JPH03135928A - Production of 2,5-dimethyl-2,4-hexadiene - Google Patents
Production of 2,5-dimethyl-2,4-hexadieneInfo
- Publication number
- JPH03135928A JPH03135928A JP1311450A JP31145089A JPH03135928A JP H03135928 A JPH03135928 A JP H03135928A JP 1311450 A JP1311450 A JP 1311450A JP 31145089 A JP31145089 A JP 31145089A JP H03135928 A JPH03135928 A JP H03135928A
- Authority
- JP
- Japan
- Prior art keywords
- sulfate
- isobutyraldehyde
- hexadiene
- dimethyl
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- DZPCYXCBXGQBRN-UHFFFAOYSA-N 2,5-Dimethyl-2,4-hexadiene Chemical compound CC(C)=CC=C(C)C DZPCYXCBXGQBRN-UHFFFAOYSA-N 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- 239000003054 catalyst Substances 0.000 claims abstract description 27
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000002253 acid Substances 0.000 claims abstract description 19
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 18
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims abstract description 17
- 229910000358 iron sulfate Inorganic materials 0.000 claims abstract description 17
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims abstract description 15
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims abstract description 14
- 229910000365 copper sulfate Inorganic materials 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 8
- 238000005260 corrosion Methods 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 239000003905 agrochemical Substances 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 239000012808 vapor phase Substances 0.000 abstract 2
- 229940079593 drug Drugs 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 5
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 5
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 5
- 238000001354 calcination Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 4
- 239000012071 phase Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- MWTPBEVCVOHWSX-UHFFFAOYSA-N 6-methylhepta-2,4-diene Chemical compound CC=CC=CC(C)C MWTPBEVCVOHWSX-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- OSQPUMRCKZAIOZ-UHFFFAOYSA-N carbon dioxide;ethanol Chemical compound CCO.O=C=O OSQPUMRCKZAIOZ-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- WIVXEZIMDUGYRW-UHFFFAOYSA-L copper(i) sulfate Chemical compound [Cu+].[Cu+].[O-]S([O-])(=O)=O WIVXEZIMDUGYRW-UHFFFAOYSA-L 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、イソブチレンおよび/またはターシャリ−ブ
チルアルコールとイソブチルアルデヒドから、2.5−
ジメチル−2,4−ヘキサジエンを製造する方法に関す
るものである。2,5−ジメチル−2,4−ヘキサジエ
ンは、農薬、殺虫剤、医薬あるいは各種有機合成の中間
体として非常に有用なものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention provides 2.5-
The present invention relates to a method for producing dimethyl-2,4-hexadiene. 2,5-dimethyl-2,4-hexadiene is extremely useful as an agrochemical, an insecticide, a medicine, or an intermediate in various organic syntheses.
〈従来の技術〉
イソブチレンおよび/またはターシャリ−ブチルアルコ
ールとイソブチルアルデヒドを、触媒の存在下に反応さ
せ、2.5−ジメチル−2,4−ヘキサジエンを製造す
る方法としては、鉱酸、スルホン酸、ヘテロポリ酸を触
媒として、液相加圧下に反応させる方法が知られている
(特開昭48−34108号公報参照)。<Prior art> As a method for producing 2,5-dimethyl-2,4-hexadiene by reacting isobutylene and/or tertiary-butyl alcohol with isobutyraldehyde in the presence of a catalyst, mineral acid, sulfonic acid, A method of reacting under pressure in a liquid phase using a heteropolyacid as a catalyst is known (see JP-A-48-34108).
しかしながらこの方法では、2.5−ジメチル−2,4
−ヘキサジエンの収率は40%と低く、多量の副生物が
生成する。さらに、触媒として用いる鉱酸やスルホン酸
は、装置の材質に対する腐食性が強く、材質腐食による
トラブルに常に注意する必要があった。However, in this method, 2,5-dimethyl-2,4
-The yield of hexadiene is as low as 40%, and a large amount of by-products are produced. Furthermore, the mineral acids and sulfonic acids used as catalysts are highly corrosive to the materials of the equipment, and it is necessary to always be careful of troubles caused by material corrosion.
我々は先に、触媒としてニオブ酸および改質ニオブ酸を
用いて、イソブチレンおよび/またはターシャリ−ブチ
ルアルコールとイソブチルアルデヒドから2.5−ジメ
チル−2,4−ヘキサジエンを製造する方法を見出し、
特許を出願している(特開昭62−281829号公報
、特開昭63−2936号公報参照)。We have previously discovered a method for producing 2,5-dimethyl-2,4-hexadiene from isobutylene and/or tertiary-butyl alcohol and isobutyraldehyde using niobic acid and modified niobic acid as catalysts,
A patent application has been filed (see JP-A-62-281829 and JP-A-63-2936).
我々はさらに、触媒の改良について検討を行ない、より
優れた触媒を開発することに成功し、本発明に到達した
ものである。We further investigated ways to improve the catalyst and succeeded in developing an even better catalyst, resulting in the present invention.
〈発明が解決しようとする課題〉
本発明は、イソブチレンおよび/またはターシャリ−ブ
チルアルコールとイソブチルアルデヒドを、触媒の存在
下に反応させ、2.5−ジメチル−2,4−ヘキサジエ
ンを製造する方法において、従来の技術の欠点、即ち、
副生成物が多量に生成して収率が低いこと、装置の腐食
が著しいこと等の問題点を解決し、工業的に収率よ<2
.5−ジメチル−2,4−ヘキサジエンを得る有利な方
法を提供しようとするものである。<Problems to be Solved by the Invention> The present invention provides a method for producing 2,5-dimethyl-2,4-hexadiene by reacting isobutylene and/or tertiary-butyl alcohol with isobutyraldehyde in the presence of a catalyst. , the drawbacks of the conventional technology, namely:
This solves problems such as low yields due to large amounts of by-products and severe corrosion of equipment, and industrially reduces yields to <2.
.. It is an object of the present invention to provide an advantageous method for obtaining 5-dimethyl-2,4-hexadiene.
く課題を解決するための手段〉
すなわち、本発明は、イソブチレンおよび/またはター
シャリ−ブチルアルコールとイソブチルアルデヒドから
2.5−ジメチル−2,4−ヘキサジエンを製造する方
法において、100〜600℃で前焼成した硫酸鉄、硫
酸銅および硫酸アルミニウムのうちの一種又は二種以上
並びにニオブ酸から構成される成型粒状触媒を用い、1
50〜350℃の温度範囲、気相条件下で反応させるこ
とを特徴とする2、5−ジメチル−2,4−ヘキサジエ
ンの製造方法に係るものである。Means for Solving the Problems> That is, the present invention provides a method for producing 2,5-dimethyl-2,4-hexadiene from isobutylene and/or tertiary-butyl alcohol and isobutyraldehyde. Using a shaped granular catalyst composed of one or more of calcined iron sulfate, copper sulfate and aluminum sulfate and niobic acid, 1
The present invention relates to a method for producing 2,5-dimethyl-2,4-hexadiene, which is characterized in that the reaction is carried out in a temperature range of 50 to 350°C under gas phase conditions.
本発明方法に用いられる原料は、イソブチレンおよび/
またはターシャリ−ブチルアルコールとイソブチルアル
デヒドである。The raw materials used in the method of the present invention are isobutylene and/or
Or tertiary butyl alcohol and isobutyraldehyde.
イソブチレンは、その純度について特に制約を受けるこ
とはなく、純度の高いイソブチレンをそのまま用いても
よく、あるいは、いわゆるスペントB−B留分として取
得されるものを用いてもよい。There are no particular restrictions on the purity of isobutylene, and highly pure isobutylene may be used as it is, or one obtained as a so-called spent B-B fraction may be used.
ターシャリ−ブチルアルコールについても、その純度に
ついて特に制約を受けることはない。There are no particular restrictions on the purity of tertiary-butyl alcohol.
また、原料として、イソブチレンとターシャリ−ブチル
アルコールの混合物を使用することもできる。Moreover, a mixture of isobutylene and tertiary-butyl alcohol can also be used as a raw material.
イソブチルアルデヒドについても、その純度について特
に制約を受けることはない。There are no particular restrictions on the purity of isobutyraldehyde either.
イソブチレンまたはターシャリ−ブチルアルコールとイ
ソブチルアルデヒドとの比率、あるいは、イソブチレン
およびターシャリ−ブチルアルコールの混合物とイソブ
チルアルデヒドとの比率は、任意に選択することができ
るが、イソブチルアルデヒドに対するイソブチレンまた
はターシャリ−ブチルアルコール、あるいは、インブチ
レンおよびターシャリ−ブチルアルコールの混合比が、
モル比で1〜10の範囲がもっとも有効に用いられる。The ratio of isobutylene or tert-butyl alcohol to isobutyraldehyde, or the ratio of isobutylene and tert-butyl alcohol to isobutyraldehyde can be arbitrarily selected, but isobutylene or tert-butyl alcohol to isobutyraldehyde, Alternatively, the mixing ratio of inbutylene and tert-butyl alcohol is
A molar ratio in the range of 1 to 10 is most effectively used.
本発明に用いられる触媒は、100〜600℃で前焼成
した硫酸鉄、硫酸銅および硫酸アルミニウムのうちの一
種又は二種以上並びにニオブ酸から構成される成型粒状
触媒である。The catalyst used in the present invention is a shaped granular catalyst composed of one or more of iron sulfate, copper sulfate, and aluminum sulfate and niobic acid precalcined at 100 to 600°C.
硫酸鉄としては、硫酸第1鉄または硫酸第2鉄が用いら
れ、好ましくは硫酸第2鉄が用いられる。As the iron sulfate, ferrous sulfate or ferric sulfate is used, preferably ferric sulfate.
硫酸銅としては、硫酸第1銅または硫酸第2銅が用いら
れる。As the copper sulfate, cuprous sulfate or cupric sulfate is used.
硫酸鉄、硫酸銅および硫酸アルミニウムは、その各々を
、100〜600℃の範囲で加熱することにより、前焼
成したものを用いることが必要である。It is necessary to use iron sulfate, copper sulfate, and aluminum sulfate that have been precalcined by heating each of them in the range of 100 to 600°C.
前焼成を100℃未満で行なうと、反応中に大きな活性
低下がみられる。また、600℃を超えて行なうと、硫
酸塩が分解して金属酸化物となるため、2.5−ジメチ
ル−2,4−ヘキサジエンの生成選択率向上の効果が失
われる。If the pre-calcination is carried out at a temperature below 100° C., a large decrease in activity is observed during the reaction. Furthermore, if the temperature exceeds 600°C, the sulfate decomposes to become a metal oxide, so that the effect of improving the production selectivity of 2,5-dimethyl-2,4-hexadiene is lost.
ニオブ酸100重量部に対する硫酸鉄、硫酸銅および/
または硫酸アルミニウムの混合比率は、硫酸銅、硫酸鉄
および/または硫酸アルミニウムの合計量で、20〜1
40重量部の範囲が好ましい。Iron sulfate, copper sulfate and/or per 100 parts by weight of niobic acid
Or, the mixing ratio of aluminum sulfate is the total amount of copper sulfate, iron sulfate and/or aluminum sulfate, and is 20 to 1.
A range of 40 parts by weight is preferred.
そして、硫酸鉄、硫酸銅および硫酸アルミニウムは、各
々を単独で用いてもよく、又二種以上を混ぜ合わせて用
いても構わない。硫酸鉄、硫酸銅および/または硫酸ア
ルミニウムのニオブ酸に対する混合比率が、上記の範囲
未満では、2,5−ジメチル−2,4−ヘキサジエンの
生成選択率の向上の効果が十分でない。また、該混合比
率が、上記の範囲を超えると、活性低下が大きく、充分
な収率を維持できない。Each of iron sulfate, copper sulfate and aluminum sulfate may be used alone, or two or more thereof may be used in combination. If the mixing ratio of iron sulfate, copper sulfate and/or aluminum sulfate to niobic acid is less than the above range, the effect of improving the production selectivity of 2,5-dimethyl-2,4-hexadiene will not be sufficient. Furthermore, if the mixing ratio exceeds the above range, the activity will be greatly reduced and a sufficient yield cannot be maintained.
触媒は、通常、粉末状のニオブ酸と、上記の前焼成を行
なった硫酸鉄、硫酸銅および/または硫酸アルミニウム
とを混合した後、打錠成型機、圧縮成型機、ペレタイザ
ーなどによって調製される。The catalyst is usually prepared by mixing powdered niobic acid with the precalcined iron sulfate, copper sulfate, and/or aluminum sulfate, and then using a tablet molding machine, compression molding machine, pelletizer, etc. .
この成型粒状触媒は、いかなる形状のものでも差支えな
いが、通常、錠剤状、ベレット状、斑状などに成型され
ており、その粒径は、通常、0.5mm以上、好ましく
は1〜1OInII+の範囲である。This shaped granular catalyst can be in any shape, but is usually shaped into a tablet, pellet, or patchy shape, and its particle size is usually 0.5 mm or more, preferably in the range of 1 to 1 OInII+. It is.
本発明の反応は、気相で行なわれる。The reaction according to the invention is carried out in the gas phase.
反応温度は、150〜350℃、好ましくは200〜3
00℃である。反応温度が350℃を超えると重合物等
の高沸点物の生成が多くなり、また、反応温度が150
℃未満になると反応速度が非常に遅くなる。The reaction temperature is 150-350°C, preferably 200-350°C.
It is 00℃. If the reaction temperature exceeds 350°C, high-boiling substances such as polymers will be produced in large quantities, and if the reaction temperature exceeds 150°C,
Below ℃, the reaction rate becomes very slow.
反応圧力は、反応系が気相に保たれる圧力であれば特に
制限はされないが、通常は大気圧ないしは加圧条件下で
反応が行なわれ、好ましくは2〜20kg/cnfGの
圧力範囲で行なわれる。The reaction pressure is not particularly limited as long as the reaction system is maintained in the gas phase, but the reaction is usually carried out under atmospheric pressure or pressurized conditions, preferably in a pressure range of 2 to 20 kg/cnfG. It will be done.
反応形式としては、特に制限されないが、成型粒状触媒
が充填された充填層に原料を連続的に供給するいわゆる
固定床流通反応形式が一般的に採用される。Although the reaction format is not particularly limited, a so-called fixed bed flow reaction format in which raw materials are continuously supplied to a packed bed filled with shaped granular catalysts is generally employed.
〈実施例〉
以下に実施例によって本発明方法をさらに具体的に説明
するが、本発明の範囲はこれによって制限を受けるもの
ではない。<Examples> The method of the present invention will be explained below in more detail with reference to Examples, but the scope of the present invention is not limited thereby.
実施例1
空気中で、500℃、5時間加熱することにより、前焼
成した硫酸第2鉄を、ニオブ酸(CBMM社製)100
重量部に対して、100重量部の割合で混合した後、打
錠機で成型、粉砕を行ない、lO〜32メツシュの粒状
触媒を調製した。Example 1 Precalcined ferric sulfate was heated in air at 500°C for 5 hours to convert it into 100% niobic acid (manufactured by CBMM).
After mixing at a ratio of 100 parts by weight to 100 parts by weight, the mixture was molded and pulverized using a tablet machine to prepare a granular catalyst having a mesh size of 10 to 32 meshes.
この触媒40−を、反応管径23皿のSUS製反応管区
充填し、反応管を電気炉で250℃に加熱した。この反
応管にイソブチレン44.8 g / hとイソブチル
アルデヒド14.4g/hを通じ、反応圧力10kg/
ad Gで反応を行なった。反応器を出たガスを、ドラ
イアイス−エタノールで冷却されたSO3製の容器に導
き、反応生成液を捕集した。This catalyst 40- was filled in a SUS reaction tube having a diameter of 23 plates, and the reaction tube was heated to 250° C. in an electric furnace. 44.8 g/h of isobutylene and 14.4 g/h of isobutyraldehyde were passed through this reaction tube at a reaction pressure of 10 kg/h.
Reactions were carried out with adG. The gas exiting the reactor was introduced into an SO3 container cooled with dry ice-ethanol, and the reaction product liquid was collected.
このようにして得られた反応生成液を、ガスクロマトグ
ラフィーで分析した。The reaction product liquid thus obtained was analyzed by gas chromatography.
反応開始8時間後のイソブチルアルデヒドの転化率は、
84.0%、2,5−ジメチル−2,4−ヘキサジエン
の選択率は79.4%であった。The conversion rate of isobutyraldehyde 8 hours after the start of the reaction is:
The selectivity for 2,5-dimethyl-2,4-hexadiene was 79.4%.
実施例2
500℃、5時間前焼成した硫酸第2銅を、ニオブ酸(
CBMM社製)100重量部に対して、100重量部の
割合で混合した後、実施例1に記載したのと同じ方法で
10〜32メツシユの触媒を調製し、かつ、実施例1に
記載したのと同じ条件で反応および分析を行なつた。Example 2 Cupric sulfate precalcined at 500°C for 5 hours was treated with niobic acid (
After mixing at a ratio of 100 parts by weight to 100 parts by weight (manufactured by CBMM), a catalyst of 10 to 32 meshes was prepared in the same manner as described in Example 1, and the same method as described in Example 1 was prepared. The reaction and analysis were carried out under the same conditions as in .
反応開始8時間後のイソブチルアルデヒドの転化率は9
6.4%、2.5−ジメチル−2,4−ヘキサジエンの
選択率は78.3%であった。The conversion rate of isobutyraldehyde 8 hours after the start of the reaction was 9
6.4%, the selectivity for 2,5-dimethyl-2,4-hexadiene was 78.3%.
実施例3〜5、比較例1〜3
硫酸鉄の前焼成温度、ニオブ酸に対する硫酸鉄の混合率
を表−1゛に記載した値にした以外は実施例1と同じ方
法で10〜32メツシユの触媒を調製し、かつ、実施例
1と同じ条件で反応および分析を行ない、表−1に記載
した結果を得た。Examples 3 to 5, Comparative Examples 1 to 3 10 to 32 meshes were prepared in the same manner as in Example 1, except that the pre-calcination temperature of iron sulfate and the mixing ratio of iron sulfate to niobic acid were set to the values listed in Table 1. A catalyst was prepared, and the reaction and analysis were carried out under the same conditions as in Example 1, and the results shown in Table 1 were obtained.
なお、表−1に示した反応成績は反応開始゛8時間後の
ものであり、転化率はイソブチルアルデヒドの転化率、
選択率はイソブチルアルデヒド基準の2.5−ジメチル
−2,4−ヘキサジエンの選択率である。また、使用し
た硫酸鉄は硫酸第2鉄であった。The reaction results shown in Table 1 are those 8 hours after the start of the reaction, and the conversion rate is the conversion rate of isobutyraldehyde,
The selectivity is the selectivity of 2,5-dimethyl-2,4-hexadiene based on isobutyraldehyde. Further, the iron sulfate used was ferric sulfate.
実施例6
500℃、5時間前焼成した硫酸アルミニウムを、ニオ
ブ酸(CBMM社製)100重量部に対して、100重
量部の割合で混合した後、実施例1に記載したのと同じ
方法でlθ〜32メツシュの触媒を調製し、かつ、実施
例1に記載したのと同じ条件で反応および分析を行なっ
た。Example 6 Aluminum sulfate precalcined at 500°C for 5 hours was mixed in a proportion of 100 parts by weight with 100 parts by weight of niobic acid (manufactured by CBMM), and then mixed in the same manner as described in Example 1. A catalyst with a mesh of lθ˜32 was prepared and reacted and analyzed under the same conditions as described in Example 1.
反応開始8時間後のイソブチルアルデヒドの転化率は7
9.3%、2,5−ジメチル−2,4−ヘキサジエンの
選択率は76.5%であった。The conversion rate of isobutyraldehyde 8 hours after the start of the reaction is 7
9.3%, and the selectivity for 2,5-dimethyl-2,4-hexadiene was 76.5%.
実施例7
500℃、5時間前焼成した硫酸第2銅50重量部、同
じ<500℃、5時間前焼成した硫酸アルミニウム50
重量部およびニオブ酸(CBMM社製)100重量部を
混合した後、実施例1に記載したのと同じ方法で10〜
32メツシユの触媒を調製し、かつ、実施例1に記載し
たのと同じ条件で反応および分析を行なった。Example 7 50 parts by weight of cupric sulfate precalcined at 500°C for 5 hours, 50 parts by weight of aluminum sulfate precalcined at <500°C for 5 hours
After mixing parts by weight and 100 parts by weight of niobic acid (manufactured by CBMM), 10 to 10 parts by weight were mixed in the same manner as described in Example 1.
32 meshes of catalyst were prepared and reacted and analyzed under the same conditions as described in Example 1.
反応開始8時間後のイソブチルアルデヒドの転化率は9
1.8%、2.5−ジメチル−2,4−ヘキサジエンの
選択率は74.5%であった。The conversion rate of isobutyraldehyde 8 hours after the start of the reaction was 9
The selectivity for 1.8%, 2,5-dimethyl-2,4-hexadiene was 74.5%.
実施例8
500℃、5時間前焼成した硫酸第2銅50重量部、同
じ<500℃、5時間前焼成した硫酸第2鉄50重量部
およびニオブ酸(CBMM社製)100重量部を混合し
た後、実施例1に記載したのと同じ方法で10〜30メ
ツシユの触媒を調製し、かつ、実施例1に記載したのと
同じ条件で反応および分析を行なった。Example 8 50 parts by weight of cupric sulfate pre-calcined at 500°C for 5 hours, 50 parts by weight of ferric sulfate pre-calcined at <500°C for 5 hours, and 100 parts by weight of niobic acid (manufactured by CBMM) were mixed. Thereafter, 10 to 30 meshes of catalyst were prepared in the same manner as described in Example 1, and reactions and analyzes were conducted under the same conditions as described in Example 1.
反応開始8時間後のイソブチルアルデヒドの転化率は8
7.8%、2,5−ジメチル−2,4−ヘキサジエンの
選択率は78.5%であった。The conversion rate of isobutyraldehyde 8 hours after the start of the reaction was 8
7.8%, and the selectivity for 2,5-dimethyl-2,4-hexadiene was 78.5%.
結果から明らかなように、本発明による実施例1〜8に
おいては、転化率、選択率共に高く、満足な成績を示し
ている。As is clear from the results, in Examples 1 to 8 according to the present invention, both the conversion rate and the selectivity were high, showing satisfactory results.
一方、前焼成温度が本発明の規定範囲より高い比較例1
においては、選択率が劣り、また、前焼成を行なわなか
った比較例2においては、転化率、選択率共に劣ってい
る。更に、硫酸鉄、硫酸銅および硫酸アルミニウムのい
づれをも使用しなかった比較例3においては、選択率が
劣っている。On the other hand, Comparative Example 1 where the pre-calcination temperature is higher than the specified range of the present invention
In Comparative Example 2, in which no pre-calcination was performed, both the conversion rate and the selectivity were poor. Furthermore, in Comparative Example 3 in which neither iron sulfate, copper sulfate nor aluminum sulfate was used, the selectivity was poor.
〈発明の効果〉
以上説明したように、本発明により、装置の腐食の問題
を生じることなく、高い転化率および選択率で、2.5
−ジメチル−2,4−ヘキサジエンが得られるようにな
った。<Effects of the Invention> As explained above, according to the present invention, 2.5
-dimethyl-2,4-hexadiene was now obtained.
以上that's all
Claims (2)
アルコールとイソブチルアルデヒドから2,5−ジメチ
ル−2,4−ヘキサジエンを製造する方法において、1
00〜600℃で前焼成した硫酸鉄、硫酸銅および硫酸
アルミニウムのうちの一種又は二種以上並びにニオブ酸
から構成される成型粒状触媒を用い、150〜350℃
の温度範囲、気相条件下で反応させることを特徴とする
2,5−ジメチル−2,4−ヘキサジエンの製造方法。(1) In a method for producing 2,5-dimethyl-2,4-hexadiene from isobutylene and/or tertiary butyl alcohol and isobutyraldehyde, the method comprises:
Using a shaped granular catalyst composed of one or more of iron sulfate, copper sulfate, and aluminum sulfate and niobic acid precalcined at 00 to 600 °C, 150 to 350 °C
1. A method for producing 2,5-dimethyl-2,4-hexadiene, characterized by carrying out the reaction under gas phase conditions in a temperature range of .
よび硫酸アルミニウムのうちの一種又は二種以上の合計
量20〜140重量部並びにニオブ酸100重量部から
構成される成型粒状触媒を用いる請求項1記載の方法。(2) Using a shaped granular catalyst composed of a total of 20 to 140 parts by weight of one or more of iron sulfate, copper sulfate, and aluminum sulfate precalcined at 100 to 600°C and 100 parts by weight of niobic acid. The method according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-179727 | 1989-07-11 | ||
JP17972789 | 1989-07-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03135928A true JPH03135928A (en) | 1991-06-10 |
JPH0674218B2 JPH0674218B2 (en) | 1994-09-21 |
Family
ID=16070815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1311450A Expired - Lifetime JPH0674218B2 (en) | 1989-07-11 | 1989-11-29 | Method for producing 2,5-dimethyl-2,4-hexadiene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0674218B2 (en) |
-
1989
- 1989-11-29 JP JP1311450A patent/JPH0674218B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0674218B2 (en) | 1994-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3476307B2 (en) | Method for filling catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid | |
US9434673B2 (en) | Process for preparing vinylidenecarboxylic acid (ester)s by reaction of formaldehyde with alkylcarboxylic acid (ester)s | |
KR19990077617A (en) | Method of producing methyl methacrylate | |
JPH0149542B2 (en) | ||
JP2894481B2 (en) | Ammoxidation catalyst and method for producing the same | |
JP2010024187A (en) | Method for producing aromatic nitrile | |
JPH03135928A (en) | Production of 2,5-dimethyl-2,4-hexadiene | |
JPH0717909A (en) | Production of methyl methacrylate | |
JPS5927217B2 (en) | Production method of catalyst for methacrylic acid production | |
JP3316880B2 (en) | Method for producing catalyst for producing methacrylic acid | |
JPH03220166A (en) | Production of alpha,beta-unsaturated nitrile | |
JPS632936A (en) | Production of 2,5-dimethyl-2,4-hexadiene | |
CN115160182B (en) | Method for producing salicylonitrile by methyl salicylate continuous method | |
JP2608722B2 (en) | Method for producing 4-methyl-1-pentene | |
JPS58121238A (en) | Preparation of anthraquinone | |
JP3259030B2 (en) | Production method of tertiary carboxylic acid using strong acidic solid acid catalyst | |
JPS5924984B2 (en) | Production method of 4-butyrolactone | |
JP3173273B2 (en) | Method for producing glyoxylate | |
JPS61291549A (en) | Production of aromatic secondary amino compound | |
JP2001206883A (en) | Method for producing 3,4-methylenedioxymandelic acid | |
JPH0477459A (en) | Production of tertiary butylamine | |
JP2608715B2 (en) | Method for producing 4-methyl-1-pentene | |
US4390725A (en) | Oxydehydrogenation process for preparing methacrylic acid and its lower alkyl esters | |
JPS6332771B2 (en) | ||
JPS5874622A (en) | Preparation of methacrolein and 1,3-butadiene |