JPH03131885A - Image forming device - Google Patents

Image forming device

Info

Publication number
JPH03131885A
JPH03131885A JP26909389A JP26909389A JPH03131885A JP H03131885 A JPH03131885 A JP H03131885A JP 26909389 A JP26909389 A JP 26909389A JP 26909389 A JP26909389 A JP 26909389A JP H03131885 A JPH03131885 A JP H03131885A
Authority
JP
Japan
Prior art keywords
transfer
voltage
current
image
transfer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26909389A
Other languages
Japanese (ja)
Inventor
Toshio Miyamoto
敏男 宮本
Yukihiro Ozeki
大関 行弘
Junji Araya
荒矢 順治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26909389A priority Critical patent/JPH03131885A/en
Publication of JPH03131885A publication Critical patent/JPH03131885A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably obtain satisfactory transferability irrespective of environment, transfer material size, print-side order, etc., by making the first and second sides of a transfer material different from each other in coefficient value by which a voltage is multiplied. CONSTITUTION:In paper non-passing time at which the transfer material P does not exist in the transfer part where a transfer roller 2 abuts on a photosensitive body 1, the transfer roller 2 is controlled so that current is constant, by using the current set in advance; in paper passing time, the transfer roller 2 is controlled so that voltage is constant, by using the voltage obtained by multiplying the voltage in the paper non-passing time by a coefficient. The first and second sides of the transfer material P are made different from each other in coefficient value. Therefore, void on the first side and defective transfer on the second side both can be prevented. Thus, satisfactory transferability can be stably obtained irrespective of environment, transfer material size, print- side order, etc.

Description

【発明の詳細な説明】 (1)発明の目的 (産業上の利用分野) この発明は、静電複写機、同プリンタなど静電転写プロ
セスを利用する画像形成装置、とくに接触型の転写手段
をそなえた画像形成装置に関するものである。
Detailed Description of the Invention (1) Purpose of the Invention (Field of Industrial Application) This invention relates to an image forming apparatus that utilizes an electrostatic transfer process, such as an electrostatic copying machine or a printer, and particularly to a contact type transfer means. The present invention relates to an image forming apparatus equipped with the above-mentioned image forming apparatus.

(従来技術と解決すべき課題) 像担持体と、これに圧接する転写手段をそなえ、これら
両者の圧接ニップ部に紙などの転写材を通過させるとと
もに、この転写手段に転写バイアスを印加して、このと
きまでに像担持体表面に形成されている可転写トナー像
を転写材に転移させるように構成した画像形成装置が既
に提案されている。
(Prior Art and Problems to be Solved) An image bearing member and a transfer means that is in pressure contact with the image carrier are provided, and a transfer material such as paper is passed through the pressure nip between these two members, and a transfer bias is applied to the transfer means. An image forming apparatus has already been proposed in which a transferable toner image, which has been formed on the surface of an image carrier up to this point, is transferred to a transfer material.

第5図はこのような画像形成装置の典型的な一例を示す
概略側面図である。
FIG. 5 is a schematic side view showing a typical example of such an image forming apparatus.

これについて略述すると、紙面に垂直方向に軸線を有し
、矢印X方向に、プロセススピード23mm/secで
回転走行する円筒状の像担持体(感光体という)lの表
面がOPC感光層に形成されており、電源4によって、
帯電ローラ3を介して一様に負帯電されたのち、画像変
調されたレーザビームなどの画像信号7が該帯電面に投
射されて静電潜像が形成される。
To briefly explain this, the surface of a cylindrical image carrier (referred to as photoreceptor) l, which has an axis perpendicular to the plane of the paper and rotates in the direction of arrow X at a process speed of 23 mm/sec, forms an OPC photosensitive layer. and by power supply 4,
After being uniformly negatively charged via the charging roller 3, an image signal 7 such as an image-modulated laser beam is projected onto the charged surface to form an electrostatic latent image.

ついでこの潜像に、現像器9によって負帯電トナーが供
給され、反転現像によってトナー像となり、感光体lの
回転にともなって、該トナー像が、感光体1と、低体積
抵抗材料で形成された転写ローラ2とが当接して形成さ
れる転写部位に到来すると、前記トナー像とタイミング
を合わせて、転写材Pが前記転写部位に搬送され、これ
とともに転写材Pには電源4によってトナーとは逆極性
の転写バイアスが印加され、よって形成される電界の作
用で、感光体側のトナー像は転写材に転移する。
Next, negatively charged toner is supplied to this latent image by the developing device 9, and a toner image is formed by reversal development, and as the photoreceptor 1 rotates, the toner image is formed by the photoreceptor 1 and the low volume resistance material. When the transfer material P reaches the transfer site formed by contacting the transfer roller 2, the transfer material P is conveyed to the transfer site in synchronization with the toner image, and at the same time, the transfer material P is supplied with toner and toner by the power source 4. A transfer bias of opposite polarity is applied, and the toner image on the photoreceptor side is transferred to the transfer material by the action of the electric field formed.

第6図は上記の装置の動作シーケンスを示すものである
FIG. 6 shows the operation sequence of the above device.

その後、トナー像を担持する転写材は不図示の定着部位
に搬送され、転写時に転写材に転移しなかったトナーは
クリーナ10によって除去されて感光体は次の工程に入
ることになる。
Thereafter, the transfer material carrying the toner image is conveyed to a fixing site (not shown), and the toner that was not transferred to the transfer material during transfer is removed by the cleaner 10, and the photoreceptor enters the next process.

上記のような接触型の転写方式をとる画像形成装置は、
従来周知のコロナ放電器を使用するものに比べて、高圧
電源を必要としないのでコスト的に有利である、電極た
るワイヤがないのでこれの汚れによる画像への悪影響も
ない、高圧部材の存在によるオゾン、窒素酸化物などの
発生、これに起因する画質の劣化を回避できるなど種々
な利点図あるが、反面、導電性部材たる転写ローラの特
性が環境によって大きく変化するので、これに印加する
電圧と電流の関係(V−I特性という)が著しく変化す
ることが知られている。
Image forming apparatuses that use the contact-type transfer method described above are
Compared to conventional systems that use a well-known corona discharger, it is cost-effective because it does not require a high-voltage power supply.Since there is no wire as an electrode, there is no negative effect on the image due to contamination of the wire.Due to the presence of a high-voltage member. There are various advantages such as being able to avoid the generation of ozone, nitrogen oxides, etc. and the deterioration of image quality caused by this, but on the other hand, the characteristics of the transfer roller, which is a conductive member, vary greatly depending on the environment, so the voltage applied to it It is known that the relationship between the current and current (referred to as the V-I characteristic) changes significantly.

これについて略述すると、低温低湿環境下(以下L/L
という)では、転写ローラの抵抗値は常温室?B m境
下(N/Nという)のときよりも数桁上昇する。また高
温高温環境下(H/Hという)では、N/Nに比して抵
抗値が1〜2桁低下する。
To briefly explain this, under a low temperature and low humidity environment (hereinafter L/L
) So, what is the resistance value of the transfer roller at room temperature? B It is several orders of magnitude higher than when it was under the m boundary (referred to as N/N). Furthermore, in a high temperature environment (referred to as H/H), the resistance value decreases by one to two orders of magnitude compared to N/N.

このような環境による特性の変化を第7図に示す。FIG. 7 shows changes in characteristics due to such environments.

同図で、実線は、前回転時、紙間なと非通紙時における
、また破線はA4サイズの転写材が転写部位を通過する
通紙時における、前記の装置で、帯電ローラ3が交直流
成分がともにオンしているときの転写ローラ2のV−I
特性を、L/L、N/NおよびH/ Hに分けて示した
ものである。
In the same figure, the solid lines indicate when the charging roller 3 is crossed in the above-mentioned device during the pre-rotation, the paper gap and when the paper is not passing, and the broken line is when the A4 size transfer material passes through the transfer area. V-I of transfer roller 2 when both DC components are on
The characteristics are shown divided into L/L, N/N, and H/H.

前述のような公知の装置の場合、良好な転写を行なうに
は、通事時の転写電流が0.5〜4μA必要であること
、該電流が5μAをこえると、OPC感光層に正電位の
転写メモリーが残り、画像に埋カブリを発生することが
、実験的に明らかになっている。
In the case of the above-mentioned known device, in order to perform a good transfer, a transfer current of 0.5 to 4 μA is required during normal operation, and if the current exceeds 5 μA, a positive potential is applied to the OPC photosensitive layer. Experiments have shown that transfer memory remains and causes embedded fog in images.

このことから、前記公知装置における適正な転写バイア
スは、H/Hでは約300〜500V、N/Nでは約4
00〜500■、L/Lでは約1250〜2000Vで
あることが判る。
From this, the appropriate transfer bias in the known device is approximately 300 to 500 V for H/H and approximately 4 V for N/N.
It can be seen that the voltage is about 1250 to 2000V at 00 to 500V and L/L.

即ち、N/Nで適正な転写が行なわれるように、例えば
転写ローラを500Vで定電圧制御すると、H/Hでは
ほぼ同様の転写性が得られるが、L/Lでは転写電流が
ゼロとなって転写不良を招来する。
In other words, if the transfer roller is controlled at a constant voltage of 500 V, for example, to ensure proper transfer in N/N, almost the same transfer performance will be obtained in H/H, but the transfer current will be zero in L/L. This results in poor transfer.

また、L/Lにおける転写性を向上させるべく電圧を設
定すると、N/N%H/Hにおいて、非通紙時にOPC
感光体に正の転写メモリーを発生して画像に地力ブリを
生じ、とくにH/Hにおいては、通紙時の転写電流が増
大して電荷が転写材を貫通し、ネガトナーの帯電特性を
逆極性にして転写不良を起こすおそれがある。
In addition, if the voltage is set to improve the transferability in L/L, OPC is
Positive transfer memory is generated on the photoreceptor, causing blur in the image, and especially in H/H, the transfer current increases during paper passing, and the charge penetrates the transfer material, changing the charging characteristics of negative toner to reverse polarity. This may cause transfer defects.

以上のような問題に対処すべく、像担持体と、これに当
接する転写手段とをそなえ、両者が当接する転写部位に
転写材を挿通するように構成した画像形成装置において
、転写部位に転写材が存在しない非通紙時には転写手段
を定電流制御し、このときの電圧に係数Rを乗じた電圧
で、通紙時には定電圧制御する(以下ATVC制御とい
う)ようなものが提案されている。
In order to deal with the above-mentioned problems, an image forming apparatus is equipped with an image carrier and a transfer means that comes into contact with the image carrier, and is configured so that the transfer material is inserted into the transfer site where the two come into contact. A method has been proposed in which the transfer means is controlled at a constant current when no material is present and paper is not passing, and the voltage at this time is multiplied by a coefficient R, and constant voltage is controlled when paper is passing (hereinafter referred to as ATVC control). .

しかしながら、上記のような制御手段は以下のような問
題を生起する。
However, the above control means causes the following problems.

即ち、近来次第に多用されてくるようになっている両面
コピーの場合に、2面目のコピーの場合に転写不良を生
ずることがある。
That is, in the case of double-sided copying, which has been increasingly used in recent years, transfer defects may occur when copying the second side.

これについて検討すると、このような両面コピーでは、
1面目のコピーのさい、転写材に静電的に付着している
トナー像を定着固定するために、2面目のコピーに先立
って加熱定着を実行するので、この際、転写材、とくに
紙の場合、加熱によって乾燥して抵抗が増大する。たと
えば、N/Nにおいて表面抵抗1010Ωcmの転写材
が加熱手段をそなえた定着装置を通過したのちには10
14Ωcmと、L/Lのおける転写材並みになるので、
第1面と第2面とで■−■特性が大きく変化して、適正
バイアス値も変化するので転写不良を発生すると考えら
れる。
Considering this, in such a double-sided copy,
When copying the first side, heat fixing is performed before copying the second side in order to fix and fix the toner image electrostatically attached to the transfer material. In this case, heating dries the material and increases its resistance. For example, in N/N, after a transfer material with a surface resistance of 1010 Ωcm passes through a fixing device equipped with a heating means,
14Ωcm, which is comparable to L/L transfer material,
The ■-■ characteristics change greatly between the first side and the second side, and the appropriate bias value also changes, which is considered to cause transfer defects.

第3図は、上記の場合における、1面目と2面目のV−
I特性の変化を示すグラフである。
Figure 3 shows the V- of the first and second sides in the above case.
It is a graph showing changes in I characteristics.

同図の破線はL/L、N/N、H/H各状態における、
帯電ローラ3の印加電圧を交直流両成分をオンとしたと
きに、A4サイズの転写材の、1面目が転写部位を通過
するときの転写ローラ2におけるV−I特性を、点線は
、2面目が転写部位を通過するときの転写ローラ2のV
−I特性をそれぞれ示している。
The broken lines in the figure indicate the states of L/L, N/N, and H/H.
When both AC and DC components of the voltage applied to the charging roller 3 are turned on, the dotted line indicates the V-I characteristic of the transfer roller 2 when the first side of an A4 size transfer material passes through the transfer site. V of the transfer roller 2 when passes through the transfer site
-I characteristics are shown respectively.

前述のように、良好な転写性維持するための電流は0.
5〜4uA、これが5μAを越えると地力ブリを生ずる
ので、これを勘案すると、適正バイアス値は、H/Hで
は約500V、N/Nでは約800■、L/Lでは約2
000Vであることが判る。
As mentioned above, the current required to maintain good transferability is 0.
5 to 4 uA, and if it exceeds 5 μA, it will cause soil tension, so taking this into account, the appropriate bias value is about 500 V for H/H, about 800 V for N/N, and about 2 for L/L.
It turns out that the voltage is 000V.

このような場合に、前記ATVC制御を行なうと、2面
目のコピーを行なうさい、H/Hでは、ATVC制御に
よって画像領域での転写バイアスは、非画像領域で2μ
Aで定電流制御したとすると、この場合の電圧250V
 (第7図)に係数R=1.5をかけた、約375V程
度に設定される。この場合、1面目には約1LLAの電
流が流れて良好な転写性が得られるが、2面目の場合に
は約0.2μへの電流しか流れないので(第8図)転写
不良となる。
In such a case, if the ATVC control is performed, when copying the second side, in H/H, the transfer bias in the image area is reduced to 2μ in the non-image area due to the ATVC control.
If constant current control is performed with A, the voltage in this case is 250V.
(Fig. 7) multiplied by a coefficient R=1.5, which is set to about 375V. In this case, a current of about 1 LLA flows on the first surface, resulting in good transfer performance, but on the second surface, a current of only about 0.2 μ flows (FIG. 8), resulting in poor transfer.

また、N/Nでは、非画像領域で2μAで定電流制御し
た場合の電圧400Vに係数R=1.5をかけた約60
0■の電圧で画像領域が定電圧制御されることになる。
In addition, for N/N, approximately 60
The image area is subjected to constant voltage control with a voltage of 0.

この場合にも、1面目では約1μへの電流が得られるが
、2面目の転写電流は約0.1μAとなって、矢張り転
写不良となる。
In this case as well, a current of approximately 1 .mu.A is obtained for the first surface, but the transfer current for the second surface is approximately 0.1 .mu.A, resulting in defective transfer.

さらに、L/Lでは、非画像領域を2uAで定電流制御
し、このときの電圧1300Vに係数R=1.5をかけ
た電圧的1950Vで画像領域を定電圧制御すると、1
面目の転写電流約1uAに対して、2面目の転写電流は
約0.5μAとなり、これまた転写不良を招来するおそ
れがある。
Furthermore, in L/L, if the non-image area is controlled with a constant current of 2uA, and the image area is controlled with a constant voltage of 1950V, which is the voltage at this time of 1300V multiplied by a coefficient R = 1.5, 1
The transfer current for the second side is about 0.5 μA, whereas the transfer current for the second side is about 1 uA, which may also cause transfer defects.

本発明は以上繍々説明したような現状に対処すべ(なさ
れたものであって、転写ローラなどの接触型の転写手段
をそなえ、ATVC制御を行なう画像形成装置において
、1面目と2面目とで前記係数Rの値を変化させること
によって、前述のような転写特性の変化に対応して適正
バイアスを印加可能として、常時安定して良好な転写性
が得られるような画像形成装置を提供することを目的と
するものである。
The present invention has been made to deal with the current situation as explained in detail above, and is applicable to an image forming apparatus that is equipped with a contact type transfer means such as a transfer roller and performs ATVC control. To provide an image forming apparatus that can always stably obtain good transfer performance by changing the value of the coefficient R, so that an appropriate bias can be applied in response to the change in transfer characteristics as described above. The purpose is to

(2)発明の構成 (課題を解決する技術手段、その作用)上記の目的を発
生するため、本発明は、像担持体と、これに当接する転
写手段とをそなえ、これら両者が当接する転写部位に転
写材が存在しない非通紙時には、予め設定された電流で
転写手段を定電流制御し、この時の電圧に係数を乗じた
電圧で、通紙時には転写手段を定電圧制御する画像形成
装置において、転写材の1回目と2面目で、前記係数の
値を異ならしめることを特徴とするものである。
(2) Structure of the invention (technical means for solving the problem and its operation) In order to achieve the above object, the present invention comprises an image bearing member and a transfer means that comes into contact with the image carrier, and a transfer means that these two come into contact with. Image formation in which the transfer means is controlled at a constant current with a preset current when no transfer material is present in the area and paper is not passing, and the transfer means is controlled at a constant voltage when paper is passed using a voltage obtained by multiplying the voltage at this time by a coefficient. The apparatus is characterized in that the value of the coefficient is different between the first and second sides of the transfer material.

このように構成することによって、環境、転写材のサイ
ズの如何にかかわらず安定して良好な転写性が得られる
With this configuration, stable and good transfer performance can be obtained regardless of the environment or the size of the transfer material.

(実施例の説明) 第1図は本発明を適用するに適した画像形成装置の構成
な略示する側面図で、前述の公知装置と対応する部分に
は同一の符合を付して示してあり、それらについての説
明は省略する。
(Description of Embodiments) FIG. 1 is a side view schematically showing the configuration of an image forming apparatus suitable for applying the present invention, in which parts corresponding to those of the above-mentioned known apparatus are given the same reference numerals. There are, and explanations about them will be omitted.

転写ローラ2に対しては%ATVC制御可能な電源4に
よって、所定の時点で所定電圧を印加するようになって
いるものとする。
It is assumed that a predetermined voltage is applied to the transfer roller 2 at a predetermined time by a power supply 4 that can control %ATVC.

コンピュータなどの外部装置からCPU12がプリント
信号を受けると、CPU12は感光体1を駆動するモー
タドライブ回路(不図示)にメインモータ駆動オン信号
をおくり、同時に電源4に一次高圧オン信号を送って帯
電ローラ3に帯電バイアスを印加して感光体1表面を、
たとえば、暗電位V o ”  700 V ニ帯電さ
せる。
When the CPU 12 receives a print signal from an external device such as a computer, the CPU 12 sends a main motor drive ON signal to a motor drive circuit (not shown) that drives the photoconductor 1, and at the same time sends a primary high voltage ON signal to the power source 4 to start charging. By applying a charging bias to the roller 3, the surface of the photoreceptor 1 is
For example, it is charged to a dark potential V o ” of 700 V.

ついで、CPU12が不図示の画像情報書込手段を駆動
させ、画像変調されたレーザビーム7によって、感光体
表面帯電面に静xrlt像が形成される。
Next, the CPU 12 drives an image information writing means (not shown), and a static XRlt image is formed on the charged surface of the photoreceptor by the image-modulated laser beam 7.

さらに、CPU12が電源4に転写オン信号を出力する
と、これによって、所定時点で所定の電流、電圧によっ
て定電流、定電圧制御が行なわれる。
Further, when the CPU 12 outputs a transfer on signal to the power source 4, constant current and constant voltage control is performed with a predetermined current and voltage at a predetermined time.

第2図は上記装置の作動シーケンスを示すものである。FIG. 2 shows the operating sequence of the above device.

転写オン信号を受けると、電源4は、非通紙時には転写
ローラ2を定電流制御する。図示の装置の場合、2μA
の電流を流すものとする。
Upon receiving the transfer on signal, the power source 4 controls the transfer roller 2 with a constant current when the paper is not passing. For the device shown, 2μA
Assume that a current of

ついで、該電源4は、この非通紙時中の任意の時点の電
圧■1をホールドし、1回目、通紙中はこの電圧に係数
Rをかけた電圧vi  (V2=RX■、)で転写ロー
ラ2を定電圧制御する。
Next, the power supply 4 holds the voltage 1 at any time during the paper non-passing period, and during the first paper passing, the power supply 4 holds the voltage vi (V2=RX■,) which is obtained by multiplying this voltage by the coefficient R. The transfer roller 2 is controlled with constant voltage.

この例では■1をホールドしたら、即、v2で定電圧制
御を行なっている。またv1ホールドするタイミングで
若干ばらつ(が問題はない。
In this example, as soon as ■1 is held, constant voltage control is performed with v2. Also, there is some variation in the timing of v1 hold (but there is no problem.

1回目通紙後は、非通紙状態となり、2μAの定電流制
御となり、このとき、2回目の転写材が2面目であるの
で、2面目コピー信号がオンとなっており、電源4はこ
のときの電圧V1°をホールドする。
After the first paper passing, the paper is not passed and the current is controlled at a constant current of 2μA.At this time, since the second transfer material is the second side, the second side copy signal is on, and the power supply 4 is turned on. The voltage V1° at that time is held.

ついで通紙状態になると、前記電圧Vl’に係M’2R
’ をか&ff、ニー電圧Vz   (Vi  =Vl
 xR’)で転写ローラ2を定電圧制御する。
Then, when the paper is fed, the voltage Vl' becomes M'2R.
'?&ff, knee voltage Vz (Vi = Vl
xR') controls the transfer roller 2 at a constant voltage.

2面目の場合は前述のように転写材の抵抗が大きくなっ
ているので、R’ >Rとなるように設定するものとす
る。
In the case of the second side, since the resistance of the transfer material is large as described above, it is set so that R'>R.

感光体の対転写メモリー能、転写ローラの抵抗の均一性
などを考慮して、R1R’を適当に定めることによって
、1回目における過剰な転写電流、これによる画像の白
抜け、2面目における転写電流不足による転写不良を好
適に防止することができる。
By appropriately determining R1R' in consideration of the transfer memory capacity of the photoconductor, the uniformity of the resistance of the transfer roller, etc., excessive transfer current in the first transfer, resulting white spots in the image, and transfer current on the second side can be avoided. Transfer defects due to shortage can be suitably prevented.

電圧V1は定電流時に何回かサンプリングして平均値を
とることもでき、プロセススピードが大きい場合には係
数R,R”を大きめにとることによって非通紙時に流す
電流を小さく抑えることができ、電源の負担を軽減でき
、また、転写メモリーの発生しやすい感光体、周方向で
抵抗にバラツキのある転写ローラにも対応可能で、使用
可能の材料の範囲を広げることができる。
The voltage V1 can be sampled several times during constant current and the average value taken. If the process speed is high, the current flowing when the paper is not passing can be kept small by setting the coefficients R and R'' to be large. , it can reduce the burden on the power supply, and it can also be used with photoreceptors that are prone to transfer memory and transfer rollers that have uneven resistance in the circumferential direction, expanding the range of usable materials.

第3図に転写ローラのV−I特性を、転写材の1面目と
2面目について、H/H,N/N、L/Lに分けて示し
てあり、同図で、破線は1面目。
FIG. 3 shows the V-I characteristics of the transfer roller for the first and second surfaces of the transfer material, divided into H/H, N/N, and L/L, and in the same figure, the broken line is for the first surface.

点線は2面目の状態を示している。なお、係数は、R=
1.5、R’ =2.0としている。
The dotted line indicates the state of the second side. Note that the coefficient is R=
1.5, and R' = 2.0.

第3図、第7図によれば、H/H環境下で、非通紙時に
転写ローラ2を2μAの定電流制御を行ない、これによ
って生ずる電圧V、=250Vをホールドし、通紙時に
はこの電圧■1に係数Rを乗じた電圧375V (V、
=RV、=1.5X250)によって定電圧制御を行な
うものとする。
According to FIGS. 3 and 7, under the H/H environment, the transfer roller 2 is controlled with a constant current of 2 μA when paper is not passing, the resulting voltage V, = 250V is held, and when paper is passing, this Voltage 375V (V,
=RV, =1.5X250) to perform constant voltage control.

ついで、2面目の場合は、係WI R’を2とし、通紙
時には、v2°=R’ V、=2.0x250=500
Vで定電圧制御を行なう。
Next, in the case of the second side, the coefficient WI R' is set to 2, and when passing the paper, v2°=R' V, = 2.0 x 250 = 500
Perform constant voltage control with V.

このようにすることによって、1面目には約1uAの転
写電流が、また、2面目にも約1μAの転写電流が得ら
れ、いずれの場合にも良好な転写を遂行できる。
By doing so, a transfer current of about 1 uA can be obtained for the first side, and a transfer current of about 1 μA can be obtained for the second side, and good transfer can be achieved in both cases.

この場合、前回転時など非通紙時には2μA、即ち、限
界値たる、前述の5μAよりも少ない電流しか流れない
ので、転写ローラの周方向に抵抗値のバラツキがあって
も、転写メモリーによる地力ブリが発生するおそれはな
(、帯電による感光体1の劣化もなく、その長寿命化を
はかることができる。
In this case, when paper is not passing, such as during pre-rotation, only 2 μA of current flows, which is less than the limit value of 5 μA mentioned above. There is no risk of blurring (and there is no deterioration of the photoreceptor 1 due to charging, and the life of the photoreceptor 1 can be extended).

N / N 環境下でも同様に、非通紙時に2μAで定
電流制御を行ない、このときの電圧V、=400■をホ
ールドし、通紙時には、これに係数R=1.5を乗じて
600Vで定電圧制御して約1μAの転写電流を得、2
面目には、係数R°を2.0として800V (V、’
 =R’ V、=2.0X400)で定電圧制御するこ
とによって、このときにも約lμAの転写電流を確保で
き、いずれも転写不良を生ずることはない。
Similarly, under the N/N environment, constant current control is performed at 2μA when paper is not passing, and the voltage V at this time is held at 400■, and when paper is passing, this is multiplied by the coefficient R = 1.5 to 600V. A transfer current of about 1 μA was obtained by controlling the constant voltage with 2
In terms of appearance, the coefficient R° is 2.0 and 800V (V,'
By controlling the constant voltage at (=R'V, =2.0×400), a transfer current of about 1 μA can be ensured at this time as well, and no transfer defects occur in either case.

L/Ll境下においても、非通紙時に2μAで定電流制
御し、この時の電圧1300Vに、係数Rを乗じた値1
950V (V、=RVl =1.5x1300)で1
面目の通紙時に定電圧制御し、2面目には、1300V
に係数R゛を乗じた値、2600V (Vz’ =R’
 V+ =2.0x1300)で定電圧制御することに
よって約1μAの転写電流を得ることができて両面とも
に良好な転写性が得られる。
Even under L/Ll conditions, constant current control is performed at 2μA when paper is not passing, and the voltage at this time is 1300V multiplied by the coefficient R, which is 1.
1 at 950V (V, = RVl = 1.5x1300)
Constant voltage control is applied when passing the first side, and 1300V is applied to the second side.
is multiplied by the coefficient R゛, 2600V (Vz' = R'
By controlling the constant voltage at V+ = 2.0 x 1300), a transfer current of about 1 μA can be obtained, and good transfer properties can be obtained on both sides.

以上説明したように、この装置によるときは、環境の如
何にかかわらず、1面目の白抜け、2面目の転写不良を
ともに防止し、両面とも良好に転写性が確保できるとと
もに、定電流制御時の電流が小さいので感光体の帯電に
よる劣化をも阻止することができる。
As explained above, when using this device, regardless of the environment, it is possible to prevent both white spots on the first side and transfer defects on the second side, ensure good transfer performance on both sides, and when using constant current control. Since the current is small, deterioration of the photoreceptor due to charging can be prevented.

第4図は本発明の他の実施態様を示すシーケンス図であ
る。
FIG. 4 is a sequence diagram showing another embodiment of the present invention.

1枚プリントの場合にはその都度ATVC制御を行ない
、連続通紙の場合には、図示のように2枚毎ごとに2枚
プリント毎に定電流制御を行ない、このときの電圧■、
をホールドして通紙時には係数RまたはRoを乗じた電
圧で定電圧制御を行なうようにしている。
In the case of printing one sheet, ATVC control is performed each time, and in the case of continuous sheet feeding, constant current control is performed every two sheets as shown in the figure, and the voltage at this time is
is held, and when paper is passed, constant voltage control is performed using a voltage multiplied by a coefficient R or Ro.

図示の場合は、1面目、2面目を交互にプリントしてい
るが、これに限定されるものでないことは勿論で、1面
目のみあるいは2面目のみの連続通紙、その他すべての
組み合わせが可能である。
In the case shown, the first side and the second side are printed alternately, but it is of course not limited to this; continuous printing of only the first side or only the second side, and all other combinations are possible. be.

また定電流制御も2枚毎に行なう必要はなく、任意枚数
毎に行なっても同様の効果が得られる。
Further, it is not necessary to perform constant current control every two sheets, and the same effect can be obtained even if it is performed every arbitrary number of sheets.

以上接触型の転写手段として説明したが、転写ベルトな
ど他の転写手段にも本発明が適用できるものであること
は論をまたない。
Although the contact type transfer means has been described above, it goes without saying that the present invention can be applied to other transfer means such as a transfer belt.

(3)発明の詳細 な説明したように、本発明によるときは、像担持体とこ
れに当接する転写手段をそなえた画像形成装置において
、すべての環境下において、転写材のサイズ、プリント
面の順序などに関係なく常時安定して良好な転写性が得
られ、良質の画像を得るのに資するところが大である。
(3) As described in detail, in accordance with the present invention, in an image forming apparatus equipped with an image carrier and a transfer means in contact with the image carrier, the size of the transfer material and the print surface can be adjusted under all environments. Regardless of the order, etc., stable and good transferability can always be obtained, which greatly contributes to obtaining high-quality images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用するに適した画像形成装置の要部
の概略側面図、 第2図は同上シーケンス図、 第3図は転写材の1面目と2面目の転写特性を示すグラ
フ、 第4本発明の他の実施態様を示すシーケンス図、 第5図は公知の画像形成装置の構成作用を示す概略側面
図、 第6図は同上シーケンス図、 第7図は同上装置による転写特性を示すグラフである。 l・・・感光体、2・・・転写ローラ、3・・・帯電ロ
ーラ、4・・・電源、9・・・現像器、10・・・クリ
ーナ、12・・・cpu。 第 図 第 図 !が 憾 第 図 銚番%叱 手糸売ネ由正書 (方式) %式% 1、事件の表示 特願平1−269093号 2゜ 発明の名称 画像形成装置 3゜ 補正をする者 事件との関係
FIG. 1 is a schematic side view of the main parts of an image forming apparatus suitable for applying the present invention, FIG. 2 is a sequence diagram of the same as above, and FIG. 3 is a graph showing the transfer characteristics of the first and second sides of the transfer material. 4. A sequence diagram showing another embodiment of the present invention; FIG. 5 is a schematic side view showing the configuration and operation of a known image forming apparatus; FIG. 6 is a sequence diagram of the same as the above; FIG. This is a graph showing. 1...Photoreceptor, 2...Transfer roller, 3...Charging roller, 4...Power source, 9...Developer, 10...Cleaner, 12...CPU. Figure Figure Figure! 1. Indication of the case Patent Application No. 1-269093 2. Name of the invention Image forming device 3. Person making the amendment relationship

Claims (2)

【特許請求の範囲】[Claims] (1)像担持体と、これに当接する転写手段とをそなえ
、これら両者が当接する転写部位に転写材が存在しない
非通紙時には、予め設定された電流で転写手段を定電流
制御し、この時の電圧に係数を乗じた電圧で、通紙時に
は転写手段を定電圧制御する画像形成装置において、 転写材の1面目と2面目で、前記係数の値を異ならしめ
る画像形成装置。
(1) An image bearing member and a transfer means that come into contact with the image carrier are provided, and when there is no transfer material in the transfer area where these two come into contact with each other, the transfer means is controlled with a constant current using a preset current; An image forming apparatus that controls a transfer means at a constant voltage during sheet feeding using a voltage obtained by multiplying the voltage at this time by a coefficient, and in which the value of the coefficient is made different between the first side and the second side of the transfer material.
(2)連続プリントに当たり、画像出力前の前回転時に
所定の電流で転写手段を定電流制御し、このときの電圧
を所定枚数プリントする間、1面目および2面目プリン
トのさいの基準電圧とする特許請求の範囲第1項記載の
画像形成装置。
(2) During continuous printing, the transfer means is controlled at a constant current with a predetermined current during pre-rotation before image output, and the voltage at this time is used as the reference voltage for printing the first and second sides while printing a predetermined number of sheets. An image forming apparatus according to claim 1.
JP26909389A 1989-10-18 1989-10-18 Image forming device Pending JPH03131885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26909389A JPH03131885A (en) 1989-10-18 1989-10-18 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26909389A JPH03131885A (en) 1989-10-18 1989-10-18 Image forming device

Publications (1)

Publication Number Publication Date
JPH03131885A true JPH03131885A (en) 1991-06-05

Family

ID=17467577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26909389A Pending JPH03131885A (en) 1989-10-18 1989-10-18 Image forming device

Country Status (1)

Country Link
JP (1) JPH03131885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285245A (en) * 1991-06-28 1994-02-08 Canon Kabushiki Kaisha Electrostatic transfer type image forming apparatus with recording material guide for changing direction of recording material separation from image transfer position
US8027606B2 (en) 2006-07-19 2011-09-27 Brother Kogyo Kabushiki Kaisha Image forming apparatus with condition setting for manual duplex mode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285245A (en) * 1991-06-28 1994-02-08 Canon Kabushiki Kaisha Electrostatic transfer type image forming apparatus with recording material guide for changing direction of recording material separation from image transfer position
US8027606B2 (en) 2006-07-19 2011-09-27 Brother Kogyo Kabushiki Kaisha Image forming apparatus with condition setting for manual duplex mode
US8301046B2 (en) 2006-07-19 2012-10-30 Brother Kogyo Kabushiki Kaisha Image forming apparatus with condition setting for manual duplex mode

Similar Documents

Publication Publication Date Title
JP2704277B2 (en) Image forming device
JP2001109281A (en) Image forming device
JPH02300774A (en) Image forming device
US6205299B1 (en) Image forming apparatus in which whether transfer member should be constant-current-controlled or constant-voltage-controlled is selected depending on thickness of transfer material
JP2004333789A (en) Image forming apparatus
US7106984B2 (en) Image forming apparatus
JP2614309B2 (en) Image forming device
JP3196329B2 (en) Image forming device
JP2717574B2 (en) Image forming device
JPH09101657A (en) Controlling method for image forming device
KR0145584B1 (en) Image forming apparatus
JP3082566B2 (en) Image forming device
JPH03131885A (en) Image forming device
US6694110B2 (en) Image forming apparatus with variable waiting time conveyance feature
JPH10198131A (en) Electrifier and image forming device
JP2780043B2 (en) Image forming device
JPH049883A (en) Image forming device
JP2004163475A (en) Image forming apparatus
JPH04251276A (en) Transfer device for image forming device
JP2964544B2 (en) Image forming device
JP4194130B2 (en) Color image forming apparatus
JPH0425885A (en) Transfer device
JP3310054B2 (en) Transfer belt device
JPH04153671A (en) Electrophotographic copying device
JPH03264975A (en) Transfer device for image forming device