JPH03133039A - Electron beam optical axis adjusting method - Google Patents

Electron beam optical axis adjusting method

Info

Publication number
JPH03133039A
JPH03133039A JP27044089A JP27044089A JPH03133039A JP H03133039 A JPH03133039 A JP H03133039A JP 27044089 A JP27044089 A JP 27044089A JP 27044089 A JP27044089 A JP 27044089A JP H03133039 A JPH03133039 A JP H03133039A
Authority
JP
Japan
Prior art keywords
electron beam
optical axis
detection means
beam optical
beam detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27044089A
Other languages
Japanese (ja)
Inventor
Nobushige Korenaga
伸茂 是永
Susumu Goto
進 後藤
Takuo Kariya
刈谷 卓夫
Shunichi Uzawa
鵜澤 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27044089A priority Critical patent/JPH03133039A/en
Publication of JPH03133039A publication Critical patent/JPH03133039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To measure pattern size highly precisely while setting an optical axis to be rectangular to a sample by detecting inclination of an electron beam optical axis based on relative transfering volume of a first and a second electron beam detecting means against the electron beam optical axis and correcting the inclination of the electron beam optical axis by driving a deflecting means based on the detected value. CONSTITUTION:Since inclination of an electron beam optical axis 20 in x- direction (y-direction) against a transfering plane of a stage 4 is known based on electric current supplied to an auxiliary deflecting coil 6 and deflecting magnification of the auxiliary deflecting coil 6, the volume of inclination is corrected by a second deflecting coil installed in an electron optical lens-barrel. Ideally, the electron beam should cross rectangularly to a stage transfering plane when it is observed from x-direction of y-direction at the time of correction, but considering errors of deflecting magnification, etc. the correction procedure is repeated 2-3 times and in both x- and y-directions. As a result, the electron beam is injected rectangularly against the sample stage 4 and right information of pattern shape and size is obtained. In this way, precise measuring of a pattern is achieved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はりソグラフィによってICやLSI等の回路を
ウェハー上に焼き付ける時に原版となるマスクの微細パ
ターンの寸法を電子線を用いて精密に測定するための装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses an electron beam to accurately measure the dimensions of a fine pattern on a mask that serves as an original when printing circuits such as ICs and LSIs onto a wafer using lithography. It relates to a device for.

[従来の技術] 従来この種の測長機における電子線光軸は第5図のよう
に設定されていた。1は電子銃、2はコンデンサレンズ
、4は試料ステージ、4aは試料、5a、5bは第一の
偏向系、6は第2の偏向系、7は二次電子や反射電子を
検出するセンサ、8は偏向電圧発生器、9はデイスプレ
ィ、10は偏向量を知るための電圧計、11.12はA
/Dコンバータおよび表示素子、R1からR5は分圧用
の抵抗である。電子銃1から発生した電子線をコンデン
サレンズ2で集束し、第一の偏向系5a、5bで電子線
が対物レンズ3の中心を通るように二段偏向し、さらに
第2の偏向系で試料面に垂直になるように偏向して試料
に照射し、そのとき発生する二次電子や反射電子の量の
変化から試料の形状寸法が測定できるようになっている
[Prior Art] Conventionally, the electron beam optical axis in this type of length measuring machine was set as shown in FIG. 1 is an electron gun, 2 is a condenser lens, 4 is a sample stage, 4a is a sample, 5a and 5b are a first deflection system, 6 is a second deflection system, 7 is a sensor that detects secondary electrons and reflected electrons, 8 is a deflection voltage generator, 9 is a display, 10 is a voltmeter to know the amount of deflection, 11.12 is A
/D converter and display element, R1 to R5 are voltage dividing resistors. The electron beam generated from the electron gun 1 is focused by a condenser lens 2, the electron beam is deflected in two stages by first deflection systems 5a and 5b so that it passes through the center of the objective lens 3, and then the electron beam is focused by a second deflection system so as to pass through the center of the objective lens 3. The beam is deflected perpendicular to the surface and irradiated onto the sample, allowing the shape and dimensions of the sample to be measured from changes in the amount of secondary electrons and reflected electrons generated.

第一の偏向系の二段偏向と第二の偏向系の偏向量の比は
抵抗R1からR5で決められるがこれらの値は理想的な
設計値に基づいて決められている。
The ratio between the two-stage deflection of the first deflection system and the deflection amount of the second deflection system is determined by resistors R1 to R5, and these values are determined based on ideal design values.

[発明が解決しようとする課題] しかしながら、実際には電子光学鏡筒の光軸と試料ステ
ージの移動する平面が直交するとはかぎらず、種々の組
立誤差や機械的な経時変化や電子光学鏡筒内でのコンタ
ミ等によるビームドリフト等により試料ステージの移動
面と電子線とは垂直に対しある角度を持ち、この角度は
一定ではなく検出は困難である。このようにビームと試
料面が直交していないとパターンの線幅を測る場合に第
6図に示すように傾斜角の分Δだけパターンが太く見え
るという問題があった。また断面形状の情報を得ようと
して、例えば電子線光軸がパターンのエツジ面に平行に
なるように電子線を偏向した時の偏向量からパターンの
エツジの傾斜角を測定した場合には、第7図に示すよう
に実際のエツジ傾斜角はφであるのに、φ1、φ2であ
るかのように検出する。つまりパターンが傾いているよ
うに見えるという問題があった。またビーム光軸の傾き
は測定時によって任意に変動するため測定条件が一定で
はなくなり、測定値が再現しないという問題があった。
[Problems to be Solved by the Invention] However, in reality, the optical axis of the electron optical column and the plane in which the sample stage moves are not always perpendicular to each other, and various assembly errors, mechanical changes over time, and problems with the electron optical column may occur. Due to beam drift caused by contamination within the sample stage, the moving surface of the sample stage and the electron beam have a certain angle with respect to the perpendicular, and this angle is not constant and detection is difficult. If the beam and the sample surface are not perpendicular to each other in this way, there is a problem that when measuring the line width of a pattern, the pattern appears thicker by the inclination angle Δ, as shown in FIG. In addition, in order to obtain information on the cross-sectional shape, for example, if the inclination angle of the edge of a pattern is measured from the amount of deflection when the electron beam is deflected so that the optical axis of the electron beam is parallel to the edge surface of the pattern, As shown in FIG. 7, although the actual edge inclination angle is φ, it is detected as if it were φ1 and φ2. In other words, there was a problem in that the pattern appeared to be tilted. Furthermore, since the inclination of the beam optical axis varies arbitrarily depending on the measurement time, the measurement conditions are no longer constant and there is a problem that the measured values are not reproducible.

本発明は上記従来技術の欠点に鑑みなされたものであっ
て、測定時に試料面に対し光軸が直交するように保ち精
度の高い測定を可能とする電子線寸法測定器の提供を目
的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide an electron beam dimension measuring instrument that enables highly accurate measurement by keeping the optical axis orthogonal to the sample surface during measurement. .

[課題を解決するための手段および作用コ木発明によれ
ば、試料ステージが移動する面(基準面)に垂直な基準
と、少なくとも3組以上の、電子線光軸方向にずれて配
置される少なくとも2分割以上に分割された電子線検出
素子と、これらの素子の中に設けられた前記垂直基準か
ら既知の距離にある基準と、この基準を電子線光軸に位
置合せする手段と、この基準を電子線光軸に位置合せし
た時電子線光軸のステージ移動面に対する傾きを測定す
る手段と、電子線光軸と試料ステージの相対位置を少な
くともX軸またはY@回りに回転できる手段を設けるこ
とにより、電子線光軸が常に試料ステージの移動面に垂
直になるようにしたものである。
[Means and Effects for Solving the Problems] According to the invention, at least three sets of reference planes are arranged shifted in the direction of the electron beam optical axis from a reference plane perpendicular to the plane on which the sample stage moves (reference plane). an electron beam detection element divided into at least two parts; a reference provided within these elements at a known distance from the vertical reference; means for aligning the reference with the electron beam optical axis; A means for measuring the inclination of the electron beam optical axis with respect to the stage movement plane when the reference is aligned with the electron beam optical axis, and a means for rotating the relative position of the electron beam optical axis and the sample stage at least around the X axis or Y@. By providing this, the electron beam optical axis is always perpendicular to the plane of movement of the sample stage.

電子線照射方向に沿って所定距離を隔てて第1および第
2の電子線検出手段を設け、第1の検出手段と電子線と
を整合させた後、第2の検出手段と電子線を整合させる
。この整合操作のび動量に基づいて電子線の傾きが検出
される。この検出値に基づき電子線照射方向を補正する
First and second electron beam detection means are provided at a predetermined distance apart along the electron beam irradiation direction, and after the first detection means and the electron beam are aligned, the second detection means and the electron beam are aligned. let The inclination of the electron beam is detected based on the amount of movement in this alignment operation. The electron beam irradiation direction is corrected based on this detected value.

[実施例] 第1図および第2図は本発明の実施例を示す。[Example] 1 and 2 show an embodiment of the invention.

1は電子銃、2はコンデンサレンズ、3は対物レンズ、
4aは試料、4は試料ステージ、5x、5yは偏向コイ
ル、6は補助偏向コイル、7ax 、 7bXはX方向
光軸調整用の第一の電子線検出素子、8ax 、 8b
xはX方向光軸調整用の第2の電子線検出素子である。
1 is an electron gun, 2 is a condenser lens, 3 is an objective lens,
4a is a sample, 4 is a sample stage, 5x, 5y are deflection coils, 6 is an auxiliary deflection coil, 7ax, 7bX is a first electron beam detection element for adjusting the optical axis in the X direction, 8ax, 8b
x is a second electron beam detection element for adjusting the optical axis in the X direction.

電子線検出素子はX方向にも同様に設けられている。1
0は試料ステージ位置計測用ミラー 11はハーフミラ
−12はレーザ光源でこれらによってレーザ干渉計を構
成している。試料ステージ4は鉛直軸を2軸とするとき
、xyX方向移動してxy平面内のパターン寸法を測定
できるようになっている。試料ステージ4には試料移動
方向に垂直な基準4vx 、 4vyが設けられている
。垂直基準4vxは試料ステージのxy面に垂直で、か
つ試料ステージのX軸にも垂直な平面であり、垂直基準
4vyは試料ステージのxy面に垂直で、試料ステージ
のy軸にも垂直な平面である。これらの面の垂直度は試
料ステージのXまたはX方向のガイド面を基準に機械加
工の精度で保証されている。第一の電子線検出素子7a
x 。
The electron beam detection element is similarly provided in the X direction. 1
0 is a mirror for measuring the position of the sample stage; 11 is a half mirror; 12 is a laser light source; these constitute a laser interferometer. When the sample stage 4 has two vertical axes, it can move in the xyx directions to measure pattern dimensions in the xy plane. The sample stage 4 is provided with references 4vx and 4vy perpendicular to the sample moving direction. The vertical reference 4vx is a plane perpendicular to the xy plane of the sample stage and also perpendicular to the X axis of the sample stage, and the vertical reference 4vy is a plane perpendicular to the xy plane of the sample stage and also perpendicular to the y axis of the sample stage. It is. The perpendicularity of these surfaces is guaranteed by machining accuracy with reference to the X or X-direction guide surface of the sample stage. First electron beam detection element 7a
x.

7bxは平面電極であり、電子線が照射されたときその
電流が検出できるように電流計が接続されている。第2
図に示すように両手面電極のエツジ7axe、 7bx
e (または7aye、 7bye)によってX釉(ま
たはy軸)に垂直なスリットを構成している。また7a
x 、 7bxの下面7axb、 7bxb (7ay
b。
7bx is a plane electrode, and an ammeter is connected to it so that the current when irradiated with an electron beam can be detected. Second
As shown in the figure, the edges of the electrodes on both hands 7axe and 7bx
e (or 7aye, 7bye) constitutes a slit perpendicular to the X glaze (or y axis). Also 7a
x, lower surface of 7bx 7axb, 7bxb (7ay
b.

7byb)は試料面とほぼ同一面になるように設置され
る。エツジ7axe、 7bxe (または7aye、
 7bya)は垂直基準4vx  (または4vy )
から、0 、01mm以下の精度で既知の距離に設置さ
れ、7axe、 7bxeの隙間は、0.1 mm程度
に設定される。第2の電子線検出素子8は電子線光軸の
方向に約60mmずれて配置される。8ax 、 8b
xは平面電極であり、電子線が照射されたときその電流
が検出できるように電流計が接続されている。両者のエ
ツジ8axe、 8bxe(または8aye、 13b
ye)によってX軸(またはy@)に垂直なスリットを
構成している。エツジ8axe、 8bxe (または
8aye、 8bye)は垂直基準4vx(または4v
y )から0.01mm以下の精度で7axe7bxe
と同じ距離に設置され、8axe、 8bxeの隙間は
0.1 mm程度に設定される。また補助偏向コイルは
既知の偏向倍率(感度)で電子線をX方向(X方向)に
走査できる。
7byb) is installed so that it is almost flush with the sample surface. 7axe, 7bxe (or 7aye,
7bya) is the vertical reference 4vx (or 4vy)
The 7axe and 7bxe are installed at a known distance with an accuracy of 0.01 mm or less, and the gap between the 7axe and 7bxe is set to about 0.1 mm. The second electron beam detection element 8 is disposed offset by about 60 mm in the direction of the electron beam optical axis. 8ax, 8b
x is a plane electrode, to which an ammeter is connected so that the current can be detected when the electron beam is irradiated. Both edges 8axe, 8bxe (or 8aye, 13b
ye) constitutes a slit perpendicular to the X axis (or y@). Edge 8axe, 8bxe (or 8aye, 8bye) is vertical reference 4vx (or 4v
7axe7bxe with an accuracy of 0.01mm or less from
The gap between 8axe and 8bxe is set to about 0.1 mm. Further, the auxiliary deflection coil can scan the electron beam in the X direction (X direction) with a known deflection magnification (sensitivity).

上記構成において電子銃1、コンデンサレンズ2、偏向
コイル5、対物レンズ3に電源を供給して試料面に電子
線を集束させたとき、電子線光軸20が試料ステージの
移動面に対して垂直ではなかったとする。まず電子線光
軸20をX釉に直交させるために、ステージをX方向に
動かし、電子線光軸のX座標と第一の電子線検出素子の
中心のX座標を大体一致させる。次にステージをX方向
に勅かし、電子線光軸のX座標と7ax 、 7bx 
 (または7ay 、 7bY )で構成される第一の
電子線検出素子の中心のX座標を大体一致させる。次に
7ax 、 7bx  (または7ay 、 7by 
)からの電流を調へ両方がゼロになるように、つまり電
子線が7ax 、 7bx  (または7ay 、 7
by )の間のスリットを通るように、ステージをX方
向に移動させる。
In the above configuration, when power is supplied to the electron gun 1, condenser lens 2, deflection coil 5, and objective lens 3 to focus the electron beam on the sample surface, the electron beam optical axis 20 is perpendicular to the moving plane of the sample stage. Suppose it wasn't. First, in order to make the electron beam optical axis 20 perpendicular to the X glaze, the stage is moved in the X direction, and the X coordinate of the electron beam optical axis and the X coordinate of the center of the first electron beam detection element are roughly matched. Next, move the stage in the X direction and set the X coordinates of the electron beam optical axis and 7ax and 7bx.
(or 7ay, 7bY), the X coordinates of the centers of the first electron beam detecting elements are made to roughly match. Then 7ax, 7bx (or 7ay, 7by
) so that both become zero, that is, the electron beam is 7ax, 7bx (or 7ay, 7
The stage is moved in the X direction so as to pass through the slit between

つまりここでは第一の電子線検出素子を2分割し、各々
の素子に照射される電流を測れるようにすることにより
、素子の中の基準つまりスリットを電子線光軸と合せら
れるようにしている。次に8ax 、 8bx  (ま
たは8ay 、 8by )からの電流を調べ両方がゼ
ロになるように、つまり電子線が8ax 、 8bx 
 (または8ay 、 8by )の間のスリッI・を
通るように、補助偏向コイル6に交流電流を供給する。
In other words, by dividing the first electron beam detection element into two and measuring the current irradiated to each element, the reference or slit in the element can be aligned with the electron beam optical axis. . Next, check the currents from 8ax, 8bx (or 8ay, 8by) and make sure that both are zero, that is, the electron beam is 8ax, 8bx
(or 8ay, 8by), an alternating current is supplied to the auxiliary deflection coil 6 so as to pass through the slit I.

このとき補助偏向コイル6に供給した電流値と補助偏向
コイル6の偏向倍率からステージの移動面に対する電子
線光軸のX方向(X方向)の傾きがわかる。この量を今
度は電子光学鏡筒に設けられた第二の偏向コイルで補正
する。理想的にはこの時点で電子線はX方向またはX方
向から見たときにステージ移動面に直交しているはずで
ある。しかし偏向倍率の誤差等を考慮し、上述の手順2
〜3回繰り返す。これをX方向、X方向の両方について
行う。この結果電子線は試料ステージに垂直に入射する
ようになり、パターンの形状寸法に関する正しい情報が
得られるようになる。
At this time, the inclination of the electron beam optical axis in the X direction (X direction) with respect to the moving surface of the stage can be determined from the current value supplied to the auxiliary deflection coil 6 and the deflection magnification of the auxiliary deflection coil 6. This amount is now corrected by a second deflection coil provided in the electron optical lens barrel. Ideally, at this point, the electron beam should be perpendicular to the stage movement plane when viewed from the X direction or from the X direction. However, considering the error in deflection magnification, etc., the above procedure 2.
Repeat ~3 times. This is done in both the X direction and the X direction. As a result, the electron beam will be incident perpendicularly to the sample stage, making it possible to obtain accurate information regarding the shape and dimensions of the pattern.

また本実施例の変形例として補助偏向コイル6の機能を
機械的に実現することも可能である。つまリ、電子線が
7axe、 7bxeで構成されるスリットを通るよう
にした後、8ax 、 8bxを機械的に動かして、電
子線が8axと8bxの間を通るようにし、そのとき動
かした量と7ax 、 8axの光軸方向の距離との正
接からステージの穆動面に対する電子線光軸のX方向(
X方向)の傾きを検出し、これを電子光学鏡筒に設けら
れた第二の偏向コイルで補正する。
Further, as a modification of this embodiment, the function of the auxiliary deflection coil 6 can be mechanically realized. In other words, after making the electron beam pass through the slit made up of 7axe and 7bxe, we mechanically move 8ax and 8bx so that the electron beam passes between 8ax and 8bx, and the amount of movement and From the tangent to the distance in the optical axis direction of 7ax and 8ax, the X direction of the electron beam optical axis (
(X direction) is detected and corrected by a second deflection coil provided in the electron optical lens barrel.

第3図および第4図は本発明の他の実施例を示す。1は
電子銃、2はコンデンサレンズ、3は対物レンズ、4a
は試料、4は試料ステージ、5x、5yは偏向コイル、
6は補助偏向コイル、7ax 、 7bxはX方向光軸
調整用の第一の電子線検出素子、8xはX方向光軸調整
用の第2の電子線検出素子、9axは電極、9bxは絶
縁層である。電子線検出素子はX方向にも同様に設けら
れている。10は試料ステージ位置計測用ミラー、11
はハーフミラ−12はレーザ光源でこれらによってレー
ザ干渉計を構成している。試料ステージは鉛直軸をZ軸
とするとき、xyX方向′8動じてxy平面内のパター
ン寸法を測定できるようになっている。試料ステージ4
には試料移動方向に垂直な基準4νx 、 4vyが設
けられている。垂直基準4vxはX試料ステージのxy
面に垂直で、かつ試料ステージのX軸にも垂直な平面で
あり、垂直基準4vyは試料ステージのxy面に垂直で
、試料ステージのy軸にも垂直な平面である。これらの
面の垂直度は試料ステージのXまたはX方向のガイド面
を基準に機械加工の精度で保証されている。
3 and 4 show other embodiments of the invention. 1 is an electron gun, 2 is a condenser lens, 3 is an objective lens, 4a
is the sample, 4 is the sample stage, 5x, 5y are the deflection coils,
6 is an auxiliary deflection coil, 7ax and 7bx are first electron beam detection elements for adjusting the optical axis in the X direction, 8x is a second electron beam detection element for adjusting the optical axis in the X direction, 9ax is an electrode, and 9bx is an insulating layer. It is. The electron beam detection element is similarly provided in the X direction. 10 is a mirror for measuring the position of the sample stage; 11
The half mirror 12 is a laser light source, and these constitute a laser interferometer. When the vertical axis is the Z axis, the sample stage can be moved in the xyx directions '8 to measure pattern dimensions in the xy plane. Sample stage 4
References 4νx and 4vy are provided perpendicular to the sample movement direction. The vertical reference 4vx is the xy of the X sample stage.
The vertical reference 4vy is a plane perpendicular to the xy plane of the sample stage and also perpendicular to the y axis of the sample stage. The perpendicularity of these surfaces is guaranteed by machining accuracy with reference to the X or X-direction guide surface of the sample stage.

第一の電子線検出素子7ax 、 7bxは平面電極で
あり、電子線が照射されたときその電流が検出できるよ
うに電流計が接続されている。第4図に示すように両者
のエツジ7axe、 7bxeによってX軸(またはy
軸)に垂直なスリットを構成している。また7ax 、
 7bxの下面7axb、 7bxbは試料面とほぼ同
一面になるように設置される。エツジ7axe、 7b
xeは垂直基準4VX  (または4vy )から0.
01mm以下の精度で既知の距離に設置され、7axe
、7beの隙間は0.1 mm程度に設定される。第2
の電子線検出素子8は電子線光軸の方向に約60mmず
れて配貨され、9a、9bを一層とする多層の電極層お
よび絶縁層から構成される。9a、9bも第4図に示す
ようにX釉(またはy@)に垂直なスリット状の形をし
ており、垂直基準4v×(または4vy )からの電子
線検出素子8の両端の距離はO,01mm以下の精度で
既知となっている。9a、9bの厚さはそれぞれ約0.
1 mm、 0.01mmである。層数も既知である。
The first electron beam detection elements 7ax and 7bx are planar electrodes, and an ammeter is connected thereto so that the current can be detected when the electron beam is irradiated. As shown in Figure 4, the X axis (or y
It forms a slit perpendicular to the axis). Also 7ax,
The lower surfaces 7axb and 7bxb of 7bx are installed so that they are almost flush with the sample surface. Edge 7axe, 7b
xe is 0.0 from the vertical reference 4VX (or 4vy).
Installed at a known distance with an accuracy of less than 0.01mm, 7axe
, 7be is set to about 0.1 mm. Second
The electron beam detection element 8 is arranged to be shifted by about 60 mm in the direction of the electron beam optical axis, and is composed of a multilayer electrode layer and an insulating layer including single layers 9a and 9b. 9a and 9b also have a slit-like shape perpendicular to the X glaze (or y@) as shown in FIG. It is known to have an accuracy of 0.01 mm or less. The thickness of each of 9a and 9b is approximately 0.
1 mm and 0.01 mm. The number of layers is also known.

各電極9aには図示しないバッファが設けられ、バッフ
ァの出力は図示しない多点切替器に接続され、各電極か
らの出力を順次調べることにより第2の電子線検出素子
8の電極9aの領域に電子線が照射されたときにどの電
極9aに照射されたか、つまりX方向の(またはX方向
の)照射位買がわかるようになっている。
Each electrode 9a is provided with a buffer (not shown), and the output of the buffer is connected to a multi-point switch (not shown), and by sequentially examining the output from each electrode, the area of the electrode 9a of the second electron beam detection element 8 It is possible to know which electrode 9a is irradiated with the electron beam, that is, the irradiation position in the X direction (or in the X direction).

上記構成において電子銃1、コンデンサレンズ2、偏向
コイル5、対物レンズ3に電源を供給して試料面に重子
線を集束させたとき、電子線光軸20か試料ステージの
+g ff11面に対して垂直ではなかったとする。ま
ず電子線光軸20をX中+bに直交させるために、ステ
ージをX方向に勅かし、電子線光軸のy座標と第一の電
子線検出素子の中心のy座標を大体一致させる。次にス
テージをX方向に動かし、電子線光軸のX座標と7ax
 、 7bx  (または7ay 、 7by )で構
成される第一の電子線検出素子の中心のX座標を大体一
致させる。次に7ax 、 7bx  (または7ay
 、 7by )からの電流を調べ両方がゼロになるよ
うに、つまり電子線が7ax 、 7bx  (または
7ay 、 7by )の間のスリットを通るように、
ステージをX方向に移動させる。
In the above configuration, when power is supplied to the electron gun 1, condenser lens 2, deflection coil 5, and objective lens 3 to focus the deuteron beam on the sample surface, the electron beam optical axis 20 or the +g ff11 plane of the sample stage Suppose it wasn't vertical. First, in order to make the electron beam optical axis 20 perpendicular to +b in X, the stage is moved in the X direction, and the y coordinate of the electron beam optical axis and the y coordinate of the center of the first electron beam detection element are roughly matched. Next, move the stage in the X direction and set the X coordinate of the electron beam optical axis and 7ax.
, 7bx (or 7ay, 7by). Then 7ax, 7bx (or 7ay
, 7by) so that both become zero, that is, the electron beam passes through the slit between 7ax and 7bx (or 7ay, 7by).
Move the stage in the X direction.

つまりここでは第一の電子線検出素子を2分割し、各々
の素子に照射される電流を測れるようにすることにより
、素子の中の基準つまりスリットを電子線光軸と合せら
れるようにしている。次に補助偏向コイル6に交流電流
を併給し、第二の電子線検出素子8上で重子線が絶縁層
9bの厚さよりやや大きく振れるようにする。すると電
子線は必ず電極9aのどれかに照射されるので各電極9
aからの出力を図示しない多点切替器で順次調べること
により、とのτ極9aに電子線が照射されたかがわかり
、各電極9aの垂直基準4VX(4vy)からのX方1
’J(X方向)の距離および、第一の電子線検出素子と
第2の電子線検出素子との電子線光軸方向の距離は0.
01mm程度の精度で既知であるので両者の正接から、
ステージのり動面に対する電子線光軸のX方向(X方向
)の傾きがわかる。この量を今度は電子光学鏡筒に設け
られた第二の偏向コイルで補正する。理想的にはこの時
点で電子線はX方向またはX方向から見たときにステー
ジ移動面に直交しているはずである。しかし偏向倍率の
誤差等を考慮し、上述の手順を2〜3回繰り返す。この
結果電子線は試料ステージに垂直に入射するようになり
、パターンの形状寸法に関する正しい情報が得られるよ
うになる。
In other words, by dividing the first electron beam detection element into two and measuring the current irradiated to each element, the reference or slit in the element can be aligned with the electron beam optical axis. . Next, an alternating current is supplied to the auxiliary deflection coil 6 so that the deuteron beam swings slightly larger than the thickness of the insulating layer 9b on the second electron beam detection element 8. Then, since the electron beam is always irradiated to one of the electrodes 9a, each electrode 9a is
By sequentially checking the output from a with a multi-point switch (not shown), it can be determined whether the electron beam has been irradiated to the τ pole 9a, and the X direction 1 from the vertical reference 4VX (4vy) of each electrode 9a can be determined.
The distance in 'J (X direction) and the distance in the electron beam optical axis direction between the first electron beam detection element and the second electron beam detection element are 0.
Since it is known with an accuracy of about 0.1 mm, from the tangent of both,
The inclination of the electron beam optical axis in the X direction (X direction) with respect to the stage sliding surface can be seen. This amount is now corrected by a second deflection coil provided in the electron optical lens barrel. Ideally, at this point, the electron beam should be perpendicular to the stage movement plane when viewed from the X direction or from the X direction. However, taking into consideration errors in deflection magnification, etc., the above procedure is repeated two to three times. As a result, the electron beam will be incident perpendicularly to the sample stage, making it possible to obtain accurate information regarding the shape and dimensions of the pattern.

[発明の効果コ 以上説明したように、本発明により電子線が試料ステー
ジに垂直に入射するため、X線マスク等においてパター
ンの線幅寸法や断面形状が正確に測定できるようになり
、測定データの電子線光軸倒れに起因する変動を低減す
ることができる。
[Effects of the Invention] As explained above, the present invention allows the electron beam to enter the sample stage perpendicularly, making it possible to accurately measure the line width and cross-sectional shape of a pattern using an X-ray mask, etc. It is possible to reduce fluctuations caused by tilting of the electron beam optical axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電子線寸法測定器の第1の実施例
の構成図、 第2図は第1実施例の要部説明図、 第3図は本発明の第2の実施例の構成図、第4図は第2
の実施例の要部説明図、 第5図は従来の測長器の構成図、 第6図および第7図は各々光軸が傾斜した場合のパター
ン測定精度低下の説明図である。 1 : 4 : vx vy ax bx ay by ax bx 電子銃、 試料ステージ、 :基準、 基準、 :第1の電子線検出素子、 第1の電子線検出素子、 :第1の電子線検出素子、 第1の電子線検出素子、 第2の電子線検出素子、 :第2の電子線検出素子、 8ay :第2の電子線検出素子、 aby :第2の電子線検出素子。
Fig. 1 is a configuration diagram of a first embodiment of an electron beam dimension measuring instrument according to the present invention, Fig. 2 is an explanatory diagram of main parts of the first embodiment, and Fig. 3 is a diagram of a second embodiment of the present invention. Configuration diagram, Figure 4 is the second
FIG. 5 is a diagram illustrating the configuration of a conventional length measuring device, and FIGS. 6 and 7 are diagrams each illustrating a decrease in pattern measurement accuracy when the optical axis is tilted. 1: 4: vx vy ax bx ay by ax bx electron gun, sample stage, : reference, reference, : first electron beam detection element, first electron beam detection element, : first electron beam detection element, first 1 electron beam detection element, 2nd electron beam detection element, : 2nd electron beam detection element, 8ay: 2nd electron beam detection element, aby: 2nd electron beam detection element.

Claims (6)

【特許請求の範囲】[Claims] (1)測定すべき試料を照射する電子線照射手段と、該
電子線の偏向手段と、前記試料を搭載し搭載面に平行に
移動可能な試料ステージと、該試料ステージの位置測定
手段とを具備した寸法測定装置の電子線光軸調整方法で
あって、前記試料ステージの移動方向に垂直な面を有す
る垂直基準を設け、該垂直基準面から所定距離の位置に
前記試料ステージと同方向に移動可能な第1の電子線検
出手段を設け、電子線照射方向に沿って第1の電子線検
出手段から所定距離の位置に前記試料ステージと同方向
の移動可能な第2の電子線検出手段を設け、前記第1の
電子線検出手段の所定位置を電子線光軸に整合させ、次
に第2の電子線検出手段の所定位置を電子線光軸に整合
させ、該第1および第2の電子線検出手段の電子線光軸
に対する相対移動量に基づき電子線光軸の傾きを検出し
、該検出値に基づき前記偏向手段を駆動して電子線光軸
の傾きを補正することを特徴とする電子線光軸調整方法
(1) An electron beam irradiation means for irradiating the sample to be measured, a deflection means for the electron beam, a sample stage on which the sample is mounted and movable parallel to the mounting surface, and a position measuring means for the sample stage. A method for adjusting an electron beam optical axis of a dimension measuring device equipped with the above-mentioned method, wherein a vertical reference having a surface perpendicular to the moving direction of the sample stage is provided, and the step is arranged at a position at a predetermined distance from the vertical reference plane in the same direction as the sample stage. A movable first electron beam detection means is provided, and a second electron beam detection means movable in the same direction as the sample stage is provided at a position a predetermined distance from the first electron beam detection means along the electron beam irradiation direction. a predetermined position of the first electron beam detection means is aligned with the electron beam optical axis, a predetermined position of the second electron beam detection means is aligned with the electron beam optical axis, and the first and second electron beam detection means are aligned with the electron beam optical axis. The tilt of the electron beam optical axis is detected based on the amount of relative movement of the electron beam detection means with respect to the electron beam optical axis, and the tilt of the electron beam optical axis is corrected by driving the deflection means based on the detected value. A method for adjusting the electron beam optical axis.
(2)前記試料ステージは、相互に直交するXおよびY
方向に移動可能であって、XY各方向について前記第1
および第2の電子線検出手段を設けたことを特徴とする
特許請求の範囲第1項記載の電子線光軸調整方法。
(2) The sample stage has X and Y directions perpendicular to each other.
direction, the first
2. The electron beam optical axis adjustment method according to claim 1, further comprising: and a second electron beam detection means.
(3)前記第1および第2の電子線検出手段は、中央に
スリットを形成した2枚の平面電極からなることを特徴
とする特許請求の範囲第1項記載の電子線光軸調整方法
(3) The electron beam optical axis adjustment method according to claim 1, wherein the first and second electron beam detection means are comprised of two planar electrodes with a slit formed in the center.
(4)前記第1の電子線検出手段は、中央にスリットを
形成した2枚の平面電極からなり、前記第2の電子線検
出手段は、絶縁層上に設けた移動方向に多分割された電
極層からなること特徴とする特許請求の範囲第1項記載
の電子線光軸調整方法。
(4) The first electron beam detection means consists of two planar electrodes with a slit formed in the center, and the second electron beam detection means consists of a multi-segmented electrode provided on an insulating layer in the direction of movement. The electron beam optical axis adjustment method according to claim 1, characterized in that the method comprises an electrode layer.
(5)前記第1および第2の電子線検出手段間に補助偏
向手段を設け、該補助偏向手段により電子線を偏向させ
て第2の電子線検出手段の前記整合操作を行うことを特
徴とする特許請求の範囲第1項記載の電子線光軸調整方
法。
(5) An auxiliary deflection means is provided between the first and second electron beam detection means, and the alignment operation of the second electron beam detection means is performed by deflecting the electron beam with the auxiliary deflection means. An electron beam optical axis adjustment method according to claim 1.
(6)前記第1および第2の電子線検出手段を相互に移
動可能とし、第2の電子線検出手段を移動させて前記電
子線との整合操作を行うことを特徴とする特許請求の範
囲第1項記載の電子線光軸調整方法。
(6) The first and second electron beam detection means are mutually movable, and the second electron beam detection means is moved to perform an alignment operation with the electron beam. The method for adjusting the electron beam optical axis according to item 1.
JP27044089A 1989-10-19 1989-10-19 Electron beam optical axis adjusting method Pending JPH03133039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27044089A JPH03133039A (en) 1989-10-19 1989-10-19 Electron beam optical axis adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27044089A JPH03133039A (en) 1989-10-19 1989-10-19 Electron beam optical axis adjusting method

Publications (1)

Publication Number Publication Date
JPH03133039A true JPH03133039A (en) 1991-06-06

Family

ID=17486312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27044089A Pending JPH03133039A (en) 1989-10-19 1989-10-19 Electron beam optical axis adjusting method

Country Status (1)

Country Link
JP (1) JPH03133039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004461A (en) * 2010-06-18 2012-01-05 Canon Inc Image rendering apparatus and device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004461A (en) * 2010-06-18 2012-01-05 Canon Inc Image rendering apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
KR100471018B1 (en) Gap adjustment apparatus and gap adjustment method for adjusting gap between two objects
US6159644A (en) Method of fabricating semiconductor circuit devices utilizing multiple exposures
EP2823361B1 (en) Lithography system and method for processing a target, such as a wafer
EP0752715B1 (en) Charged particle beam apparatus
US4614431A (en) Alignment apparatus with optical length-varying optical system
US6583430B1 (en) Electron beam exposure method and apparatus
JP2960746B2 (en) Beam irradiation method, electron beam drawing method, beam irradiation apparatus, and electron beam drawing apparatus
JP2002353112A (en) Close electron beam projection aligner, and methods for measuring and calibrating inclination of electron beam in the close electron beam projection aligner
KR101455944B1 (en) Scanning electron microscope
US20020008200A1 (en) Correction method of scanning electron microscope
JPH03133039A (en) Electron beam optical axis adjusting method
JP2004311659A (en) Charged particle beam apparatus and method for regulating the same
JP3260513B2 (en) Charged beam drawing equipment
JP4256232B2 (en) Charged beam drawing method and charged beam drawing apparatus
JPH07139902A (en) Apparatus for measuring movement
JP3194539B2 (en) Electron beam exposure apparatus and exposure method
JP3847290B2 (en) Gap adjusting device and adjusting method
JP3110363B2 (en) Adjustment method of charged beam writing system
Qian et al. Necessity of precise in-house adjustment for synchrotron radiation monochromator
JPH01286420A (en) Stage position controlling equipment
JPH113662A (en) Beam yaw measurement device for crt
JP2001015416A (en) Aligner and exposing beam calibrating method
JPS60208829A (en) Position detecting unit
JP2003318099A (en) Method for measuring electron beam inclination and method for calibrating the same in electron beam proximity exposure system, and electron beam proximity exposure system
JPS61281906A (en) Angle and displacement measuring instrument