JPH03201316A - Manufacture of bi oxide superconductor wire rod - Google Patents

Manufacture of bi oxide superconductor wire rod

Info

Publication number
JPH03201316A
JPH03201316A JP1336454A JP33645489A JPH03201316A JP H03201316 A JPH03201316 A JP H03201316A JP 1336454 A JP1336454 A JP 1336454A JP 33645489 A JP33645489 A JP 33645489A JP H03201316 A JPH03201316 A JP H03201316A
Authority
JP
Japan
Prior art keywords
phase
composition
temperature
melting point
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1336454A
Other languages
Japanese (ja)
Inventor
Naomichi Nakamura
尚道 中村
Michio Shimotomai
道夫 下斗米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1336454A priority Critical patent/JPH03201316A/en
Publication of JPH03201316A publication Critical patent/JPH03201316A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make a critical temperature and a critical current density high and restrain a decrease in Jc in a magnetic field by impregnating a melting material having a specific composition into an elongated fiber convergent material having a specified composition, followed by a thermal treatment at a temperature under a melting point. CONSTITUTION:A melting material having a composition phase (2212 phase) of (Bi, Pb)2Sr2CaCu2Ox in is impregnated into an elongated fiber convergent material having a composition of (Ca, Sr)2CuO3. The resultant impregnated material is cooled down to a temperature under a melting point of the 2212 phase with the application of a temperature gradient (an optimum temperature gradient) is applied along the longitudinal direction thereof. The elongated convergent material in this state is a wire rod where fiber having a composition of (Ca, Sr)2CuO3 is dispersed in the 2212 phase with a crystal surface oriented and solidified in the longitudinal direction. Furthermore, the wire rod is thermally treated at a temperature under the melting point of the 2212 phase. Accordingly, a critical temperature and a critical current density (Jc) become high, and a decrease in Jc in a magnetic field can remarkably be restrained.

Description

【発明の詳細な説明】 (産業上の利用分野) 1986年にLa −5r(Ba) −Cu −0系酸
化物で臨界温度(Tc)が30Kを超えることが発見さ
れて以来、新しい酸化物超電導体が次々と発見され、現
在では(旧、 Pb)−3r −Ca −Cu −0系
(Bi系)酸化物において、臨界温度(Tc)が100
 Kを超えるところにまで至っており、液体窒素温度7
7にでの実用に供するための研究が多くの機関で精力的
に行われている。
Detailed Description of the Invention (Field of Industrial Application) Since the discovery in 1986 that the critical temperature (Tc) of La-5r(Ba)-Cu-0-based oxide exceeds 30K, new oxides have been developed. Superconductors have been discovered one after another, and currently (formerly Pb)-3r-Ca-Cu-0 (Bi) oxides have a critical temperature (Tc) of 100
It has reached the point where it exceeds K, and the liquid nitrogen temperature is 7.
Many institutions are actively conducting research to put this technology to practical use.

この発明はBi系酸化物超電導線材の製造方法に関し、
該線材の超伝導特性、とくにTcと臨界電流密度(Jc
)の効果的な改善・向上を図ろうとするものである。
The present invention relates to a method for manufacturing a Bi-based oxide superconducting wire,
The superconducting properties of the wire, especially Tc and critical current density (Jc
) aims to effectively improve and improve

(従来の技術) 超電導体の主たる用途としては電磁石、送電線などが想
定されており、そのためには線材化技術の確立が必須で
ある。
(Prior art) The main uses of superconductors are expected to be electromagnets, power transmission lines, etc., and for this purpose it is essential to establish wire technology.

酸化物超電導線材(テープ材を含む)の製造に関しては
、従来、例えば「日本金属学会報、1987年、第26
巻、第10号、980頁〜984頁」に見られるように
、 1)粉末被覆加工法 2)ドクター・ブレード法 3)プラズマ溶射法 4)急冷合金薄帯酸化法 5)有機酸塩の溶液や粉のサスペンションをテープ上に
塗布する方法 6)上記サスペンションに有機ポリマを混ぜて粘度調整
したものを紡糸する方法 などを挙げることができる。
Conventionally, regarding the production of oxide superconducting wires (including tape materials), for example, "Japan Institute of Metals Bulletin, 1987, 26th
1) Powder coating process 2) Doctor blade process 3) Plasma spray process 4) Quenched alloy ribbon oxidation process 5) Solutions of organic acid salts 6) A method in which a suspension of powder or powder is applied onto a tape; 6) A method in which the suspension is mixed with an organic polymer to adjust the viscosity and then spun.

これらのうち現在、Bii酸化物超伝導体において最も
高いJcが得られているのは粉末被覆加工法を適用した
場合であり、製造条件によっては77K、零磁場で10
’A/cm2を超える例も報告されている(例えば第2
回国際超電導シンポジウム(1989年つくば市)WB
−8,WB−9参照)。
Among these, the highest Jc of Bii oxide superconductors is currently obtained by applying the powder coating method, and depending on the manufacturing conditions, the temperature is 77K and 10% in zero magnetic field.
Cases exceeding 'A/cm2 have also been reported (e.g.
International Superconductivity Symposium (Tsukuba City, 1989) WB
-8, WB-9).

しかしながら、この粉末被覆加工法にもなお、以下に述
べるような問題点があった。
However, this powder coating method still has the following problems.

すなわち、Bi系超超電導体、Tcが80〜90に程度
になる(Bi、 pb)ZsrZcacuZoXの組成
の相(以下2212相と記す)と、Tcが100 Kを
超える(Bi、 Pb)2Sr2Ca2Cu30yの組
成の相(以下2223相と記す)とが主要な相になって
いて、このうちTcが高い後者を単相でとり出すことは
極めて困難であり、多くの場合2212相ど2223相
の7昆相(X線回折のメインビークの強度lの比r =
 12223/ (12212+T zzz*)で0 
< r <60%程度)、あるいは2212相単和から
なっていた。
That is, a Bi-based superconductor has a phase with a composition of (Bi, pb) ZsrZcacuZoX where Tc is about 80 to 90 (hereinafter referred to as 2212 phase), and a phase with a composition of (Bi, Pb)2Sr2Ca2Cu30y where Tc exceeds 100 K. phase (hereinafter referred to as 2223 phase) is the main phase, and among these, it is extremely difficult to extract the latter with a high Tc as a single phase, and in many cases, 7 phases such as 2212 phase and 2223 phase are used. (Ratio r of main beam intensity l of X-ray diffraction =
12223/ (12212+Tzzz*) is 0
< r <60%) or consisted of a 2212-phase monomer.

このためBii酸化物超伝導体は、使用温度77Kから
の温度マージンが小さく実用的には問題があり、また仮
に2223相単相の線材ができたとしても、それは微細
な結晶粒を持つ多結晶体であるために、コヒーレンス長
が小さいために生しる結晶粒間での超電導的弱結合によ
って、外部磁場の印加によりJcが極端に低下するとい
う性質を持っていた。
For this reason, the Bii oxide superconductor has a small temperature margin from the operating temperature of 77K, which poses a practical problem, and even if a single-phase 2223 wire is produced, it is a polycrystalline material with fine grains. Because it is a solid body, it has a property that Jc is extremely reduced by application of an external magnetic field due to weak superconducting coupling between crystal grains caused by a small coherence length.

(発明が解決しようとする課題) この発明は、上述のような従来の技術の問題点を克服し
、Tcが100 Kを超え、かっJcが高く、しかも磁
場中のJcの低下が小さいBi系系酸化物型雷導線材提
供することを目的とする。
(Problems to be Solved by the Invention) The present invention overcomes the problems of the conventional technology as described above, and provides a Bi-based material with a Tc exceeding 100 K, a high Jc, and a small drop in Jc in a magnetic field. The purpose of the present invention is to provide an oxide type lightning conductor wire.

(課題を解決するための手段) この発明は、(Ca、 Sr)2CuO3の組成になる
繊維の長尺集束物に(Bi、 Pb)zsrzcacu
zOxの組成になる溶融物を含浸させ、次いでその長平
方向に沿って温度勾配をつけた状態で溶融物の融点未満
の温度まで冷却し、その後前記溶融物の融点未満の温度
で熱処理することを特徴とする旧糸超電導線材の製造方
法である。
(Means for Solving the Problems) The present invention provides a method of adding (Bi, Pb)zsrzcacu to a long bundle of fibers having a composition of (Ca, Sr)2CuO3.
Impregnation with a melt having a composition of zOx, cooling to a temperature below the melting point of the melt with a temperature gradient along its longitudinal direction, and then heat treatment at a temperature below the melting point of the melt. This is a method for manufacturing old-thread superconducting wire.

(作 用) Bi系超超電導体中は(Ca、 Sr)2CuO,のm
戒になる不純物が形成されやすく、また該不純物と前記
2212相との界面からSr、 Ca、 Cuの拡散に
よって2223相が成長する(D、Shi  ら著、 
Appl、Phys、Lett、55(7L(1989
) 699 、綿田ら著、第2回国際超電導シンポジウ
ム(1988,つくば市)PPC−28参照)という事
実に着目し、この発明に到達したものである。
(Function) In the Bi-based superconductor, m of (Ca, Sr)2CuO,
Impurities that become a predominant substance are easily formed, and the 2223 phase grows by diffusion of Sr, Ca, and Cu from the interface between the impurity and the 2212 phase (D. Shi et al.,
Appl, Phys, Lett, 55 (7L (1989
) 699, written by Watada et al., 2nd International Superconductivity Symposium (1988, Tsukuba City, PPC-28)), we have arrived at this invention.

ここに、(Ca、 Sr)2CuO:+の組成物は22
12相よりも高い融点を持つため、この発明においては
まず(Ca、 Sr)zcu03の組成になる繊維状の
長尺収束物に2212相のMi戒になる溶融物を含浸さ
せる。そして、この含侵物をその長手方向に沿い温度勾
配(好適温度勾配=10〜500°C/cm)を付与し
た状態で2212相の融点(約900°C)未満の温度
まで冷却する(好適冷却速度:o、i 〜500°(:
/min程度)。
Here, the composition of (Ca, Sr)2CuO:+ is 22
Since it has a higher melting point than the 2212 phase, in this invention, first, a fibrous long condensate having the composition (Ca, Sr)zcu03 is impregnated with a molten material having the 2212 phase Mi precipitate. Then, this impregnated material is cooled to a temperature below the melting point (approximately 900°C) of the 2212 phase while applying a temperature gradient (preferably temperature gradient = 10 to 500°C/cm) along its longitudinal direction (preferably Cooling rate: o, i ~500° (:
/min).

ここで好適温度勾配を10〜500°C/cmとするの
は、10°C/cm未満では液相の方向性凝固が起こり
にく<500°C/cmを超える温度勾配をつけるため
には装置作製上の困難があるからである。また含浸物を
2212相の融点未満の温度まで冷却する際の冷却速度
を0.1〜500°C/min程度とするのが好ましい
のは、この範囲よりも大きい冷却速度では方向性凝固が
起こりにくく、この範囲よりも小さい冷却速度を得るに
は装置作製上の困難があり、生産性も低くなるからであ
る。
The reason why the preferred temperature gradient is 10 to 500°C/cm is that directional solidification of the liquid phase does not occur when the temperature is less than 10°C/cm, but in order to create a temperature gradient that exceeds <500°C/cm. This is because there are difficulties in manufacturing the device. The reason why it is preferable to set the cooling rate to about 0.1 to 500°C/min when cooling the impregnated material to a temperature below the melting point of the 2212 phase is because directional solidification occurs at a cooling rate higher than this range. This is because obtaining a cooling rate smaller than this range involves difficulties in manufacturing the device and lowers productivity.

この状態における長尺収束物は、その長手方向に結晶の
ab面が配向して凝固した2212相中に(CaSr)
 2CuO3組成の繊維が分散した線材となっている。
In this state, the long convergent substance has (CaSr) in the solidified 2212 phase with the ab plane of the crystal oriented in the longitudinal direction.
It is a wire rod in which fibers having a composition of 2CuO3 are dispersed.

上記の線材をさらに2212相の融点未満の温度で熱処
理することにより、Ca、 Sr、 Cuが前記繊維状
m酸物から2212相中へ拡散してTcが100 Kを
超える2223組威の起振導線材を得ることができる。
By further heat-treating the above wire at a temperature below the melting point of the 2212 phase, Ca, Sr, and Cu diffuse from the fibrous m-oxide into the 2212 phase, resulting in the excitation of the 2223 group strength with Tc exceeding 100 K. A conductive wire material can be obtained.

熱処理における好適条件としては、温度が高いほどイオ
ンの拡散速度が速< 2223相ができやすい反面、含
浸物の融点を超えると配向凝固した組織が乱れて好まし
くないので、含浸物の融点を超えない800〜870°
Cの温度域で24時間以上の長時間とするのがよい。
Suitable conditions for heat treatment include: The higher the temperature, the faster the ion diffusion rate < 2223 phase is likely to be formed, but if it exceeds the melting point of the impregnated material, the oriented and solidified structure will be disturbed, which is undesirable, so the temperature should not exceed the melting point of the impregnated material. 800~870°
It is preferable to keep the temperature in the temperature range of C for a long time of 24 hours or more.

この線材は溶融物が一方向凝固した組織を基体としてい
るため、従来の粉末被覆加工法に比べ、結晶方位の配向
性にすぐれている。また結晶粒径が大きく発達している
ため従来方法に従って製造した線材に比べ結晶粒界の体
積割合が小さく、結晶粒間での超電導的弱結合の影響が
少ない。したがって、Jcの値が改善され、磁場中での
低下も非常に小さい。
Since this wire is based on a structure obtained by unidirectionally solidifying a molten material, it has superior crystal orientation compared to conventional powder coating processing methods. In addition, since the crystal grain size is greatly developed, the volume ratio of grain boundaries is smaller than that of wire rods manufactured according to conventional methods, and the influence of weak superconducting bonds between crystal grains is small. Therefore, the value of Jc is improved and the drop in the magnetic field is also very small.

(Ca、 Sr)zcuozの組成を有する繊維状の集
束物の作製法としては、 1) 上記の組成になる固相組成物を溶融し、これを圧
搾空気または遠心力で吹き飛ばして直径5〜20μmの
繊維にし、それを編んで長尺集束物にする。
The method for producing a fibrous bundle having the composition of (Ca, Sr)zcuoz is as follows: 1) Melt the solid phase composition having the above composition and blow it away with compressed air or centrifugal force to a diameter of 5 to 20 μm. The fibers are then knitted into long bundles.

2)W、MOなど高融点金属または特殊耐火物よりなり
、その底部に多数のノズルを有するポットに上記の組成
になる固相組成物を入れて溶融し、ノズルから流れ出し
た溶融物を急冷して集束しつつ巻き取る。
2) A solid phase composition having the above composition is poured into a pot made of a high melting point metal such as W or MO or a special refractory and has a large number of nozzles at the bottom and melted, and the molten material flowing out from the nozzles is rapidly cooled. Wind it up while converging it.

3) 上記の組成になる固相組成物を溶融し、単結晶繊
維を細いノズルを介して引き上げる方法で作製し、それ
を集束する。
3) A solid phase composition having the above composition is melted, a single crystal fiber is produced by pulling it up through a thin nozzle, and the fiber is bundled.

4)粒径が0.5μm以下の上記の組成になる固相組成
物の粉末をあらかじめ作製し、これを高重合度のポリビ
ニルアルコールのジメチルスルホキシド溶液中に分散さ
せた後、メタノール中に線状のものとして押し出し、こ
れを巻き取って連続紡糸し、これを熱処理した後、集束
する。
4) Prepare a solid phase composition powder having the above composition with a particle size of 0.5 μm or less in advance, disperse it in a dimethyl sulfoxide solution of polyvinyl alcohol with a high degree of polymerization, and then disperse it in linear form in methanol. It is extruded as a product, wound up, continuously spun, heat-treated, and then bundled.

などが好ましい。なお、集束物径は超電導特性には影響
を与えないが、後の線材としての用途上の利便性のため
0.5〜2 mm程度とする。
etc. are preferable. Although the diameter of the bundle does not affect the superconducting properties, it is set to about 0.5 to 2 mm for convenience in later use as a wire.

また、2212組成の溶融物を上記集束物へ含浸させる
ときの温度は、理論的には最高は集束物の融点、最低は
2212相の凝固点であるが、実際は液体の粘性、液相
と固相のぬれ性、集束物内の繊維の幾何学的な配置など
によって最適温度を決める。
In addition, the temperature at which the above-mentioned bundle is impregnated with a molten material having a composition of 2212 is theoretically the highest at the melting point of the bundle and the lowest at the freezing point of the 2212 phase, but in reality it depends on the viscosity of the liquid, the liquid phase and the solid phase. The optimum temperature is determined by the wettability of the fibers and the geometrical arrangement of the fibers within the bundle.

以下実施例によってさらに詳細にこの発明について説明
するが、この発明は以下の例における具体的条件に限定
されるものではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the specific conditions in the Examples below.

(実施例) 実施例l CaCO3+ 5rCOt、 CuOの粉末をCa :
 Sr : Cu −1,9: 0.1 : lのモル
比となるように秤量、混合した後、大気雰囲気中980
°C,12Hr仮焼した。得られた仮焼物を、タングス
テンをサセプター(加熱媒体)に用いた高周波加熱によ
って2800°Cに加熱、溶融してノズルから吹き出さ
せて平均直径が0.1mmになるガラス質の繊維を作製
し、この繊維を集束して直径1 mmの長尺収束物とし
た。
(Example) Example 1 CaCO3+ 5rCOt, CuO powder as Ca:
After weighing and mixing to give a molar ratio of Sr:Cu-1,9:0.1:l,
It was calcined at °C for 12 hours. The obtained calcined product was heated to 2800°C by high-frequency heating using tungsten as a susceptor (heating medium), melted, and blown out from a nozzle to produce glass fibers with an average diameter of 0.1 mm. The fibers were bundled into a long bundle with a diameter of 1 mm.

この長尺集束物への2212組成の溶融物の含浸のため
に第1図のような装置を用いた。なお、同図における番
号1は底部1aに線材引き抜き口1bをもったるつぼ、
2は2212M1戒の液相、3は長尺収束物pを巻き付
けるプーリーである。るつぼ1にはBi系超超電導体対
する耐蝕性に優れたAu −Pd合金製のものを用い、
このるつぼ1にまず、B12(1++PbO,SrCO
3,CaC0:+、CuO粉末をBi : Pb : 
Sr : Ca: Cu=1.9 : 0.1 +  
2 : 1 : 2のモル比となるように秤量、/捏合
して800°C,12Hrで大気雰囲気で仮焼したもの
を装入し、カンタルヒータによってT、=950°C程
度に加熱し、液相2を作製した。予め作製された繊維集
束物pはプーリー3から液相2を通って直径5 mn+
程度の引き抜き口1aを経て矢印の向きに1cm/分の
速さで引き抜かれる。引き抜き口1bの温度T2は、液
相2の融点近傍(約900’C)に保たれているが、液
相の粘度が高いため、るつぼ1内の液相2は引き抜き口
1bから流出するようなことはなく集束物Pに含浸した
液相2は、るつぼ1の底部1aと引き抜き口lbとの間
の約100’(: / cmの温度勾配下で凝固する。
An apparatus as shown in FIG. 1 was used to impregnate this long bundle with a melt having a composition of 2212. In addition, number 1 in the same figure is a crucible with a wire drawing opening 1b at the bottom 1a,
2 is the liquid phase of 2212M1 precept, and 3 is a pulley around which the long convergence material p is wound. The crucible 1 is made of an Au-Pd alloy that has excellent corrosion resistance against Bi-based superconductors.
First, in this crucible 1, B12 (1++PbO, SrCO
3, CaC0:+, CuO powder Bi: Pb:
Sr: Ca: Cu=1.9: 0.1 +
The mixture was weighed and kneaded so as to have a molar ratio of 2:1:2 and calcined in the air at 800°C for 12 hours, and heated to approximately 950°C using a Kanthal heater. Liquid phase 2 was prepared. The prefabricated fiber bundle p passes through the liquid phase 2 from the pulley 3 and has a diameter of 5 mn+.
It is pulled out at a speed of 1 cm/min in the direction of the arrow through the pull-out port 1a of about 100 mm. The temperature T2 of the drawing port 1b is maintained near the melting point of the liquid phase 2 (approximately 900'C), but since the viscosity of the liquid phase is high, the liquid phase 2 in the crucible 1 flows out from the drawing port 1b. The liquid phase 2 impregnated into the bundle P solidifies under a temperature gradient of about 100' (:/cm) between the bottom 1a of the crucible 1 and the withdrawal port lb.

次に引き抜かれた線材を840°C,4811r大気雰
囲気で熱処理し、得られたBi系超超電導線材特性につ
いて調査した。その結果を表1に示す。
Next, the drawn wire was heat treated at 840°C and 4811r in an air atmosphere, and the properties of the obtained Bi-based superconducting wire were investigated. The results are shown in Table 1.

比較例 BIKO:II pbo、 5rCO,、、CaC0,
、、CuOの粉末をBi:Pb : Sr : Ca 
: Cu = 1.9 : 0.1 : 2 : 2 
: 3のモル比となるように秤量、混合した後、大気雰
囲気で800°C,1211r仮焼し、粉砕した。この
仮焼粉内系8 mm、肉厚1 mmの銀パイプに詰め、
引っ張りと圧延を繰り返して幅3mm、厚み0.1mm
のテープ状とした後、840°C,48Hr大気雰囲気
中で熱処理してBi系超電導線材を得た。この線材の特
性を表1にして併せて示す。
Comparative example BIKO: II pbo, 5rCO, , CaC0,
, , CuO powder as Bi:Pb:Sr:Ca
: Cu = 1.9 : 0.1 : 2 : 2
: After weighing and mixing so that the molar ratio was 3, the mixture was calcined at 800°C and 1211r in the air atmosphere and pulverized. This calcined powder was packed into a silver pipe with an internal diameter of 8 mm and a wall thickness of 1 mm.
Repeated stretching and rolling to create a width of 3mm and a thickness of 0.1mm.
After forming it into a tape shape, it was heat-treated in an air atmosphere at 840°C for 48 hours to obtain a Bi-based superconducting wire. The properties of this wire are also shown in Table 1.

表1から明らかなように、この発明によるBi系超電導
線材は、従来法によるものに比べ、Tc、 Jcが高く
、磁場中でのJcの低下も著しく改善されていることが
確かめられた。SEM (走査電子顕微鏡)観察によれ
ば、この発明によるBi系超電導線材は従来法によるも
のに比べその長手方向への結晶成長が著しく、ボアがほ
とんどみられない緻密な微構造を示していた。この大き
な結晶粒成長によって粒界部分の体積分率が相対的に小
さくなり、粒間の超電導的弱結合の影響が小さくなって
、磁場中のJcの低下が改善されたものと見られる。
As is clear from Table 1, it was confirmed that the Bi-based superconducting wire according to the present invention has higher Tc and Jc than those made by the conventional method, and the decrease in Jc in a magnetic field has been significantly improved. According to SEM (scanning electron microscopy) observation, the Bi-based superconducting wire according to the present invention exhibited remarkable crystal growth in the longitudinal direction compared to those made using the conventional method, and exhibited a dense microstructure with almost no visible bores. This large grain growth makes the volume fraction of the grain boundary portion relatively small, which reduces the influence of weak superconducting bonds between grains, and appears to improve the reduction in Jc in the magnetic field.

(発明の効果) かくしてこの発明によれば、従来技術に従うだLJでは
困難であったTc > 100にの2223相の比率が
高いBi系超電導線材の製造が可能となった。また結晶
粒界の体積分率が小さくなるため、磁場中でのJcの低
下が大幅に改善された。したがって、この発明は電磁石
や送電線など超電導材応用分野に多大な寄与をもたらす
ものである。
(Effects of the Invention) Thus, according to the present invention, it has become possible to manufacture a Bi-based superconducting wire having a high ratio of 2223 phase with Tc > 100, which was difficult in LJ according to the prior art. Furthermore, since the volume fraction of grain boundaries became smaller, the decrease in Jc in a magnetic field was significantly improved. Therefore, this invention makes a significant contribution to the field of application of superconducting materials such as electromagnets and power transmission lines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は長尺集束物に2212組戒の溶融物を含浸させ
る方法の一例を示す模式図である。 1・・・Au −Pdるつぼ  1a・・・るつぼ底部
1b・・・線材引き抜き口  2・・・2212組成の
液相3・・・プーリー P・・・長尺集束物
FIG. 1 is a schematic diagram showing an example of a method for impregnating a long bundled material with a molten material of 2212 sets. 1... Au-Pd crucible 1a... Crucible bottom 1b... Wire drawing port 2... Liquid phase with 2212 composition 3... Pulley P... Long bundled object

Claims (1)

【特許請求の範囲】[Claims] 1、(Ca、Sr)_2CuO_3の組成になる繊維の
長尺集束物に(Bi、Pb)_2Sr_2CaCu_2
O_xを含む組成になる溶融物を含浸させ、次いでその
長手方向に温度勾配をつけた状態で溶融物の融点未満の
温度まで冷却し、その後溶融物の融点未満の温度で熱処
理することを特徴とするBi系酸化物超電導線材の製造
方法。
1. (Bi, Pb)_2Sr_2CaCu_2
It is characterized by impregnating a melt with a composition containing O_x, cooling it to a temperature below the melting point of the melt with a temperature gradient in its longitudinal direction, and then heat-treating it at a temperature below the melting point of the melt. A method for producing a Bi-based oxide superconducting wire.
JP1336454A 1989-12-27 1989-12-27 Manufacture of bi oxide superconductor wire rod Pending JPH03201316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336454A JPH03201316A (en) 1989-12-27 1989-12-27 Manufacture of bi oxide superconductor wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336454A JPH03201316A (en) 1989-12-27 1989-12-27 Manufacture of bi oxide superconductor wire rod

Publications (1)

Publication Number Publication Date
JPH03201316A true JPH03201316A (en) 1991-09-03

Family

ID=18299307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336454A Pending JPH03201316A (en) 1989-12-27 1989-12-27 Manufacture of bi oxide superconductor wire rod

Country Status (1)

Country Link
JP (1) JPH03201316A (en)

Similar Documents

Publication Publication Date Title
DK173408B1 (en) Process for Preparing a Superconducting Body Containing an Oxide of Composition YBa2Cu3O9 Delta
US5011823A (en) Fabrication of oxide superconductors by melt growth method
JPH01286902A (en) Production of oxide superconductor
JPH0440289B2 (en)
US5262391A (en) Oxide superconductor and process for preparation thereof
Jiang et al. The crystal growth of Y-Ba-Cu-O by laser floating zone melting
JPH03201316A (en) Manufacture of bi oxide superconductor wire rod
US5229357A (en) Method of producing superconducting ceramic wire and product
KR910009198B1 (en) Method of manufacturing superconductive products
JPH04121912A (en) Manufacture of oxide high temperature superconductive conductor
Goto et al. Texture formation on the melt-growth process of solution-spun Y1Ba2Cu3Ox filament
JPH07115924B2 (en) Method for manufacturing oxide superconductor
Goto et al. Partial melting of solution-spun (Y, Ho) 1Ba2Cu3Ox filament
US5346883A (en) Method of manufacturing superconductive products
Goto et al. One-Directional Solidification of Ho1Ba2Cu3 Oxide Superconducting Filaments Produced by Suspension Spinning Method
JP3179084B2 (en) Manufacturing method of oxide superconducting wire
JPH0226806A (en) Production of ceramic superconducting wire
JPH01219003A (en) Production of high temperature oxide superconductor
YAMADA TOMOKO GOTO, HIROYUKI INAJI, KATSUHIKO TAKEUCHI, and
JPH0313582A (en) Production of oxide superconducting wire and tape
JP3160901B2 (en) Manufacturing method of superconducting material
Goto et al. Preparation of High Tc Oxide Superconducting Filaments by Suspension Spinning Method
Goto Critical current density of filamentary Y123 superconductor
JPS63274027A (en) Manufacture of superconductive material
JPH0818910B2 (en) Method for producing oxide superconducting single crystal