Epitaxial growth layer

Claims (1)

【特許請求の範囲】 1、GaAs基板(ウェーハ)表面に多層構造のエピタ
キシャル層を形成する液相エピタキシャル成長方法にお
いて、複数の開口部に所定の原料融液を収容した基体内
の第1原料融液の上側表面に基板を接触させて降温して
第1層のエピタキシャル層を成長させた後、該原料融液
の下側の表面にGaAs多結晶を接触させ上側が基板と
接触した状態のまま昇温し、次いで基板を移動して第2
原料融液の上側表面に基板を接触させて降温して第2層
のエピタキシャル層を成長させる工程を繰り返すことを
特徴とする液相エピタキシャル成長方法 2、GaAs基板(ウェーハ)表面に多層構造のエピタ
キシャル層を形成する液相エピタキシャル成長装置にお
いて、固定した平板状のカーボン基体と複数の開口部の
それぞれに原料融液を収容したカーボン基体との間にス
ライドさせると原料融液と接触するGaAs多結晶を上
側に収容したスライダーを有し、また開口部を有するカ
ーボン基体の上に半導体の単結晶基板(ウェーハ)を下
側に固定したスライダーを有する2つのスライダーをも
つことを特徴とする液相エピタキシャル成長装置 3、請求項2の装置を用いて、第2層以降の成長を行う
前に原料融液の上側にGaAs基板、下側にGaAs多
結晶を接触させた状態で成長装置を昇温させることを特
徴とする請求項1記載の液相エピタキシャル成長方法
[Claims] 1. In a liquid phase epitaxial growth method for forming an epitaxial layer with a multilayer structure on the surface of a GaAs substrate (wafer), a first raw material melt in a substrate containing a predetermined raw material melt in a plurality of openings; After the substrate is brought into contact with the upper surface and the temperature is lowered to grow the first epitaxial layer, a GaAs polycrystal is brought into contact with the lower surface of the raw material melt and raised while the upper surface is in contact with the substrate. warm up, then move the substrate to the second
Liquid phase epitaxial growth method 2 characterized by repeating the step of bringing the substrate into contact with the upper surface of the raw material melt and lowering the temperature to grow a second epitaxial layer, a multilayered epitaxial layer on the surface of the GaAs substrate (wafer) In a liquid phase epitaxial growth apparatus for forming a GaAs polycrystal, the GaAs polycrystal in contact with the raw material melt is placed on the upper side when the carbon base is slid between a fixed flat carbon base and a carbon base containing a raw material melt in each of a plurality of openings. A liquid phase epitaxial growth apparatus 3 characterized in that it has two sliders, each having a slider housed in a carbon substrate having an opening, and a slider having a semiconductor single crystal substrate (wafer) fixed to the lower side on a carbon substrate having an opening. , using the apparatus of claim 2, the temperature of the growth apparatus is raised while the GaAs substrate is in contact with the upper side of the raw material melt and the GaAs polycrystal is in contact with the lower side before growing the second layer and subsequent layers. The liquid phase epitaxial growth method according to claim 1, wherein
JP27471189A 1989-10-21 1989-10-21 Liquid phase epitaxial growth and growth device Pending JPH03136236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27471189A JPH03136236A (en) 1989-10-21 1989-10-21 Liquid phase epitaxial growth and growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27471189A JPH03136236A (en) 1989-10-21 1989-10-21 Liquid phase epitaxial growth and growth device

Publications (1)

Publication Number Publication Date
JPH03136236A true JPH03136236A (en) 1991-06-11

Family

ID=17545504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27471189A Pending JPH03136236A (en) 1989-10-21 1989-10-21 Liquid phase epitaxial growth and growth device

Country Status (1)

Country Link
JP (1) JPH03136236A (en)

Similar Documents

Publication Publication Date Title
JPS63209122A (en) Method and apparatus for vapor phase thin film crystal growth
JPH03136236A (en) Liquid phase epitaxial growth and growth device
US3981764A (en) III-V Compound semi-conductor crystal growth from a liquid phase on a substract including filtering liquid phase
JPS6235260B2 (en)
KR900001716B1 (en) Liquid deposition of semiconductor material on a substrate
KR950006313B1 (en) Liquid epitaxy apparatus and method of epitaxial layer
JPS58120600A (en) Epitaxial growth method of 2-5 family compound semiconductor
JP2534945B2 (en) Method for manufacturing semiconductor device
JPS5930797A (en) Liquid phase epitaxial growth method
JP2538009B2 (en) Liquid phase epitaxial growth method
JPH0571558B2 (en)
JPH0330980B2 (en)
JPS628008B2 (en)
JPH02133390A (en) Method and device for multilayer epitaxial growth
JPH0196091A (en) Liquid phase epitaxy growth device for semiconductor single crystal
JPH0485819A (en) Liquid phase epitaxial growth device
JP3515858B2 (en) Boat for liquid phase epitaxial growth
JPH02196085A (en) Method for liquid phase epitaxy
JPH0571557B2 (en)
JP2508726B2 (en) Liquid phase epitaxial growth method
JPS6020509A (en) Liquid phase epitaxial growth method
JPH05190476A (en) Manufacture of semiconductor layer
JPS589794B2 (en) Semiconductor liquid phase multilayer thin film growth method and growth equipment
JPH0784359B2 (en) Liquid phase epitaxial growth system
JPH05201791A (en) Liquid phase epitaxial growth method