JPH0313582A - Production of oxide superconducting wire and tape - Google Patents

Production of oxide superconducting wire and tape

Info

Publication number
JPH0313582A
JPH0313582A JP1148888A JP14888889A JPH0313582A JP H0313582 A JPH0313582 A JP H0313582A JP 1148888 A JP1148888 A JP 1148888A JP 14888889 A JP14888889 A JP 14888889A JP H0313582 A JPH0313582 A JP H0313582A
Authority
JP
Japan
Prior art keywords
tape
superconducting wire
shaped body
soln
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1148888A
Other languages
Japanese (ja)
Other versions
JP2526386B2 (en
Inventor
Yoshinori Fujiki
藤木 良規
Toshiyuki Nishio
俊幸 西尾
Yoshio Ishizawa
石沢 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP1148888A priority Critical patent/JP2526386B2/en
Publication of JPH0313582A publication Critical patent/JPH0313582A/en
Application granted granted Critical
Publication of JP2526386B2 publication Critical patent/JP2526386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To easily produce an oxide superconducting wire excellent in superconductivity by appropriately mixing Y, etc., and the carbonate, etc., of Ba and Cu, adding specified amts. of citric acid and ammonia to dissolve the materials, heating and concentrating the soln., spinning the concd. soln. and heat-treating the product. CONSTITUTION:When the wire and tape of an oxide superconductor shown by the general formula M1Ba2Cu3O7-x (M is Y or rare earth elements and x=0-1.0) is produced, the carbonate or alkoxides are used as the raw materials for the M, Ba and Cu components. The raw materials are mixed in the ratio to obtain the composition, and >=0.8mols of aq. citric acid, based on the total mols of the metals, is further added to dissolve the materials. Aq. ammonia is then added to the soln. to obtain a transparent and uniform soln. The soln. is heated at 90-100 deg.C and concentrated, the concd. soln. is spun in the atmosphere, and the product is dried and then heat-treated. In the heat treatment, the product is gradually heated to 950 deg.C, held at that temp. for several hours, cooled to 300-400 deg.C, held at that temp. for 10-20hr, and then quenched to room temp. The superconducting wire and tape are easily obtained by this method.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸化物超電導線材およびテープ状体の製造
法に関するものである。さらに詳しくは、この発明は、
電線、コイル、電子材料などに有用な酸化物超電導体の
線材およびテープ状体を製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing an oxide superconducting wire and a tape-shaped body. More specifically, this invention
The present invention relates to a method for manufacturing oxide superconductor wire and tape-shaped bodies useful for electric wires, coils, electronic materials, etc.

(従来の技術) 従来より、酸化物超電導体からなる線材およびテープ状
体の製造法としては、これまでに数々のものが知られて
いる。
(Prior Art) Many methods for manufacturing wire rods and tape-shaped bodies made of oxide superconductors have been known.

たとえば、金属製パイプの中に酸化物超電導体となるよ
うに配合した原料粉末を圧縮挿入し、これを伸線または
圧延加工し、所定の太さとした後、熱処理を施して原料
粉末を酸化物超電導体とし、。
For example, raw material powder mixed to form an oxide superconductor is compressed and inserted into a metal pipe, drawn or rolled to a desired thickness, and then heat treated to transform the raw material powder into an oxide superconductor. As a superconductor.

このまま、あるいは数本から数十本束ねた後、金属で被
覆し、さらに伸線や圧延加工を行い、多芯線構造として
線材やテープ状体を製造する方法が知られている。
A known method is to produce a wire rod or tape-like body as a multifilamentary wire structure by directly covering the wires as they are, or by bundling several to tens of wires together, covering them with metal, and then drawing or rolling them.

また、懸濁紡糸法と呼ばれる、超電導酸化物粉末を分散
剤とともにPVA水系あるいはPVA非水系溶液中に分
散させた後、これをPVA凝固洛中に紡糸し、熱処理を
行い、酸化物超電導線材を製造する方法も知られている
In addition, using the suspension spinning method, superconducting oxide powder is dispersed with a dispersant in a PVA aqueous or PVA non-aqueous solution, and then spun into a PVA coagulation solution and heat treated to produce oxide superconducting wire. There are also known methods.

これらの他、溶融紡糸法と呼ばれる、超電導組成の酸化
物あるいは合金を溶融し、これをノズルより押し出した
後、急冷凝固して線材状あるいはテープ状に成形し、熱
処理して超電導線材やテープ状体を製造する方法もあり
、ゾル−ゲル法と呼ばれる、超電導組成の金属を含有す
る酢酸塩を原料として用い、この水溶液を60〜80℃
で加熱濃縮して粘稠な紡糸液とし、これを紡糸した後、
さらには、CVD法(化学蒸着法)、PVD法(物理蒸
着法)等により、テープ状の基板上に気相から超電導前
駆体相を成長させた後、熱処理を行ない、超電導テープ
状体を製造する方法が知られてもいる。
In addition to these methods, there is also a method called melt spinning, in which an oxide or alloy with a superconducting composition is melted, extruded through a nozzle, rapidly solidified, formed into a wire or tape shape, and then heat treated to form a superconducting wire or tape. There is also a method of manufacturing the body, called the sol-gel method, which uses acetate containing a superconducting metal as a raw material, and heats this aqueous solution at 60 to 80°C.
After heating and concentrating to make a viscous spinning solution and spinning this,
Furthermore, after growing a superconducting precursor phase from the gas phase on a tape-shaped substrate by CVD (chemical vapor deposition), PVD (physical vapor deposition), etc., heat treatment is performed to produce a superconducting tape-shaped body. There are also known methods.

(発明が解決しようとする課題) しかしながら、これら従来の方法には、その各々に固有
の欠点があるのが実状であった。
(Problems to be Solved by the Invention) However, the reality is that each of these conventional methods has its own drawbacks.

酸化物超電導体の原料粉末を金属製パイプの中に挿入す
る方法の場合には、線材を細くすればするほど、多くの
引抜加工工程が必要となり、またその加工度が大きくな
るにしたがってシース内部に亀裂が生じ、超電導性を損
い、細いものを製造することが困難になるという欠点が
ある。
In the case of the method of inserting the raw material powder of oxide superconductor into a metal pipe, the thinner the wire, the more drawing processes are required, and the greater the degree of drawing, the more the inside of the sheath. The drawback is that cracks occur in the material, impairing superconductivity, and making it difficult to manufacture thin products.

懸濁紡糸法の場合には、分散させる超電導酸化物粉末の
粒度およびその分散方法により、超電導性に大きな影響
を及ぼすなめ、均一な分散による均一な超電導性を得る
ことは困難であった。これ以外にも紡糸する際に、ノズ
ルの目詰り等が発生しやすく、成形する繊維の太さにも
限度があった。
In the case of suspension spinning, it has been difficult to obtain uniform superconductivity through uniform dispersion because the particle size of the superconducting oxide powder to be dispersed and the dispersion method thereof have a large influence on superconductivity. In addition to this, during spinning, nozzles were easily clogged, and there was a limit to the thickness of the fibers that could be formed.

また、溶融紡糸法の場合には、長尺の繊維状あるいはテ
ープ状の超電導材料を製造するのは、非常に困難である
のが実状であった。
Furthermore, in the case of melt spinning, it is actually extremely difficult to produce long fibrous or tape-like superconducting materials.

ゾル−ゲル法の場合には、得られる紡糸液の粘度が低い
ために繊維状に固化しにくく、また濃縮をさらに進め、
粘度を上げようとすると紡糸液が組成の不均一化を招く
ため、不可能であるという問題があった。このため、バ
ッチ形式をとらざるを得す、その結果、生産性が低下す
るという欠点があった。また、最終的な組成に合わせる
ことをがそのまま組成の不均一化に反映してしまい、均
一組成の超電導体を製造することが困難でもあった。
In the case of the sol-gel method, the viscosity of the resulting spinning solution is low, making it difficult to solidify into fibers.
There was a problem in that it was impossible to increase the viscosity because the spinning solution would become non-uniform in composition. For this reason, there is no choice but to use a batch method, which has the disadvantage of reducing productivity. Furthermore, adjusting the final composition directly results in non-uniformity of the composition, making it difficult to manufacture a superconductor with a uniform composition.

さらに、CVD法やPVD法等による製造法の場合には
、真空装置やプラズマ発生装置、原材料の加熱装置など
の特殊な装置を必要とし、しかもその生産性は低いとい
う問題などがあった。
Furthermore, in the case of manufacturing methods such as CVD and PVD, special equipment such as a vacuum device, a plasma generator, and a raw material heating device are required, and the productivity thereof is low.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、従来法の欠点を解消し、紡糸原液の粘性を適度に
調整することが容易で、曳糸性、均一性、安定性に優れ
、紡糸性をも良好とすることができ、しかもその製造も
容易とすることのできる新しい超電導線材およびテープ
状体の製造法を提供することを目的としている。
This invention was made in view of the above circumstances, and it eliminates the drawbacks of the conventional method, makes it easy to appropriately adjust the viscosity of the spinning dope, and improves the spinnability, uniformity, and stability. The object of the present invention is to provide a new method for producing a superconducting wire and a tape-shaped body, which can have excellent spinnability and are easy to manufacture.

(課題を解決するための手段) この発明は、上記の課題を解決するために、一般式M 
1B a 2 Cu s O7−t(ただし、MはYま
たは希土類元素から選ばれる元素を示し、かつx=0〜
1.0である。)で示される酸化物超電導体の線材およ
びテープ状体を製造するにあたり、M成分、Ba成分お
よびCu成分の原料として、該成分の炭酸塩またはアル
コキシドを用い、上記した組成比に配合した各原料の金
属の総モル量に対し、0.8倍モル以上のクエン酸水溶
液を加え、それらの原料を溶解し、次いでアンモニア水
を添加して透明均一な溶液とした後、加熱濃縮し、紡糸
して熱処理することを特徴とする酸化物超電導線材およ
びテープ状体の製造法を提供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention solves the above problems by using the general formula M
1B a 2 Cu s O7-t (However, M represents an element selected from Y or rare earth elements, and x = 0 ~
It is 1.0. ) In producing wire rods and tape-shaped bodies of oxide superconductors shown in Add a citric acid aqueous solution of 0.8 times the mole or more to the total molar amount of metals to dissolve these raw materials, then add ammonia water to make a transparent uniform solution, heat and concentrate, and spin. The present invention provides a method for producing an oxide superconducting wire and a tape-shaped body, which is characterized by heat treatment.

この発明の超電導線材およびテープ状体の製造法におい
ては、一般式M+ Ba2Cus 07−xで示される
超電導体組成の原料として、M成分、Ba成分およびC
u成分の炭酸塩またはアルコキシドを使用する。該成分
の炭酸塩は、クエン酸と混合すると容易に反応して、C
02を放出し、透明均一な溶液となる。同様に、該成分
のアルコキシドは、クエン酸と容易に反応し、透明均一
な溶液となる。各成分原料に用いることのできるアルコ
キシドについては特に制限はなく、メトキシド、エトキ
シド、インプロキシド等を例示することができる。また
、M成分、Ba成分およびCu成分の炭酸塩とアルコキ
シドとは、適宜に組み合わせることもでき、この場合に
おいてもクエン酸と容易に反応して、透明均一な溶液と
なる。これらいずれの溶液の場合にも焼成により、酸化
物とすることができる。
In the method for producing a superconducting wire and tape-shaped body of the present invention, M component, Ba component, and C
Use the carbonate or alkoxide of component u. When the carbonate of this component is mixed with citric acid, it easily reacts with C.
02 is released, resulting in a transparent homogeneous solution. Similarly, the alkoxide of the component readily reacts with citric acid to form a clear homogeneous solution. There are no particular restrictions on the alkoxides that can be used as raw materials for each component, and examples include methoxide, ethoxide, and improoxide. Furthermore, the carbonates and alkoxides of the M component, Ba component, and Cu component can be combined as appropriate, and in this case as well, they easily react with citric acid to form a transparent and uniform solution. Any of these solutions can be converted into an oxide by firing.

このような原料にクエン酸水溶液を加え、溶解する場合
には、クエン酸の量としては、M成分、Ba成分および
Cu成分の金属の総モル量に対し、0.8倍モル以上と
することが大切である。また、クエン酸水溶液について
は特に制限はないが、M成分、Ba成分およびCu成分
の総モル数の20〜50倍モル程度の水を用いるのが好
ましい。
When a citric acid aqueous solution is added to and dissolved in such raw materials, the amount of citric acid should be 0.8 times or more in mole or more relative to the total molar amount of the metals of the M component, Ba component, and Cu component. is important. Although there are no particular limitations on the citric acid aqueous solution, it is preferable to use water in an amount of about 20 to 50 times the total number of moles of the M component, Ba component, and Cu component.

また、この発明においては、酸化物超電導体の原料をク
エン酸水溶液に溶解した後、最初に紺色を示す溶液が濃
紺から濃い紫色に変化するまで、アンモニア水溶液を添
加することをひとつの特徴としている。これは、溶解し
た金属イオンとクエン酸とが安定なコンプレックスを形
成するに際し、それらの量的関係が有効であるとともに
、添加するアンモニアが有効に機能すると考えられるか
らである。クエン酸量が、M成分、Ba成分およびCu
成分の金属の総モル量に対して0.8倍より少なかった
り、アンモニア水を添加しなかったり、添加するアンモ
ニア水の量が少なかったりすると、濃縮中に沈澱の生成
または溶液の不均一化などが発生しやすく、これによっ
て得られる溶液は曳糸性の乏しい不均一なペースト状と
なり、繊維状に形成することができなくなる。
In addition, one feature of this invention is that after the raw material for the oxide superconductor is dissolved in the citric acid aqueous solution, an ammonia aqueous solution is added until the initially dark blue solution changes from dark blue to deep purple. . This is because when dissolved metal ions and citric acid form a stable complex, their quantitative relationship is effective, and it is thought that the ammonia added functions effectively. The amount of citric acid is M component, Ba component and Cu
If the amount is less than 0.8 times the total molar amount of the component metals, if ammonia water is not added, or if the amount of ammonia water added is small, precipitation may occur during concentration or the solution may become non-uniform. This tends to cause the resulting solution to become a non-uniform paste with poor spinnability, making it impossible to form it into a fiber.

透明均一な溶液を90〜100℃に加熱して、粘度が1
〜100ボイズ程度になるまで濃縮すると、曳糸性を有
する粘稠液となる。この粘稠液は温度が低下するにした
がって固化しやすく、また乾燥大気中で容易に固化する
ために、紡糸する場合には、その90〜100℃に加熱
濃縮した溶液を用い、乾燥大気中で行うことが好ましい
、この紡糸に際しては、ノズルを用いた場合には長繊維
等の線材とすることができ、スリットより押し出した場
合にはテープ状体とすることができる。
The transparent homogeneous solution was heated to 90-100°C until the viscosity was 1.
When concentrated to about 100 voids, it becomes a viscous liquid with stringiness. This viscous liquid tends to solidify as the temperature decreases, and because it solidifies easily in a dry atmosphere, when spinning, use a solution that has been heated and concentrated to 90 to 100°C, and in a dry atmosphere. When spinning, which is preferably carried out, a nozzle is used, a wire rod such as a long fiber can be obtained, and when extruded through a slit, a tape-like object can be obtained.

得られた線材およびテープ状体を、次いで乾燥機中に入
れ、十分に水分およびアンモニアを除去した後、空気中
で徐々に昇温して、950℃で数時間焼成する。水分お
よびアンモニアの除去が不十分であったり、昇温速度が
速いと、水分およびアンモニアの蒸発、有機物およびア
ンモニアの分解・蒸発に際して、激しい発泡が生じ、焼
成物の緻密性を損なうだけでなく、形態を保持できなく
なる。
The obtained wire rod and tape-shaped body are then placed in a dryer to sufficiently remove moisture and ammonia, and then gradually heated in air and fired at 950° C. for several hours. If the removal of moisture and ammonia is insufficient or the rate of temperature increase is high, intense foaming will occur during the evaporation of moisture and ammonia and the decomposition and evaporation of organic matter and ammonia, which will not only impair the density of the baked product, but also Unable to maintain shape.

焼成後、降温し、300〜400℃で10〜20時間程
度保持した後、次いで室温まで急冷する。このように、
温度保持処理するのは、結晶構造中の酸素量を多くする
ためであり、また、その後に室温まで急冷するのは、空
気中の炭酸ガスや水分などとの反応を抑制するためであ
る。この熱処理操作を行わないと、十分な超電導特性を
得ることはできない。
After firing, the temperature is lowered and held at 300 to 400°C for about 10 to 20 hours, and then rapidly cooled to room temperature. in this way,
The purpose of temperature holding treatment is to increase the amount of oxygen in the crystal structure, and the subsequent rapid cooling to room temperature is to suppress reactions with carbon dioxide, moisture, etc. in the air. If this heat treatment operation is not performed, sufficient superconducting properties cannot be obtained.

(作 用) この発明の酸化物超電導線材およびテープ状体の製造法
においては、超電導組成に配合する成分原料として、各
成分の炭酸塩またはアルコキシドを用い、これらの原料
をクエン酸水溶液に溶解し、アンモニア水を添加するこ
とによって、紡糸原液の粘度を適宜なものにコントロー
ルすることができ、均一な性状を有する紡糸原液を容易
に得ることができる。
(Function) In the method for producing oxide superconducting wires and tape-shaped bodies of the present invention, carbonates or alkoxides of each component are used as raw materials to be added to the superconducting composition, and these raw materials are dissolved in an aqueous citric acid solution. By adding aqueous ammonia, the viscosity of the spinning stock solution can be controlled to an appropriate value, and a spinning stock solution with uniform properties can be easily obtained.

(実施例) 以下、実施例を示し、この発明の超電導線材およびテー
プ状体の製造法についてさらに詳しく説明する。
(Example) Hereinafter, the manufacturing method of the superconducting wire and the tape-shaped body of the present invention will be explained in more detail with reference to Examples.

一殻式M (B a 2 Cu s O7−1m示され
る酸化物超電導体において、Mとしてイツトリウムを選
択した。
Yttrium was chosen as M in the oxide superconductor shown in the one-shell type M (Ba2CusO7-1m).

クエン酸78.8fを蒸留水150m1に溶解したクエ
ン酸水溶液に、炭酸バリウム19.7f、炭酸鋼17.
9.および炭酸イツトリウム11.2.を加え、約半日
間撹拌し、紺色の透明な均一溶液とした0次いで、この
溶液にアンモニア水5′Omlを徐々に加え、濃紺透明
な均一溶液に調整した。これらの操作は、すべて室温で
行った。
A citric acid aqueous solution in which 78.8 f of citric acid was dissolved in 150 ml of distilled water was added with 19.7 f of barium carbonate and 17.8 f of carbonated steel.
9. and yttrium carbonate 11.2. was stirred for about half a day to obtain a dark blue, transparent, homogeneous solution.Next, 5'Oml of aqueous ammonia was gradually added to this solution to prepare a dark blue, transparent, homogeneous solution. All these operations were performed at room temperature.

この溶液を100℃に加熱し、粘度が50ボイスになる
まで濃縮しな、この濃縮溶液は、濃紺色で透明均一な粘
稠性を有する溶液であった。これを放冷し、粘度を除々
に増大させ、良好な曳糸性を有する紡糸原液とした。
The solution was heated to 100° C. and concentrated until the viscosity reached 50 voices. The concentrated solution was dark blue, transparent, and had a uniform consistency. This was allowed to cool and the viscosity was gradually increased to obtain a spinning dope having good spinnability.

この後、適度な粘性状態の溶液を室温においてノズルよ
り乾燥大気雰囲気下に押し出し、直径5〜100μmの
紺色透明な長繊維に成形した。得られた長繊維を100
℃で約2週間乾燥した後、10”C/hrの昇温速度で
室温から950℃の温度まで昇温し、その温度で5時間
保持した。その後、20’C/hrの速度で400℃ま
で降温し、10時間保持して、室温まで急冷した。
Thereafter, the solution in a moderately viscous state was extruded through a nozzle at room temperature into a dry atmosphere and formed into dark blue transparent long fibers with a diameter of 5 to 100 μm. 100% of the obtained long fibers
After drying at ℃ for about 2 weeks, the temperature was raised from room temperature to 950 ℃ at a heating rate of 10''C/hr and held at that temperature for 5 hours.Then, it was heated to 400℃ at a rate of 20''C/hr. The temperature was lowered to room temperature, maintained for 10 hours, and rapidly cooled to room temperature.

得られた線材は黒色であり、直径は3〜50μmであっ
た。この線材の臨界温度 (Tc (zero))は85にで、臨界電流密度(J
c)は5A/−であった。
The obtained wire rod was black in color and had a diameter of 3 to 50 μm. The critical temperature (Tc (zero)) of this wire is 85, and the critical current density (J
c) was 5A/-.

良好な超電導性を有するイツトリウム系の超電導線材で
あることが確認された。
It was confirmed that the wire was an yttrium-based superconducting wire with good superconductivity.

また、同様の条件でノズルをスリットに変えたところ、
良好な超電導特性を有するテープ状体が製造できた。
Also, when the nozzle was changed to a slit under similar conditions,
A tape-shaped body with good superconducting properties was manufactured.

MをNb、GdおよびYbにかえても、上記したイツト
リウムの例と同様の条件で酸化物超電導線材を製造する
ことができる。
Even if M is replaced with Nb, Gd, or Yb, an oxide superconducting wire can be manufactured under the same conditions as in the above-mentioned example using yttrium.

もちろんこの発明は以上の例に限定されるものではない
0M成分をはじめとする原料の種類、粘度および昇温・
降温速度等の細部については様々な態様が可能であるこ
とはいうまでもない。
Of course, this invention is not limited to the above examples, but includes the types of raw materials including 0M components, viscosity, temperature rise,
It goes without saying that various aspects are possible regarding details such as the rate of temperature decrease.

(発明の効果) 以上詳しく説明したように、この発明によって、酸化物
超電導線材およびテープ状体の製造に際して、紡糸原液
の粘性を適度なものに調整することが容易となり、また
、曳糸性、均一性、安定性に優れ、しかも紡糸性の良好
な紡糸原液とすることができる。このため、超電導線材
およびテープ状体の製造が容易となる。また、この゛発
明によって得られる線材およびテープ状体は、超電導特
性が良好であることから、超電導マグネット用コイルや
ケーブルを製造するのに有効となる。
(Effects of the Invention) As explained in detail above, the present invention makes it easy to adjust the viscosity of the spinning dope to an appropriate level when producing oxide superconducting wires and tape-shaped bodies, and improves the spinnability and A spinning dope with excellent uniformity and stability and good spinnability can be obtained. Therefore, manufacturing of the superconducting wire and the tape-like body becomes easy. Further, since the wire rod and tape-shaped body obtained by this invention have good superconducting properties, they are effective in manufacturing coils and cables for superconducting magnets.

Claims (4)

【特許請求の範囲】[Claims] (1) 一般式M_1Ba_2Cu_4O_7_−_x
(ただし、MはYまたは希土類元素から選ばれる元素を
示し、かつx=0〜1.0である。)で示される酸化物
超電導体の線材およびテープ状体を製造するにあたり、
M成分、Ba成分およびCu成分の原料として、該成分
の炭酸塩またはアルコキシドを用い、上記した組成比に
配合した各原料の金属の総モル量に対し、0.8倍モル
以上のクエン酸水溶液を加え、それらの原料を溶解し、
次いでアンモニア水を添加して透明均一な溶液とした後
、加熱濃縮し、紡糸して熱処理することを特徴とする酸
化物超電導線材およびテープ状体の製造法。
(1) General formula M_1Ba_2Cu_4O_7_-_x
(However, M represents an element selected from Y or a rare earth element, and x = 0 to 1.0.) In manufacturing the wire and tape-shaped body of the oxide superconductor,
As a raw material for the M component, Ba component, and Cu component, carbonate or alkoxide of the component is used, and the amount of citric acid aqueous solution is 0.8 times the mole or more based on the total molar amount of the metal of each raw material blended in the above composition ratio. and dissolve those raw materials,
A method for producing an oxide superconducting wire and a tape-shaped body, which comprises adding aqueous ammonia to obtain a transparent and uniform solution, followed by heating and concentration, spinning and heat treatment.
(2) MがY、Nd、Sm、Eu、Gd、Dy、Ho
、Er、Tm、YbあるいはLuから選ばれる元素であ
る請求項(1)記載の酸化物超電導線材およびテープ状
体の製造法。
(2) M is Y, Nd, Sm, Eu, Gd, Dy, Ho
, Er, Tm, Yb, or Lu. The method for producing an oxide superconducting wire and tape-shaped body according to claim 1.
(3) 90〜100℃で加熱濃縮した後、乾燥大気中
で紡糸する請求項(1)記載の酸化物超電導線材および
テープ状体の製造法。
(3) The method for producing an oxide superconducting wire and tape-shaped body according to (1), wherein the oxide superconducting wire and tape-shaped body are heated and concentrated at 90 to 100°C and then spun in a dry atmosphere.
(4) 紡糸した後、乾燥し、950℃まで徐々に昇温
し、数時間保持した後、300〜400℃まで降温して
10〜20時間保持し、次いで室温まで急冷する請求項
(1)記載の酸化物超電導線材およびテープ状体の製造
法。
(4) After spinning, it is dried, the temperature is gradually raised to 950°C, held for several hours, the temperature is lowered to 300 to 400°C, held for 10 to 20 hours, and then rapidly cooled to room temperature. The method for producing the oxide superconducting wire and tape-shaped body described above.
JP1148888A 1989-06-12 1989-06-12 Manufacturing method of oxide superconducting wire and tape Expired - Lifetime JP2526386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148888A JP2526386B2 (en) 1989-06-12 1989-06-12 Manufacturing method of oxide superconducting wire and tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148888A JP2526386B2 (en) 1989-06-12 1989-06-12 Manufacturing method of oxide superconducting wire and tape

Publications (2)

Publication Number Publication Date
JPH0313582A true JPH0313582A (en) 1991-01-22
JP2526386B2 JP2526386B2 (en) 1996-08-21

Family

ID=15462948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148888A Expired - Lifetime JP2526386B2 (en) 1989-06-12 1989-06-12 Manufacturing method of oxide superconducting wire and tape

Country Status (1)

Country Link
JP (1) JP2526386B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075797A (en) * 2002-03-20 2003-09-26 한국전력공사 Method of simultaneous synthesize for Y123 and Y211 powder
JP2011510171A (en) * 2008-01-17 2011-03-31 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Wet chemical methods for producing high temperature superconductors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075797A (en) * 2002-03-20 2003-09-26 한국전력공사 Method of simultaneous synthesize for Y123 and Y211 powder
JP2011510171A (en) * 2008-01-17 2011-03-31 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Wet chemical methods for producing high temperature superconductors

Also Published As

Publication number Publication date
JP2526386B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
AU642229B2 (en) Superconducting oxide-metal composites
JP2674979B2 (en) Superconductor manufacturing method
US5011823A (en) Fabrication of oxide superconductors by melt growth method
US7625843B2 (en) Method for manufacturing a metal organic deposition precursor solution using super-conduction oxide and film superconductor
US5262391A (en) Oxide superconductor and process for preparation thereof
US5135907A (en) Manufacture of high purity superconducting ceramic
Chien et al. Control of Y1Ba2Cu3Ox microstructures by polymer‐metal‐complex precursor synthesis
JPH0313582A (en) Production of oxide superconducting wire and tape
US5229359A (en) Solution and its use to produce superconducting filaments and coatings
JPH03147214A (en) Manufacture of oxide superconducting wire rod or tape
US6569813B2 (en) Method of producing oxide superconductive composite material
JPH01115857A (en) Production of superconductive substance
Goto et al. Texture formation on the melt-growth process of solution-spun Y1Ba2Cu3Ox filament
JPH03109204A (en) Production of superconducting thin film
JP3053238B2 (en) Method for producing Bi-based oxide superconductor
JPH0226806A (en) Production of ceramic superconducting wire
JPH03201316A (en) Manufacture of bi oxide superconductor wire rod
JPH01134819A (en) Manufacture of oxide superconductive wire material
JPH012220A (en) Manufacturing method of ceramic superconducting wire
Goto et al. Partial melting of solution-spun (Y, Ho) 1Ba2Cu3Ox filament
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP3668510B2 (en) Method for producing Bi-based oxide superconductor
JPH03261009A (en) Manufacture of oxide superconductive wire
JPH04192224A (en) Manufacture of superconductive wire material made of oxide
JPH027306A (en) Superconductive wire

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term