JP2004333789A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2004333789A
JP2004333789A JP2003128692A JP2003128692A JP2004333789A JP 2004333789 A JP2004333789 A JP 2004333789A JP 2003128692 A JP2003128692 A JP 2003128692A JP 2003128692 A JP2003128692 A JP 2003128692A JP 2004333789 A JP2004333789 A JP 2004333789A
Authority
JP
Japan
Prior art keywords
value
electric field
image
alternating electric
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003128692A
Other languages
Japanese (ja)
Inventor
Takeo Yamamoto
武男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003128692A priority Critical patent/JP2004333789A/en
Publication of JP2004333789A publication Critical patent/JP2004333789A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably extend the service life of a contact electrification system irrelevantly to its environment, use frequency, lot differences, etc. <P>SOLUTION: When an AC electric field (current)is increased or decreased for a short time in specific timing while no image is formed, the point of an AC electric field where a DC current value (electrification potential) gets saturated is multiplied by a specified rate to obtain an electrification bias in image formation, and then an irreducible necessary AC bias is obtained to prevent a photoreceptor from excessively being electrified, thereby realizing long life. The specified rate is varied according to a photoreceptor film thickness, environment, etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被帯電体に該被帯電体面を帯電処理する工程を含む作像プロセスを適用して画像形成を実行する画像形成装置であり、被帯電体の帯電処理手段は、交番電界に直流電界を重畳して印加した帯電部材を被帯電体に当接させて被帯電体面を帯電する接触式帯電装置である画像形成装置に関する。
【0002】
【従来の技術】
電子写真プロセスを利用した従来の画像形成装置では、像担持体としてのドラム型の電子写真感光体(以下、単に感光体という)を帯電処理する手段としてコロナ帯電器が多用されていた。これは、コロナ帯電器を感光体に非接触に対向配置し、コロナ帯電器で発生する放電コロナに感光体表面をさらすことで、感光体表面を所定の極性、電位に帯電させるものである。
【0003】
しかし近年は、コロナ帯電器よりも低オゾン、低電力等の利点を有することから、接触帯電装置(直接帯電装置)が好ましく用いられている。これは、電圧を印加した帯電部材を感光体に当接させて感光体表面を所定の極性、電位に帯電させるものである。
【0004】
図3は、帯電部材として接触帯電装置を用いた画像形成装置の一例を示す概略図である。この画像形成装置は、主要構成要素として、像担持体としてのドラム型の感光体1と、その周囲に接触帯電装置としての帯電ローラ2、露光装置5、現像装置6、転写ローラ7、クリーニングブレード9aを備えている。感光体1は、ドラム基体の表面上に光導電層を有している。また、不図示の電源により帯電ローラ2に対して所定のバイアスが印加されるが、このバイアスとしては、従来から直流電圧印加や交流電圧に直流電圧を重畳して電圧印加するものが提案されている。特に後者の方式では、交流成分が帯電による感光体の表面電位の凹凸を均し、直流成分により所定の電圧に収束させるため、表面電位の均一性を得やすく、近年多用されている方式である。そして、また、重畳する交流電圧が低い場合には、得られる均し効果は少ないことが知られている。
このように構成された画像形成装置において、画像形成時には、感光体1は、駆動手段(不図示)により回転駆動され、感光体1に従動回転される帯電ローラ2により帯電処理される。そして、帯電された感光体1上に露光装置5によりレーザー光による画像露光Lが与えられ、入力される画像情報に応じた静電潜像が形成され、この静電潜像は現像装置6によりトナー像として現像される。そして、感光体1上のトナー像は転写ローラ7により紙などの転写材Pに転写され、トナー像が転写された転写材Pは定着装置(不図示)に搬送され、定着装置(不図示)により転写トナー像が表面に永久固着画像として定着されて排出される。また、転写後に感光体1上に付着している転写残りトナーはクリーニングブレード9aに除去され、表面をクリーニングされた感光体1は繰り返し次の画像形成動作に入る。
【0005】
ところで、上記した従来の画像形成装置では、画像形成回数が増えるにつれて、
感光体1表面がクリーニングブレード9a及び現像装置6の現像剤等により削られることによって、感光体1表面の光導電層の厚みが減少する。
この、感光体1表面の光導電層の削れ量は、交流電流量の増加に伴って加速度的に増加することも分かっている。
【0006】
また、帯電ローラ2へ直流電圧に交流電圧を重畳したバイアス電圧を印加する帯電方式では、交流電圧は一般的に一定の電圧(定電圧)または電流(定電流)、直流電圧は一定の電圧(定電圧)を印加するように制御されている。
【0007】
一方で、交流電流量を低下させていくと、やがて極所的な帯電不良を生じ、黒点、白点やかぶりといった異常画像を供することとなってしまう。
【0008】
即ち、感光体1表面の光導電層の削れ量を少なくするために交流電流量(交流電圧)はできるだけ少なくし、均一な帯電を得るために交流電流量(交流電圧)はできるだけ多くすべきである。そのため、長期にわたり良好な画像を提供するには、均一な帯電を得ることのできる最低限の交流電流量(交流電圧)を制御値として決める必要があった。
【0009】
また一方で、接触帯電装置及び感光体のそれぞれの特性は温度や湿度等の環境条件によって変化することにより、全体的な帯電特性も変化する。このため、季節や使用状況、使用環境等によって、帯電条件を変える必要もあった。
【0010】
そこで、これらの課題を克服するために、特開平10−221931に示すように、画像形成装置近傍の環境(温度/湿度)の変化に伴い、帯電条件を変更することで、長期にわたり良好な画像を形成する手法が提案され、用いられている。
【0011】
【発明が解決しようとする課題】
しかしながら上述した、環境に応じて帯電条件を変更する手法においても、例えば接触帯電部材、例えば帯電ローラの抵抗のばらつきやロット差による特性の違い、あるいはユーザの使用状況の違いによる帯電特性の経時変化やふれに対応することは不可能であった。特に接触帯電部材として帯電ローラ等を用いた場合は、帯電ローラの材質としては導電ゴムを主原料とするものが一般的であるが、製造時の環境のふれや材料のふれ、ロット差等により電気抵抗や電気容量が変動することにより、帯電特性が異なることが知られている。
【0012】
また、ユーザの使用状況の差、使用dutyの高い/低いの差によって接触帯電部材、及び感光体の表面状態が異なり、結果として帯電特性の差を生じる要因となっていた。
【0013】
このため、従来は接触帯電部材の最も帯電特性が悪いもの、即ち局所的な帯電不良を生じやすい抵抗値/ロットのものを基準に帯電条件を設定していた。また同様に使用状況においても最も帯電特性が悪くなるモードを基準に帯電条件を設定することで、局所的な帯電不良を防止してきたが、結果として平均的な接触帯電部材、使用状況下においては、過剰な感光体1表面の光導電層の削れを助長することとなり、更なる長寿命化が望まれていた。また一方で極端に接触帯電部材の特性が触れた場合にも、過剰な削れ、あるいは局所的な帯電不良を生じることとなり、接触帯電部材の製造上の歩留まりの低下、あるいは異常画像や感光体の低寿命化を招き、改善が求められていた。
【0014】
(本発明の目的)
よって、本発明は上記等に代表される事態に対処すべくなされたものであって、前述のような画像形成装置において、さまざまな条件においても、帯電不良等のない良好な画像を常に提供し、かつ使用環境や使用状況によらず感光体の長寿命化を実現することを目的とする。
【0015】
【課題を解決するための手段】
(1)回転する像担持体上の帯電処理を行う接触帯電手段と、前記接触帯電手段にバイアスを印加する電源と、前記像坦持体に流れ込む直流電流成分を検知する直流電流検知手段と、前記像担持体に画像情報を記録する露光手段と、前記露光手段によって記録された画像情報のトナー像化する現像手段と、前記像担持体上のトナー像を転写材に転写する転写部材と、を有する画像形成装置に於いて、前記接触帯電部材に印加されるバイアスが交番電界に直流電界を重畳したものであり、該交番電界の画像形成時の制御値は、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させ、かつ直流電界を一定とした時に、前記、直流電流検知手段の検知値と、該交番電界の値、との関係に応じて決定されることを特徴とする画像形成装置。
【0016】
(2)前記接触帯電部材に画像形成時に印加されるバイアス制御値が、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させた時に、交番電界値−直流電流値の関係が直線性から外れたポイントの交番電界値に所定の比率を乗じた値で決定されることを特徴とする(1)に記載の画像形成装置。
【0017】
(3)交番電界値に乗じる所定の比率を、画像形成枚数、温度、湿度、像坦持体の膜厚、あるいは前記直流電流検知手段の検知飽和値の少なくなくとも何れかひとつ値に応じて変更することを特徴とする(2)に記載の画像形成装置。
【0018】
(4)前記接触帯電部材に画像形成時に印加されるバイアス制御値が、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させた時に、交番電界値−直流電流値の関係が直線性から外れたポイントの交番電界値に所定の値を加算した値で決定されることを特徴とする(1)に記載の画像形成装置。
【0019】
(5)交番電界値に加算する所定の値を、画像形成枚数、温度、湿度、像坦持体の膜厚、あるいは前記直流電流検知手段の検知飽和値の少なくなくとも何れかひとつ値に応じて変更することを特徴とする(4)に記載の画像形成装置。
【0020】
(6)回転する像担持体上の帯電処理を行う接触帯電手段と、前記接触帯電手段にバイアスを印加する電源と、前記像坦持体の表面電位を検知する電位検知手段と、前記像担持体に画像情報を記録する露光手段と、前記露光手段によって記録された画像情報のトナー像化する現像手段と、前記像担持体上のトナー像を転写材に転写する転写部材と、を有する画像形成装置に於いて、前記接触帯電部材に印加されるバイアスが交番電界に直流電界を重畳したものであり、該交番電界の画像形成時の制御値は、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させ、かつ直流電界と一定とした時に、前記、電位検知手段の検知値と、該交番電界の値、との関係に応じて決定されることを特徴とする画像形成装置。
【0021】
(7)前記接触帯電部材に画像形成時に印加されるバイアス制御値が、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させた時に、交番電界値−表面電位の関係が直線性から外れたポイントの交番電界値に所定の比率を乗じた値で決定されることを特徴とする(6)に記載の画像形成装置。
【0022】
(8)交番電界値に乗じる所定の比率を、画像形成枚数、温度、湿度、像坦持体の膜厚、あるいは前記直流電流検知手段の検知飽和値の少なくなくとも何れかひとつ値に応じて変更することを特徴とする(7)に記載の画像形成装置。
【0023】
(9)前記接触帯電部材に画像形成時に印加されるバイアス制御値が、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させた時に、交番電界値−表面電位の関係が直線性から外れたポイントの交番電界値に所定の値を加算した値で決定されることを特徴とする(7)に記載の画像形成装置。
【0024】
(10)交番電界値に加算する所定の値を、画像形成枚数、温度、湿度、像坦持体の膜厚、あるいは前記直流電流検知手段の検知飽和値の少なくなくとも何れかひとつ値に応じて変更することを特徴とする請求項9に記載の画像形成装置。
【0025】
【発明の実施の形態】
(実施例1)
(1)画像形成装置例の概略構成
図2は本実施例の画像形成装置の概略構成模型図である。本例の画像形成装置は、転写式電子写真プロセス利用、接触帯電方式、反転現像方式のレーザービームプリンタである。
【0026】
[感光体]1は被帯電体(像担持体)としての回転ドラム型の電子写真感光体(以下、感光体と略記する)である。
【0027】
本例の感光体1は、アルミニウム等の導電性ドラム基体1bと、その外周面に形成した感光層(光導電層)1aで構成した、直径30mm、長さ350mmの、負帯電極性のOPC感光体(ネガ感光体)であり、矢印の時計方法aに150mm/sec のプロセススピード(周速度)をもって回転駆動されている。又、感光層1aの初期の厚みが30μmのものを使用した。また本実施例の感光体は、感光層1aの厚みが10μm以下になると均一帯電が困難になり、感光体の寿命と定義している。
【0028】
[帯電]2は接触帯電部材(一次帯電装置)としての帯電ローラである。この帯電ローラ2は中心の芯金2aと、その外周に同心一体にローラ状に形成した弾性導電層2bと、更にその外周面に形成した抵抗層2cの複合層構造のローラである。
【0029】
弾性導電層2bは、例えば、10 Ωcm以下の導電性ゴム(EPDM等)などの単層あるいは複合層である。
【0030】
抵抗層2cは10 〜1011Ωcm、厚さ100μm程度以下のヒドリンゴムやトレジン(商品名、ナイロン樹脂、カーボン分散)等の単層あるいは複合層である。抵抗層2cは感光体へのリーク防止や弾性導電層2b中の可塑剤のブリード防止等の役目をする。
【0031】
帯電ローラ2はその芯金2aの両端部を不図示の軸受け部材に回転自由に軸受けさせて、ドラム型の感光体1に並行に配置して不図示の押圧手段で感光体1に対して所定の押圧力をもって圧接させてあり、本例の場合は感光体1の回転駆動に伴い矢印の反時計方向に従動回転する。感光体1と帯電ローラ2の圧接ニップ部nが帯電部位(帯電領域)である。
【0032】
3は帯電バイアス印加電源(帯電部材用電源)であり、この電源3から帯電ローラ2の芯金2aに所定のバイアス電圧が印加されることにより回転感光体1の外周面が接触帯電方式で所定の極性・電位に一様に帯電処理される。
本実施例は交流電圧に直流電圧を重畳したバイアス電圧(AC+DC)を帯電ローラ2に印加するAC印加方式である。
【0033】
[露光]この回転感光体1の帯電処理面に対して、露光手段5により目的画像情報の露光4がなされることで、その画像情報の静電潜像が形成される。露光手段5は、レーザービーム走査露光手段、原稿画像のスリット露光手段等である。本実施例ではレーザービーム走査露光手段である。
【0034】
[現像]次いでその回転感光体1の静電潜像形成面に現像装置6により現像剤が適用されて静電潜像がトナー画像として現像される。本実施例の場合は静電潜像の露光明部にマイナストナー(ネガトナー)が付着することで静電潜像が反転現像される。
【0035】
本実施例における現像装置6は一成分磁性トナーを用いたジャンピング現像方式の装置である。6aは非磁性現像スリーブであり、感光体1に0.3mmのギャップを介して対向配設させてあり、矢印の反時計方向に回転駆動される。6bはこの現像スリーブ6a内に挿入配置した非回転のマグネットローラである。
現像スリーブ6aの回転に伴いその外周面に現像装置内に収容させたトナー(不図示)が薄層として塗布され、マグネットローラ6bの磁力で保持されて、感光体1と現像スリーブ6aとの対向部である現像部位6cに搬送される。また現像スリーブ6aには現像バイアス印加電源8(現像部材用電源)から、本実施例においては
DC成分:−500V
AC成分:周波数1800Hz、VPP1400V
の重畳電圧が現像バイアス電圧として印加される。
【0036】
これにより、現像部位6cにおいてトナーが飛翔して回転感光体1面の静電潜像がジャンピング現像される。
【0037】
[転写]7は転写手段としての転写ローラである。この転写ローラ7は、中心の芯金7aと、その外周に同心一体にローラ状に形成した中抵抗の弾性層7bとからなる。本実施例における該転写ローラ7は、抵抗が5×10 Ω、直径16mmの導電性ゴムローラである。
【0038】
そして該転写ローラ7はその芯金2aの両端部を不図示の軸受け部材に回転自由に軸受けさせて、ドラム型の感光体1に並行に配置して不図示の押圧手段で感光体1に対して所定の押圧力をもって圧接させてあり、本例の場合は感光体1の回転駆動に伴い矢印の反時計方向に従動回転する。感光体1と転写ローラ7の圧接ニップ部7cが転写部位である。
【0039】
転写材Pは不図示の給紙部から給紙され、同期どり手段50によって所定のタイミング合わせされて、感光体1と転写ローラ7の圧接ニップ部である転写部位7cに給送される。即ち、回転感光体1の面に形成されたトナー画像の先端部が転写部位7cに到達したとき、転写材Pの先端部も丁度転写部位7cに到達するタイミングにて転写材Pが転写部位7cに給送される。
【0040】
転写部位7cに給送された転写材Pはその表面が回転感光体1に密着して転写部位を挟持搬送されていく。また、転写部位7cに転写材Pの先端部が到達してから後端部が転写部位7cを抜け出るまでの間、転写ローラ7の芯金7aには転写バイアス印加電源(転写部材用電源)からトナーと逆極性の所定の直流バイアスが転写バイアスとして印加される。本実施例では+3500VのDC電圧を印加した。
【0041】
そして、転写材Pが転写部位7cを挟持搬送されていく過程において、回転感光体1側のトナー画像が転写材P側に、転写ローラ7によって形成される転写電界の作用と転写部位7cにおける押圧力にて順次に転写されていく。
【0042】
[定着]転写部位7cを通過し、回転感光体1面から分離された転写材Pは不図示の定着装置へ搬送されてトナー画像が定着され、その後装置本体外部に排出されるか、または例えば、裏面にも像形成するものであれば、転写部位への再搬送手段へ搬送される。
【0043】
[クリーニング]転写材分離後の回転感光体1面は転写材Pに転写されずに感光体1面に残ったトナー(転写残りトナー)や紙粉等の残留付着汚染物の除去をクリーニング装置9のクリーニングブレード9aで受けて清浄面化され、更に除電器(除電ランプ)11によって全面露光(前露光)されて電気的メモリの消去を受けて初期化され、繰り返して画像形成に使用される。
【0044】
本実施例において、帯電ローラ2および転写ローラ7は感光体1に従動回転させたが、それぞれギア等をとりつけ、モータ等の駆動手段により強制駆動してもよい。
【0045】
(2)帯電バイアスの制御
以下に、本実施例における帯電バイアスの制御の詳細について述べる。
【0046】
前述したように、局所的な帯電不良を防止するためには所定以上のACバイアスを印加する必要がある。ところで、図4に示す様にACバイアス(AC電流値)を増加させていくと、その際に感光体に流れ込むDC電流値はある値まで線形に増加し、その後飽和することが分かっている。これは前露光によって感光体表面が除電された後、所定の電位に帯電されたときの電位の差分がDC電流値として検出されるものであるが、DCバイアス(DC電圧)が一定の時、ACバイアスがパッシェンの法則より導かれる放電開始電圧の2倍のAC振幅までは電位が収束せずACバイアスの増大に伴って感光体の表面電位が増加し、2倍のAC振幅を超えると印加したDC電圧と略同等の電位に感光体表面が収束するためである。
【0047】
また、本実施例のACバイアス周波数は1800Hzとした。またDCバイアスとしては、−750Vの低電圧とし、ACバイアスが所定以上のときは、感光体表面電位として−700Vを得ることができた。
【0048】
ところで、筆者らの検討によると、この飽和したポイントから所定量のACバイアスを上乗せした時点で局所的な帯電不良が消失することが分かった。その量は帯電ローラの抵抗値やロットを極端に変えても一定であることも、筆者らの検討により同様に判明した。
【0049】
本実施例の構成においては、23℃/50%(絶対湿度約8.74g/kg)の環境下で感光層膜厚初期(30μm)時点で、DC電流値が飽和するAC電流値に対して、1.15の比率を乗じたAC電流値を画像形成時に印加することで、局所的な帯電不良が消失した。
【0050】
そこで、本実施例では図1のフローチャートに示す様に非画像形成時にAC電流値を暫時増加させ、その時のDC電流値を検知し、飽和したAC電流値/Iac(sat)を1.15倍したAC電流値、例えば図4からわかるように抵抗が中心値の帯電ローラでは、1900μAのAC電流値がDC電流値の飽和ポイントであるため、1900×1.15=2185μAを画像形成時のAC電流の制御値/Iac(img)として画像形成を実行したところ、23℃/50%(絶対湿度約8.74g/kg)の環境下において安定して、A4横の一枚間欠で10万枚の画像形成を行うことができた。またAC電流値の制御値の決定は、画像形成装置の電源ON時、及び画像形成1000枚毎に実行した。また、図4に示すように、抵抗値が下限の帯電ローラでは1600×1.15=1840μA、抵抗値が上限の帯電ローラでは2200×1.15=2530μAを画像形成時のAC電流の制御値/Iac(img)として画像形成を実行することで、同様にA4横の一枚間欠で10万枚の画像形成を行うことができた。
【0051】
ところで従来例で同様な画像形成を行ったところ、抵抗値にばらつきに応じて7万枚〜10万枚の間で画像形成が不可能となり、安定して長寿命を実現することは不可能であった。
【0052】
これは、従来は帯電ローラの抵抗値やロット、使用状況によらず2530μAのAC電流値、即ち抵抗値上限の帯電ローラで帯電不良を防ぐAC電流の設定で画像形成を行っていたため、抵抗値が高め(上限)の帯電ローラ以外は過剰なAC電流が印加されるため、感光体の寿命のばらつき、低下を招いていた。
【0053】
(実施例2)
実施例1の構成において、35℃80%(絶対湿度約28.9g/kg)、及び10℃15%(絶対湿度約1.13g/kg)の環境下にて同様に画像形成を行ったところ、35℃80%においては、A4横の一枚間欠で9万枚の画像形成で寿命となり、10℃15%の環境では、わずかに局所的な帯電不良を生じ、中間調を忠実に再現するモード等において、若干の画質の低下を招く結果となった。寿命としては、A4横の一枚間欠で11万枚の画像形成を実行することができた。これは、温湿度、詳しくは温度と湿度から算出される絶対湿度に応じて、本実施例の帯電ローラの抵抗が変動しているためであることが分かった。より詳しくは、絶対湿度が多い時は、抵抗が下がり、絶対湿度が少ない時は、抵抗が上昇するためである。
【0054】
ところで、筆者らの検討によると温度あるいは湿度の値に応じて、局所的な帯電不良が消失するAC電流値/Iac(img)とDC電流値が飽和した時のAC電流値/Iac(sat)の比率Aが変化することが分かった。
【0055】
図5に感光層膜厚初期(30μm)における、絶対湿度と局所的な帯電不良が消失する比率Aの関係を示す。即ち23℃50%(絶対湿度約8.74g/kg)では比率A=1.15であるが、35℃80%(絶対湿度約28.9g/kg)では比率A=1.09、10℃15%(絶対湿度約1.13g/kg)では比率A=1.21であることが分かる。ここで、帯電不良が消失する比率Aの変動は、同一原材料からなる帯電ローラであれば、帯電ローラの抵抗値やロット、及びその際のAC電流値には依存せず、絶対湿度にのみ依存することがわかった。そこで本実施例では実施例1の構成に対し、図6に示すように画像形成装置近傍の温度/湿度を検出する温湿度センサー200を追加し、図7のフローチャートに示すような構成で実施例1と同様に画像形成を行ったところ使用環境、及び帯電ローラ抵抗値、ロットによらずA4横一枚間欠で10万枚の画像形成を安定して行うことができた。
【0056】
また本実施例ではAC電流値の制御値/Iac(img)の決定は、画像形成装置の電源ON時、及び画像形成 1000枚毎に加え、絶対湿度が30分以内に3g/kg以上変動したときにも実行させた。
【0057】
ところで、従来例では図8に示す様に絶対湿度に応じてAC電流値を切り替えていたが、やはり使用環境や帯電ローラ抵抗、ロットに応じて6〜10万枚で画像形成が不可能になり、安定して長寿命を実現することはできなかった。また、極端に帯電ローラの抵抗が高目にふれた場合は低湿環境下で局所的な帯電不良を生じ、帯電ローラの製造上の歩留まりを低下させていた。
【0058】
(実施例3)
実施例1、2において、安定して感光体に長寿命化を実現することができたが、図9に示すように、一万枚当たりの感光層の削れ量は、画像形成が進むにつれ増加していくことが分かる。これは、感光層の膜厚が薄くなるにつれ、局所的な帯電不良を防ぐAC電流値/Iac(img)が同一環境、同一帯電ローラでは減少していくため、結果として感光層が薄くなるにつれ、過剰なAC電流が印加されているためであることが、筆者らの検討により分かった。図10は23℃/50%の環境下での初期感光層膜厚時(30μm)に局所的な帯電不良が消失するAC電流値/Iac(img)と感光層膜厚がX(μm)の時に局所的な帯電不良が消失するAC電流値/Iac(img)の比率Bを示すものである。これより初期膜厚30μmでは比率Bが1.0、膜厚が耐久末期の10μmでは0.92となり、感光層の膜厚が薄くなるにつれ、比率が減少していくことがわかる。これは感光層が削れることでインピーダンスが低下し、帯電不良が生じにくくなるためである。
【0059】
図10は23℃/50%の環境下のものであるが、この関係は環境に関わらず同様な傾向があることが筆者らの検討により分かった。また帯電ローラは抵抗値として中央値のものを用いたが同様に、抵抗値の上下限品においても同様の特性を示した。
【0060】
ところで、前記したDC電流の飽和値と感光層の膜厚には一対一の関係がある。図11に感光層の膜厚とDC電流値の飽和値の関係を示す。これはAC印加方式においては、感光体の電位は印加されるDC電圧と略同等に収束するため、感光体の容量変動、即ち感光層の膜厚に応じてDC電流値が変化するためである。
【0061】
そこで、本実施例では、図12のフローチャートに示すように、飽和時のDC電流値から感光層の厚みを検知し、図10の関係を用いて、実施例1、2の系に加え感光層の膜厚に応じてAC電流の比率Bを変化させて、実施例1、2の画像形成時のAC電流値に乗じることで画像形成を実行したところ、実施例1の構成では、23℃50%の環境で、実施例2の構成では環境を問わず、A4横一枚間欠で12万枚の画像形成を安定して行うことができ、感光体の更なる長寿命化を実現することができた。
【0062】
(実施例4)
本実施例では実施例1〜3の系においてDC電流の飽和値を検知する代わりに、図13に示す感光体表面電位計50の検知値を代用した。これはDC電流値と感光体表面電位は図14に示す様に、一対一の関係があるためである。また実施例1〜3においては、一旦帯電した後、帯電電位を除電する手段、例えば前露光等がないと安定してDC電流値を検知することはできないが、本実施例では表面電位を検出するため、除電手段の制約を受けることはなく、所望のタイミングで検知を実行できる。本実施例の構成で画像形成を実行したところ、実施例1〜3と同様に感光体の寿命を安定して長寿命化することができた。
【0063】
ところで、実施例1〜4においては、所定のタイミング、本実施例では1000枚毎にAC電流値の決定を実行しているため、ユーザの使用duty、例えば連続の画像形成が多い、あるいは小部数の画像形成が主体である、といった使用状況による帯電ローラや感光体の帯電特性の変動(例えば表面状態の差)にも対応することができ、ユーザの使用レベルによらず安定して長寿命かつ良好な画像を提供することができた。
【0064】
また、実施例1〜4では、DC電流値飽和時のAC電流値/Iac(sat)に一定比率を乗じることで、画像形成時のAC電流値/Iac(img)を決定しているが、感光体の種類や帯電ローラの種類がことなれば、一定比率を乗じるのではなく、一定電流値分増加減しても良いのは勿論である。
【0065】
また、画像形成装置の構成上、実施例1〜4の構成を適宜、独立、あるいは併用して用いても良い。
【0066】
(その他の実施形態例)
(1)実施形態例の画像形成装置において、接触帯電部材2はローラ型に限らず、ブレード型、ロッド型、ブラシ型、磁気ブラシ型等の他の形態の接触帯電部材であってもよい。帯電部材は被帯電体面に必ずしも圧接力をもって接していなくとも帯電部材と被帯電面との間に、ギャップ間電圧とパッシェン曲線で決まる放電可能領域さえ確実に保証されれば、非接触で極近接した配設形態であったもよく、本発明においてはこの場合も接触帯電の範疇とする。
【0067】
(2)交番電圧の波形としては、正弦波、矩形波、三角波等適宜使用可能である。
【0068】
(3)交番電圧の代わりに定電圧、あるいは定電流制御された直流電界も使用可能である。
【0069】
(4)画像露光手段は、原稿画像のスリット露光手段など他の適宜の露光手段、機構にすることができる。
【0070】
(5)現像方式は正規現像でも差し支えない。
【0071】
(6)接触帯電式転写手段としては実施形態例は導電体ローラの転写ローラであるが、ローラ型に限らず、ベルト型等の他の回転体とすることもできる。転写用コロナ放電装置でもよい。
【0072】
【発明の効果】
以上説明したように本発明の構成を用いれば、さまざまな条件においても、帯電不良等のない良好な画像を常に提供し、かつ使用環境や使用状況によらず感光体の長寿命化を実現できる。
【図面の簡単な説明】
【図1】実施例1のフローチャート。
【図2】実施例1の画像形成装置の概略構成図。
【図3】従来例の画像形成装置の概略構成図。
【図4】AC電流値とDC電流値の関係を示す図(抵抗差)。
【図5】絶対湿度(水分量)とIac(img)とIac(sat)の比率を示す図。
【図6】実施例2の画像形成装置の概略構成図。
【図7】実施例2のフローチャート。
【図8】従来例のIac(img)と絶対湿度(水分量)の関係を示す図。
【図9】画像形成枚数と一万枚毎の感光層の削れ量の関係を示す図(A4横換算)。
【図10】感光層膜厚とIac(img)とIac(sat)の比率を示す図(23℃/50%、抵抗中央)。
【図11】感光層膜厚と飽和時DC電流値の関係を示す図。
【図12】実施例3のフローチャート。
【図13】実施例4の画像形成装置の概略構成図。
【図14】DC電流値と感光体表面電位の関係を示す図
【符号の説明】
1 感光体ドラム
2 帯電ローラ(接触部材)
3 帯電バイアス(AC+DC)
200 温湿度センサー(絶対湿度換算)
50 表面電位センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is an image forming apparatus that performs image formation by applying an image forming process including a step of charging a surface of a member to be charged with a charging process. The present invention relates to an image forming apparatus, which is a contact-type charging device that charges a surface of an object to be charged by bringing a charging member applied with an overlapped field into contact with the object to be charged.
[0002]
[Prior art]
In a conventional image forming apparatus using an electrophotographic process, a corona charger is frequently used as a means for charging a drum-type electrophotographic photosensitive member (hereinafter simply referred to as a photosensitive member) as an image carrier. In this method, a corona charger is arranged to face a photoconductor in a non-contact manner, and the surface of the photoconductor is charged to a predetermined polarity and potential by exposing the surface of the photoconductor to a discharge corona generated by the corona charger.
[0003]
However, in recent years, a contact charging device (direct charging device) is preferably used because it has advantages such as lower ozone and lower power than a corona charger. In this method, a charging member to which a voltage is applied is brought into contact with a photoconductor to charge the surface of the photoconductor to a predetermined polarity and potential.
[0004]
FIG. 3 is a schematic diagram illustrating an example of an image forming apparatus using a contact charging device as a charging member. This image forming apparatus includes, as main components, a drum-type photosensitive member 1 as an image carrier, and a charging roller 2 as a contact charging device, an exposing device 5, a developing device 6, a transfer roller 7, and a cleaning blade around the photosensitive member 1. 9a. The photoreceptor 1 has a photoconductive layer on the surface of the drum base. In addition, a predetermined bias is applied to the charging roller 2 by a power supply (not shown). As the bias, there has been conventionally proposed a DC voltage application or a method in which a DC voltage is applied by superimposing a DC voltage on an AC voltage. I have. In particular, in the latter method, since the AC component equalizes the unevenness of the surface potential of the photoreceptor due to charging and converges to a predetermined voltage by the DC component, it is easy to obtain the uniformity of the surface potential, and it is a method that is frequently used in recent years. . It is also known that when the superimposed AC voltage is low, the leveling effect obtained is small.
In the image forming apparatus configured as described above, at the time of image formation, the photoconductor 1 is driven to rotate by a driving unit (not shown), and is charged by the charging roller 2 driven and rotated by the photoconductor 1. Then, an image exposure L by laser light is given to the charged photoreceptor 1 by the exposure device 5 to form an electrostatic latent image corresponding to the input image information. It is developed as a toner image. Then, the toner image on the photoreceptor 1 is transferred to a transfer material P such as paper by a transfer roller 7, and the transfer material P on which the toner image has been transferred is conveyed to a fixing device (not shown) and fixed there (not shown). As a result, the transferred toner image is fixed on the surface as a permanently fixed image, and is discharged. Further, the transfer residual toner adhering to the photoreceptor 1 after the transfer is removed by the cleaning blade 9a, and the photoreceptor 1 whose surface has been cleaned repeatedly enters the next image forming operation.
[0005]
By the way, in the conventional image forming apparatus described above, as the number of times of image formation increases,
The thickness of the photoconductive layer on the surface of the photoconductor 1 is reduced by shaving the surface of the photoconductor 1 with the cleaning blade 9a and the developer of the developing device 6.
It is also known that the amount of shaving of the photoconductive layer on the surface of the photoconductor 1 increases at an accelerated rate with an increase in the amount of alternating current.
[0006]
In a charging method in which a bias voltage obtained by superimposing an AC voltage on a DC voltage is applied to the charging roller 2, the AC voltage is generally a constant voltage (constant voltage) or a current (constant current), and the DC voltage is a constant voltage (constant voltage). (Constant voltage).
[0007]
On the other hand, when the amount of the alternating current is reduced, a local charging failure occurs eventually, and an abnormal image such as a black point, a white point, or a fog is provided.
[0008]
That is, the amount of AC current (AC voltage) should be as small as possible in order to reduce the shaving amount of the photoconductive layer on the surface of the photoconductor 1, and the amount of AC current (AC voltage) should be as large as possible in order to obtain uniform charging. Therefore, in order to provide a good image over a long period of time, it is necessary to determine a minimum amount of AC current (AC voltage) at which uniform charging can be obtained as a control value.
[0009]
On the other hand, the characteristics of the contact charging device and the photoreceptor change depending on environmental conditions such as temperature and humidity, so that the overall charging characteristics also change. For this reason, it was necessary to change the charging conditions depending on the season, usage conditions, usage environment, and the like.
[0010]
In order to overcome these problems, as shown in Japanese Patent Application Laid-Open No. 10-221931, by changing the charging conditions in accordance with changes in the environment (temperature / humidity) near the image forming apparatus, it is possible to obtain a good image for a long period of time. Have been proposed and used.
[0011]
[Problems to be solved by the invention]
However, even in the above-described method of changing the charging conditions according to the environment, for example, a change in characteristics due to a variation in resistance of a contact charging member, for example, a charging roller or a lot difference, or a change in charging characteristics with time due to a difference in use conditions of a user. It was impossible to cope with the shake. In particular, when a charging roller or the like is used as the contact charging member, a material mainly made of conductive rubber is generally used as the material of the charging roller.However, due to environmental fluctuation during manufacturing, material fluctuation, lot difference, etc. It is known that charging characteristics are different due to fluctuations in electric resistance and electric capacity.
[0012]
In addition, the surface condition of the contact charging member and the photoreceptor is different due to the difference in the use situation of the user and the difference between the high / low duty, which results in the difference in the charging characteristics.
[0013]
For this reason, conventionally, the charging condition has been set based on the contact charging member having the worst charging property, that is, the resistance value / lot which is likely to cause local charging failure. Similarly, in the use condition, local charging failure has been prevented by setting the charging condition based on the mode in which the charging characteristic is the worst, but as a result, in the average contact charging member, under the use condition, This promotes excessive scraping of the photoconductive layer on the surface of the photoconductor 1, and it has been desired to further extend the life. On the other hand, even when the characteristics of the contact charging member are extremely touched, excessive shaving or local charging failure occurs, which lowers the production yield of the contact charging member, or causes abnormal images or photosensitive members. This has led to a reduction in service life, and improvements have been required.
[0014]
(Object of the present invention)
Therefore, the present invention has been made to cope with the situations represented by the above and the like, and in the above-described image forming apparatus, always provides a good image free from charging failure and the like even under various conditions. It is another object of the present invention to extend the life of a photoreceptor regardless of the use environment and use conditions.
[0015]
[Means for Solving the Problems]
(1) contact charging means for performing a charging process on a rotating image carrier, a power supply for applying a bias to the contact charging means, and a DC current detecting means for detecting a DC current component flowing into the image carrier; Exposure means for recording image information on the image carrier, developing means for forming a toner image of the image information recorded by the exposure means, a transfer member for transferring the toner image on the image carrier to a transfer material, In the image forming apparatus having, the bias applied to the contact charging member is obtained by superimposing a DC electric field on an alternating electric field, and the control value of the alternating electric field during image formation is a predetermined value during non-image formation. At the timing, the alternating electric field is temporarily increased, or decreased, and when the DC electric field is kept constant, it is determined according to the relationship between the detection value of the DC current detecting means and the value of the alternating electric field. Characterized by Image forming apparatus.
[0016]
(2) When the bias control value applied to the contact charging member at the time of forming an image temporarily increases, or decreases the alternating electric field at a predetermined timing during non-image formation, an alternating electric field value-a direct current value Is determined by multiplying an alternating electric field value at a point deviating from linearity by a predetermined ratio.
[0017]
(3) A predetermined ratio for multiplying the alternating electric field value is determined according to at least one of the number of images to be formed, the temperature, the humidity, the film thickness of the image carrier, and the saturation value detected by the DC current detection means. The image forming apparatus according to (2), wherein the image forming apparatus is changed.
[0018]
(4) When a bias control value applied to the contact charging member at the time of image formation temporarily, increases or decreases the alternating electric field at a predetermined timing during non-image formation, an alternating electric field value-DC current value (1) is determined by adding a predetermined value to an alternating electric field value at a point deviating from linearity.
[0019]
(5) A predetermined value to be added to the alternating electric field value is determined according to at least one of the number of images to be formed, temperature, humidity, film thickness of the image carrier, or at least one of the saturation values detected by the DC current detection unit. (4) The image forming apparatus according to (4), wherein
[0020]
(6) a contact charging unit for performing a charging process on the rotating image carrier, a power supply for applying a bias to the contact charging unit, a potential detecting unit for detecting a surface potential of the image carrier, and the image carrier An image comprising: an exposing unit for recording image information on a body; a developing unit for forming a toner image of the image information recorded by the exposing unit; and a transfer member for transferring a toner image on the image carrier to a transfer material. In the forming apparatus, the bias applied to the contact charging member is obtained by superimposing a DC electric field on an alternating electric field, and the control value of the alternating electric field during image formation is at a predetermined timing during non-image formation. The alternating electric field is temporarily increased or decreased, and when the DC electric field is kept constant, the alternating electric field is determined according to the relationship between the detected value of the potential detecting means and the value of the alternating electric field. Image forming apparatus.
[0021]
(7) When the bias control value applied to the contact charging member at the time of forming an image temporarily increases, or decreases the alternating electric field at a predetermined timing during non-image formation, The image forming apparatus according to (6), wherein the relationship is determined by a value obtained by multiplying an alternating electric field value at a point deviating from linearity by a predetermined ratio.
[0022]
(8) A predetermined ratio by which the alternating electric field value is multiplied is determined according to at least one of the number of images to be formed, the temperature, the humidity, the film thickness of the image carrier, or the saturation value detected by the DC current detection means. The image forming apparatus according to (7), wherein the image forming apparatus is changed.
[0023]
(9) When the bias control value applied to the contact charging member at the time of image formation temporarily or temporarily increases or decreases the alternating electric field at a predetermined timing during non-image formation, an alternating electric field value−surface potential (7) The image forming apparatus according to (7), wherein the relationship is determined by a value obtained by adding a predetermined value to an alternating electric field value at a point out of linearity.
[0024]
(10) A predetermined value to be added to the alternating electric field value is determined according to at least one of the number of images formed, the temperature, the humidity, the film thickness of the image carrier, and the saturation value detected by the DC current detection unit. The image forming apparatus according to claim 9, wherein the image forming apparatus changes the image forming apparatus.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
(1) Schematic configuration of an example of an image forming apparatus
FIG. 2 is a schematic structural model diagram of the image forming apparatus of the present embodiment. The image forming apparatus of this embodiment is a laser beam printer using a transfer type electrophotographic process, a contact charging type, and a reversal developing type.
[0026]
[Photoconductor] 1 is a rotating drum type electrophotographic photoconductor (hereinafter abbreviated as photoconductor) as a member to be charged (image carrier).
[0027]
The photoreceptor 1 of the present example is composed of a conductive drum substrate 1b made of aluminum or the like and a photosensitive layer (photoconductive layer) 1a formed on the outer peripheral surface thereof. A body (negative photoconductor), which is rotationally driven at a process speed (peripheral speed) of 150 mm / sec in a clockwise direction a shown by an arrow. The photosensitive layer 1a used had an initial thickness of 30 μm. In the photoconductor of this embodiment, when the thickness of the photoconductive layer 1a is 10 μm or less, uniform charging becomes difficult, and this is defined as the life of the photoconductor.
[0028]
[Charging] 2 is a charging roller as a contact charging member (primary charging device). This charging roller 2 is a roller having a composite layer structure of a central core 2a, an elastic conductive layer 2b concentrically formed in a roller shape on the outer periphery thereof, and a resistance layer 2c further formed on the outer peripheral surface thereof.
[0029]
The elastic conductive layer 2b is, for example, 10 4 It is a single layer or a composite layer of a conductive rubber (such as EPDM) of Ωcm or less.
[0030]
The resistance layer 2c is 10 7 -10 11 It is a single layer or a composite layer of hydrin rubber or resin (trade name, nylon resin, carbon dispersion) having a thickness of about Ωcm and about 100 μm or less. The resistance layer 2c serves to prevent leakage to the photoconductor and prevent bleeding of the plasticizer in the elastic conductive layer 2b.
[0031]
The charging roller 2 has both ends of the metal core 2a rotatably supported by a bearing member (not shown), and is disposed in parallel with the drum-type photoconductor 1, and is fixed to the photoconductor 1 by pressing means (not shown). In this case, the photosensitive member 1 is driven to rotate in a counterclockwise direction as indicated by an arrow in FIG. The pressure nip n between the photosensitive member 1 and the charging roller 2 is a charging portion (charging area).
[0032]
Reference numeral 3 denotes a charging bias application power supply (power supply for a charging member). When a predetermined bias voltage is applied from the power supply 3 to the metal core 2 a of the charging roller 2, the outer peripheral surface of the rotary photoconductor 1 is subjected to a predetermined charging contact method. Is uniformly charged to the polarity and potential of.
This embodiment is an AC application method in which a bias voltage (AC + DC) obtained by superimposing a DC voltage on an AC voltage is applied to the charging roller 2.
[0033]
[Exposure] Exposure 4 of the target image information is performed on the charged surface of the rotating photoreceptor 1 by the exposure unit 5 to form an electrostatic latent image of the image information. The exposing unit 5 is a laser beam scanning exposing unit, a slit exposing unit for document images, and the like. In this embodiment, it is a laser beam scanning exposure unit.
[0034]
[Development] Next, the developing device 6 applies a developer to the electrostatic latent image forming surface of the rotating photoconductor 1 to develop the electrostatic latent image as a toner image. In the case of this embodiment, the negative latent toner (negative toner) adheres to the exposed light portion of the electrostatic latent image, so that the electrostatic latent image is reversely developed.
[0035]
The developing device 6 in the present embodiment is a device of a jumping development system using one-component magnetic toner. Reference numeral 6a denotes a non-magnetic developing sleeve, which is disposed opposite to the photosensitive member 1 with a gap of 0.3 mm therebetween, and is driven to rotate in the counterclockwise direction indicated by an arrow. Reference numeral 6b denotes a non-rotating magnet roller inserted and arranged in the developing sleeve 6a.
With the rotation of the developing sleeve 6a, a toner (not shown) accommodated in the developing device is applied as a thin layer on the outer peripheral surface thereof, and is held by the magnetic force of the magnet roller 6b, so that the photosensitive member 1 faces the developing sleeve 6a. It is conveyed to the developing part 6c which is a part. In the present embodiment, the developing sleeve 6a is supplied with a developing bias application power supply 8 (power supply for the developing member).
DC component: -500V
AC component: frequency 1800 Hz, VPP 1400 V
Is applied as a developing bias voltage.
[0036]
As a result, the toner flies at the developing site 6c, and the electrostatic latent image on the surface of the rotating photoconductor 1 is subjected to jumping development.
[0037]
[Transfer] 7 is a transfer roller as a transfer unit. The transfer roller 7 includes a central core 7a and a medium-resistance elastic layer 7b concentrically and integrally formed on the outer periphery of the core 7a. The transfer roller 7 in this embodiment has a resistance of 5 × 10 8 Ω, a conductive rubber roller having a diameter of 16 mm.
[0038]
The transfer roller 7 has both ends of the cored bar 2a rotatably supported by a bearing member (not shown), and is arranged in parallel with the drum type photoreceptor 1, and is pressed against the photoreceptor 1 by pressing means (not shown). In this case, the photosensitive member 1 is driven to rotate in a counterclockwise direction as indicated by the arrow in FIG. The pressure nip 7c between the photoconductor 1 and the transfer roller 7 is a transfer portion.
[0039]
The transfer material P is fed from a paper feed unit (not shown), and is fed to a transfer portion 7c, which is a press-contact nip portion between the photosensitive member 1 and the transfer roller 7, at a predetermined timing adjusted by the synchronization means 50. That is, when the leading end of the toner image formed on the surface of the rotary photoreceptor 1 reaches the transfer portion 7c, the transfer material P is transferred to the transfer portion 7c at the timing when the leading end of the transfer material P also reaches the transfer portion 7c. Is sent to
[0040]
The surface of the transfer material P fed to the transfer portion 7c is brought into close contact with the rotating photoreceptor 1, and the transfer material P is nipped and conveyed. Further, from the time when the leading end portion of the transfer material P reaches the transfer portion 7c to the time when the rear end portion exits the transfer portion 7c, the core 7a of the transfer roller 7 is supplied with a transfer bias applying power source (power source for the transfer member). A predetermined DC bias having a polarity opposite to that of the toner is applied as a transfer bias. In this embodiment, a DC voltage of +3500 V was applied.
[0041]
In the process of transferring the transfer material P while nipping and transferring the transfer portion 7c, the toner image on the rotating photosensitive member 1 is transferred to the transfer material P by the action of the transfer electric field formed by the transfer roller 7 and the pressing at the transfer portion 7c. It is sequentially transferred by pressure.
[0042]
[Fixing] The transfer material P that has passed through the transfer portion 7c and has been separated from the surface of the rotating photoreceptor 1 is conveyed to a fixing device (not shown) to fix the toner image, and then discharged to the outside of the device main body. If the image is also formed on the back surface, the image is conveyed to the re-conveying means to the transfer site.
[0043]
[Cleaning] A cleaning device 9 removes residual contaminants such as toner (transfer residual toner) and paper powder remaining on the photoreceptor 1 surface without being transferred onto the transfer material P after the transfer material is separated. The cleaning surface is cleaned by a cleaning blade 9a, and the entire surface is exposed (pre-exposure) by a static eliminator (static elimination lamp) 11, and is erased and initialized in an electric memory, and is repeatedly used for image formation.
[0044]
In this embodiment, the charging roller 2 and the transfer roller 7 are driven and rotated by the photoconductor 1. However, a gear or the like may be attached to each of them, and the driving may be forcibly driven by a motor or the like.
[0045]
(2) Control of charging bias
The details of the control of the charging bias in this embodiment will be described below.
[0046]
As described above, it is necessary to apply an AC bias equal to or greater than a predetermined value in order to prevent local charging failure. By the way, as shown in FIG. 4, it is known that as the AC bias (AC current value) is increased, the DC current value flowing into the photoconductor at that time increases linearly to a certain value and then saturates. In this method, after the surface of the photoconductor is neutralized by the pre-exposure, the potential difference when the photosensitive member is charged to a predetermined potential is detected as a DC current value. However, when the DC bias (DC voltage) is constant, The potential does not converge until the AC bias is twice as large as the discharge starting voltage derived from Paschen's law, and the surface potential of the photoconductor increases with the increase in the AC bias. This is because the surface of the photoconductor converges to a potential substantially equivalent to the applied DC voltage.
[0047]
Further, the AC bias frequency of this embodiment was set to 1800 Hz. Further, the DC bias was a low voltage of -750 V, and when the AC bias was equal to or higher than a predetermined value, a photoconductor surface potential of -700 V was obtained.
[0048]
By the way, according to the study of the present inventors, it has been found that a local charging failure disappears when a predetermined amount of AC bias is added from this saturated point. The study by the authors also revealed that the amount was constant even when the resistance value and lot of the charging roller were extremely changed.
[0049]
In the configuration of the present embodiment, in the environment of 23 ° C./50% (absolute humidity: about 8.74 g / kg), the DC current value is saturated at the initial stage (30 μm) of the photosensitive layer thickness. , 1.15, the local charging failure disappeared by applying an AC current value at the time of image formation.
[0050]
Therefore, in the present embodiment, as shown in the flowchart of FIG. 1, the AC current value is temporarily increased during non-image formation, the DC current value at that time is detected, and the saturated AC current value / Iac (sat) is increased by 1.15 times. In the case of a charging roller having a center value of resistance as shown in FIG. 4, for example, the AC current value of 1900 μA is the saturation point of the DC current value, so that the AC current value of 1900 × 1.15 = 2185 μA at the time of image formation is obtained. When image formation was performed with the current control value / Iac (img), it was stable under an environment of 23 ° C./50% (absolute humidity of about 8.74 g / kg), and 100,000 sheets were intermittently printed on one sheet of A4 paper. Could be formed. The determination of the control value of the AC current value was executed when the power of the image forming apparatus was turned on and every 1000 sheets of image formation. Further, as shown in FIG. 4, the control value of the AC current at the time of image formation is 1600 × 1.15 = 1840 μA for the charging roller having the lower resistance value and 2200 × 1.15 = 2530 μA for the charging roller having the upper resistance value. By executing image formation as / Iac (img), it was possible to form 100,000 images intermittently on one side of A4.
[0051]
By the way, when the same image formation is performed in the conventional example, it becomes impossible to form an image between 70,000 and 100,000 sheets according to the variation in the resistance value, and it is impossible to stably achieve a long life. there were.
[0052]
Conventionally, image formation was performed by setting an AC current value of 2530 μA, regardless of the resistance value, lot, and use condition of the charging roller, that is, an AC current setting for preventing charging failure with the charging roller having the upper limit of the resistance value. However, since an excessive AC current is applied to the charging roller except for the charging roller having a higher (upper limit), the life of the photoconductor is varied and reduced.
[0053]
(Example 2)
In the configuration of Example 1, image formation was similarly performed under the environment of 35 ° C. 80% (absolute humidity: about 28.9 g / kg) and 10 ° C .: 15% (absolute humidity: about 1.13 g / kg). At 35 ° C. and 80%, the life is obtained by forming 90,000 sheets of one sheet intermittently in A4 size, and in an environment of 10 ° C. and 15%, a slight local charging failure occurs, and the halftone is faithfully reproduced. In the mode and the like, the image quality slightly decreased. As for the service life, it was possible to form 110,000 sheets of images intermittently on one sheet of A4 paper. It has been found that this is because the resistance of the charging roller of the present embodiment varies depending on the temperature and humidity, specifically, the absolute humidity calculated from the temperature and the humidity. More specifically, when the absolute humidity is high, the resistance decreases, and when the absolute humidity is low, the resistance increases.
[0054]
By the way, according to the study by the authors, the AC current value / Iac (img) at which the local charging failure disappears and the AC current value / Iac (sat) at the time when the DC current value is saturated according to the temperature or humidity value. Was found to change.
[0055]
FIG. 5 shows the relationship between the absolute humidity and the ratio A at which the local charging failure disappears at the initial stage of the photosensitive layer thickness (30 μm). That is, at 23 ° C. and 50% (absolute humidity about 8.74 g / kg), the ratio A = 1.15, but at 35 ° C. 80% (absolute humidity about 28.9 g / kg), the ratio A = 1.09 and 10 ° C. At 15% (absolute humidity: about 1.13 g / kg), the ratio A is found to be 1.21. Here, the fluctuation of the ratio A at which the charging failure disappears does not depend on the resistance value or lot of the charging roller and the AC current value at that time, but only on the absolute humidity, as long as the charging roller is made of the same raw material. I found out. Therefore, in the present embodiment, a temperature / humidity sensor 200 for detecting the temperature / humidity near the image forming apparatus is added to the configuration of the first embodiment as shown in FIG. When image formation was performed in the same manner as in Example 1, it was possible to stably form an image of 100,000 sheets intermittently on one A4 sheet regardless of the use environment, the resistance value of the charging roller, and the lot.
[0056]
In this embodiment, the control value of the AC current value / Iac (img) is determined when the power of the image forming apparatus is turned on and every 1000 sheets of image formation, and the absolute humidity fluctuates by 3 g / kg or more within 30 minutes. Sometimes it was run.
[0057]
By the way, in the conventional example, the AC current value is switched according to the absolute humidity as shown in FIG. 8, but the image formation becomes impossible at 60,000 to 100,000 sheets depending on the use environment, the charging roller resistance, and the lot. However, a long life could not be stably realized. Further, when the resistance of the charging roller is extremely high, local charging failure occurs in a low humidity environment, and the production yield of the charging roller is reduced.
[0058]
(Example 3)
In Examples 1 and 2, the life of the photosensitive member was stably prolonged. However, as shown in FIG. 9, the amount of the photosensitive layer scraped per 10,000 sheets increased as the image formation progressed. You can see that it will go. This is because, as the film thickness of the photosensitive layer becomes thinner, the AC current value / Iac (img) for preventing local charging failure decreases in the same environment and the same charging roller, and as a result, the photosensitive layer becomes thinner. The present inventors have found that this is because an excessive AC current is applied. FIG. 10 shows the relationship between the AC current value / Iac (img) at which the local charging failure disappears at the initial photosensitive layer thickness (30 μm) in an environment of 23 ° C./50% and the photosensitive layer thickness X (μm). It shows the ratio B of AC current value / Iac (img) at which local charging failure disappears. From this, it can be seen that the ratio B is 1.0 when the initial film thickness is 30 μm, and 0.92 when the film thickness is 10 μm at the end of endurance, and the ratio decreases as the film thickness of the photosensitive layer decreases. This is because the shading of the photosensitive layer lowers the impedance and makes it difficult to cause poor charging.
[0059]
FIG. 10 shows a case under an environment of 23 ° C./50%, but it has been found by the authors that this relationship has a similar tendency regardless of the environment. The charging roller used had a median resistance value, and similarly, the same characteristics were exhibited in the upper and lower resistance products.
[0060]
Incidentally, there is a one-to-one relationship between the DC current saturation value and the thickness of the photosensitive layer. FIG. 11 shows the relationship between the thickness of the photosensitive layer and the saturation value of the DC current value. This is because in the AC application method, the potential of the photoconductor converges substantially equivalently to the applied DC voltage, and thus the DC current value changes according to the capacity fluctuation of the photoconductor, that is, the thickness of the photosensitive layer. .
[0061]
Therefore, in the present embodiment, as shown in the flowchart of FIG. 12, the thickness of the photosensitive layer is detected from the DC current value at the time of saturation, and the photosensitive layer is added to the systems of Examples 1 and 2 using the relationship of FIG. The image formation was performed by changing the ratio B of the AC current according to the film thickness of the first embodiment and multiplying the AC current value at the time of image formation in the first and second embodiments. %, In the configuration of the second embodiment, regardless of the environment, it is possible to stably form an image of 120,000 sheets intermittently on one A4 sheet, thereby realizing a further longer life of the photosensitive member. did it.
[0062]
(Example 4)
In this embodiment, instead of detecting the saturation value of the DC current in the systems of the first to third embodiments, the detection value of the photoconductor surface electrometer 50 shown in FIG. This is because there is a one-to-one relationship between the DC current value and the photoconductor surface potential as shown in FIG. In the first to third embodiments, it is impossible to stably detect the DC current value without a means for removing the charged potential after charging once, such as pre-exposure. However, in this embodiment, the surface potential is detected. Therefore, the detection can be performed at a desired timing without being restricted by the static elimination unit. When image formation was performed with the configuration of the present embodiment, the life of the photosensitive member could be stably extended as in the first to third embodiments.
[0063]
By the way, in the first to fourth embodiments, the AC current value is determined at a predetermined timing, in this embodiment, every 1000 sheets, so that the duty used by the user, for example, the number of continuous image formation is large or the number of small copies is small. It is possible to cope with fluctuations in the charging characteristics of the charging roller and the photoreceptor (for example, a difference in surface state) due to the use condition such that the image formation is mainly performed, and a stable long service life regardless of the use level of the user. A good image could be provided.
[0064]
In the first to fourth embodiments, the AC current value / Iac (img) at the time of image formation is determined by multiplying the AC current value / Iac (sat) at the time of saturation of the DC current value by a constant ratio. If the type of the photoconductor and the type of the charging roller are different, it is a matter of course that the current may be increased or decreased by a constant current value instead of multiplying by a constant ratio.
[0065]
In addition, due to the configuration of the image forming apparatus, the configurations of Embodiments 1 to 4 may be used as appropriate, independently or in combination.
[0066]
(Other Embodiment Examples)
(1) In the image forming apparatus of the embodiment, the contact charging member 2 is not limited to the roller type, but may be another type of contact charging member such as a blade type, a rod type, a brush type, and a magnetic brush type. Even if the charging member does not necessarily come into contact with the surface of the member to be charged with a pressing force, if the dischargeable area determined by the gap voltage and the Paschen curve is reliably ensured between the charging member and the surface to be charged, it is non-contact and extremely close. In the present invention, this arrangement is also included in the category of contact charging.
[0067]
(2) As the waveform of the alternating voltage, a sine wave, a rectangular wave, a triangular wave, or the like can be used as appropriate.
[0068]
(3) Instead of the alternating voltage, a DC electric field controlled by a constant voltage or a constant current can be used.
[0069]
(4) The image exposure unit may be any other appropriate exposure unit or mechanism such as a slit exposure unit for a document image.
[0070]
(5) The development method may be regular development.
[0071]
(6) The contact charging type transfer means is a transfer roller of a conductive roller in the embodiment, but is not limited to a roller type, and may be another type of rotating body such as a belt type. A corona discharge device for transfer may be used.
[0072]
【The invention's effect】
As described above, by using the configuration of the present invention, it is possible to always provide a good image with no charging failure or the like even under various conditions, and to realize a long life of the photosensitive member regardless of the use environment and use condition. .
[Brief description of the drawings]
FIG. 1 is a flowchart of a first embodiment.
FIG. 2 is a schematic configuration diagram of an image forming apparatus according to the first embodiment.
FIG. 3 is a schematic configuration diagram of a conventional image forming apparatus.
FIG. 4 is a diagram showing a relationship between an AC current value and a DC current value (resistance difference).
FIG. 5 is a diagram showing absolute humidity (moisture content) and the ratio of Iac (img) to Iac (sat).
FIG. 6 is a schematic configuration diagram of an image forming apparatus according to a second embodiment.
FIG. 7 is a flowchart of the second embodiment.
FIG. 8 is a diagram showing a relationship between Iac (img) and absolute humidity (moisture content) in a conventional example.
FIG. 9 is a view showing the relationship between the number of image formations and the shaving amount of the photosensitive layer every 10,000 sheets (A4 horizontal conversion).
FIG. 10 is a diagram showing the ratio of the thickness of the photosensitive layer to Iac (img) and Iac (sat) (23 ° C./50%, center of resistance).
FIG. 11 is a graph showing a relationship between a photosensitive layer thickness and a DC current value at the time of saturation.
FIG. 12 is a flowchart of the third embodiment.
FIG. 13 is a schematic configuration diagram of an image forming apparatus according to a fourth embodiment.
FIG. 14 is a diagram showing a relationship between a DC current value and a photoconductor surface potential.
[Explanation of symbols]
1 Photoconductor drum
2 Charging roller (contact member)
3 Charging bias (AC + DC)
200 temperature and humidity sensor (absolute humidity conversion)
50 Surface potential sensor

Claims (10)

回転する像担持体上の帯電処理を行う接触帯電手段と、前記接触帯電手段にバイアスを印加する電源と、前記像坦持体に流れ込む直流電流成分を検知する直流電流検知手段と、前記像担持体に画像情報を記録する露光手段と、前記露光手段によって記録された画像情報のトナー像化する現像手段と、前記像担持体上のトナー像を転写材に転写する転写部材と、を有する画像形成装置に於いて、
前記接触帯電部材に印加されるバイアスが交番電界に直流電界を重畳したものであり、該交番電界の画像形成時の制御値は、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させ、かつ直流電界を一定とした時に、前記、直流電流検知手段の検知値と、該交番電界の値、との関係に応じて決定されることを特徴とする画像形成装置。
A contact charging unit for performing a charging process on the rotating image carrier; a power supply for applying a bias to the contact charging unit; a DC current detecting unit for detecting a DC current component flowing into the image carrier; An image comprising: an exposing unit for recording image information on a body; a developing unit for forming a toner image of the image information recorded by the exposing unit; and a transfer member for transferring a toner image on the image carrier to a transfer material. In the forming device,
The bias applied to the contact charging member is obtained by superimposing a DC electric field on an alternating electric field, and the control value at the time of image formation of the alternating electric field is a predetermined timing at the time of non-image formation. An image forming apparatus characterized in that when the DC electric field is increased or decreased and the DC electric field is kept constant, it is determined according to the relationship between the detected value of the DC current detecting means and the value of the alternating electric field.
前記接触帯電部材に画像形成時に印加されるバイアス制御値が、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させた時に、交番電界値−直流電流値の関係が直線性から外れたポイントの交番電界値に所定の比率を乗じた値で決定されることを特徴とする請求項1に記載の画像形成装置。The bias control value applied at the time of image formation to the contact charging member, at a predetermined timing at the time of non-image formation, when the alternating electric field is temporarily increased, or reduced, the relationship of the alternating electric field value-DC current value 2. The image forming apparatus according to claim 1, wherein the value is determined by multiplying an alternating electric field value at a point deviating from linearity by a predetermined ratio. 交番電界値に乗じる所定の比率を、画像形成枚数、温度、湿度、像坦持体の膜厚、あるいは前記直流電流検知手段の検知飽和値の少なくなくとも何れかひとつ値に応じて変更することを特徴とする請求項2に記載の画像形成装置。The predetermined ratio for multiplying the alternating electric field value is changed according to at least one of the number of images formed, the temperature, the humidity, the film thickness of the image carrier, and at least one of the detection saturation values of the DC current detection unit. The image forming apparatus according to claim 2, wherein: 前記接触帯電部材に画像形成時に印加されるバイアス制御値が、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させた時に、交番電界値−直流電流値の関係が直線性から外れたポイントの交番電界値に所定の値を加算した値で決定されることを特徴とする請求項1に記載の画像形成装置。The bias control value applied to the contact charging member at the time of image formation, at a predetermined timing during non-image formation, the alternating electric field is temporarily increased, or reduced, the relationship of the alternating electric field value-DC current value is The image forming apparatus according to claim 1, wherein the image forming apparatus is determined by a value obtained by adding a predetermined value to an alternating electric field value at a point deviating from linearity. 交番電界値に加算する所定の値を、画像形成枚数、温度、湿度、像坦持体の膜厚、あるいは前記直流電流検知手段の検知飽和値の少なくなくとも何れかひとつ値に応じて変更することを特徴とする請求項4に記載の画像形成装置。The predetermined value to be added to the alternating electric field value is changed according to at least one of the number of images to be formed, the temperature, the humidity, the film thickness of the image carrier, and the saturation value detected by the DC current detection unit. The image forming apparatus according to claim 4, wherein: 回転する像担持体上の帯電処理を行う接触帯電手段と、前記接触帯電手段にバイアスを印加する電源と、前記像坦持体の表面電位を検知する電位検知手段と、前記像担持体に画像情報を記録する露光手段と、前記露光手段によって記録された画像情報のトナー像化する現像手段と、前記像担持体上のトナー像を転写材に転写する転写部材と、を有する画像形成装置に於いて、
前記接触帯電部材に印加されるバイアスが交番電界に直流電界を重畳したものであり、該交番電界の画像形成時の制御値は、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させ、かつ直流電界と一定とした時に、前記、電位検知手段の検知値と、該交番電界の値、との関係に応じて決定されることを特徴とする画像形成装置。
A contact charging unit for performing a charging process on the rotating image carrier, a power supply for applying a bias to the contact charging unit, a potential detecting unit for detecting a surface potential of the image carrier, and an image on the image carrier. An image forming apparatus including: an exposure unit that records information; a developing unit that converts the image information recorded by the exposure unit into a toner image; and a transfer member that transfers a toner image on the image carrier to a transfer material. In
The bias applied to the contact charging member is obtained by superimposing a DC electric field on an alternating electric field, and the control value at the time of image formation of the alternating electric field is a predetermined timing at the time of non-image formation. An image forming apparatus characterized by being determined according to the relationship between the value detected by the potential detecting means and the value of the alternating electric field when the value is increased or decreased and the DC electric field is kept constant.
前記接触帯電部材に画像形成時に印加されるバイアス制御値が、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させた時に、交番電界値−表面電位の関係が直線性から外れたポイントの交番電界値に所定の比率を乗じた値で決定されることを特徴とする請求項6に記載の画像形成装置。When the bias control value applied at the time of image formation to the contact charging member is at a predetermined timing during non-image formation, the alternating electric field is temporarily increased, or decreased, and the relationship between the alternating electric field value and the surface potential is linear. The image forming apparatus according to claim 6, wherein the value is determined by multiplying an alternating electric field value of a point deviating from the characteristic by a predetermined ratio. 交番電界値に乗じる所定の比率を、画像形成枚数、温度、湿度、像坦持体の膜厚、あるいは前記直流電流検知手段の検知飽和値の少なくなくとも何れかひとつ値に応じて変更することを特徴とする請求項7に記載の画像形成装置。A predetermined ratio for multiplying the alternating electric field value is changed according to at least one of the number of images formed, the temperature, the humidity, the film thickness of the image carrier, or at least one of the detection saturation values of the DC current detection unit. The image forming apparatus according to claim 7, wherein: 前記接触帯電部材に画像形成時に印加されるバイアス制御値が、非画像形成時の所定のタイミングに、該交番電界を暫時、増加、あるいは減少させた時に、交番電界値−表面電位の関係が直線性から外れたポイントの交番電界値に所定の値を加算した値で決定されることを特徴とする請求項6に記載の画像形成装置。When the bias control value applied at the time of image formation to the contact charging member is a predetermined timing during non-image formation, the alternating electric field is temporarily increased, or decreased, and the relationship between the alternating electric field value and the surface potential is linear. The image forming apparatus according to claim 6, wherein the image forming apparatus is determined by a value obtained by adding a predetermined value to an alternating electric field value of a point deviating from the characteristic. 交番電界値に加算する所定の値を、画像形成枚数、温度、湿度、像坦持体の膜厚、あるいは前記直流電流検知手段の検知飽和値の少なくなくとも何れかひとつ値に応じて変更することを特徴とする請求項9に記載の画像形成装置。The predetermined value to be added to the alternating electric field value is changed according to at least one of the number of images to be formed, the temperature, the humidity, the film thickness of the image carrier, and the saturation value detected by the DC current detection unit. The image forming apparatus according to claim 9, wherein:
JP2003128692A 2003-05-07 2003-05-07 Image forming apparatus Withdrawn JP2004333789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128692A JP2004333789A (en) 2003-05-07 2003-05-07 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128692A JP2004333789A (en) 2003-05-07 2003-05-07 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2004333789A true JP2004333789A (en) 2004-11-25

Family

ID=33504735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128692A Withdrawn JP2004333789A (en) 2003-05-07 2003-05-07 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2004333789A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309144A (en) * 2005-03-29 2006-11-09 Fuji Xerox Co Ltd Image forming apparatus
JP2007163573A (en) * 2005-12-09 2007-06-28 Canon Inc Conductive roller and electrophotographic apparatus
JP2007218977A (en) * 2006-02-14 2007-08-30 Fuji Xerox Co Ltd Image forming apparatus and method of controlling electrification of electrifying roll
JP2007218978A (en) * 2006-02-14 2007-08-30 Fuji Xerox Co Ltd Image forming apparatus
KR100844066B1 (en) 2006-01-18 2008-07-07 후지제롯쿠스 가부시끼가이샤 Image formation apparatus
US7532831B2 (en) 2006-01-18 2009-05-12 Fuji Xerox Co., Ltd. Image formation apparatus provided with photoconductor and charging device
US7542689B2 (en) 2006-10-27 2009-06-02 Fuji Xerox Co., Ltd. Charging device, image forming apparatus, computer readable medium storing charging control program and method for charging control
US7634206B2 (en) 2006-06-23 2009-12-15 Fuji Xerox Co., Ltd. Charging device, image forming apparatus using the same and charging controlling method
JP2010019936A (en) * 2008-07-08 2010-01-28 Canon Inc Charging apparatus and image forming apparatus
CN101846921A (en) * 2009-03-25 2010-09-29 富士施乐株式会社 Charging device and image forming apparatus
US7937035B2 (en) 2008-03-26 2011-05-03 Fuji Xerox Co., Ltd Image forming apparatus including cleaning unit provided with cleaning member having free end facing upward and friction reducing unit, and image forming method
US7978991B2 (en) 2007-03-06 2011-07-12 Kyocera Mita Corporation Image forming apparatus
US8126344B2 (en) 2008-04-23 2012-02-28 Fuji Xerox Co., Ltd. Image forming apparatus with variable amplitude alternating current to mitigate image defects and photoconductor wear
CN104849976A (en) * 2014-02-18 2015-08-19 柯尼卡美能达株式会社 Image forming apparatus
JP2019086734A (en) * 2017-11-10 2019-06-06 コニカミノルタ株式会社 Image forming apparatus and method for controlling image forming apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309144A (en) * 2005-03-29 2006-11-09 Fuji Xerox Co Ltd Image forming apparatus
JP2007163573A (en) * 2005-12-09 2007-06-28 Canon Inc Conductive roller and electrophotographic apparatus
US7532831B2 (en) 2006-01-18 2009-05-12 Fuji Xerox Co., Ltd. Image formation apparatus provided with photoconductor and charging device
US7756431B2 (en) 2006-01-18 2010-07-13 Fuji Xerox Co., Ltd. Image formation apparatus with controlled discharge current
KR100844066B1 (en) 2006-01-18 2008-07-07 후지제롯쿠스 가부시끼가이샤 Image formation apparatus
US7764888B2 (en) 2006-02-14 2010-07-27 Fuji Xerox Co., Ltd. Image formation apparatus and charging control method of charging roll
US7532832B2 (en) 2006-02-14 2009-05-12 Fuji Xerox Co., Ltd. Image forming apparatus and charge control method
JP2007218978A (en) * 2006-02-14 2007-08-30 Fuji Xerox Co Ltd Image forming apparatus
JP2007218977A (en) * 2006-02-14 2007-08-30 Fuji Xerox Co Ltd Image forming apparatus and method of controlling electrification of electrifying roll
KR100844064B1 (en) 2006-02-14 2008-07-07 후지제롯쿠스 가부시끼가이샤 Image formation apparatus and charging control method of charging roll
US7634206B2 (en) 2006-06-23 2009-12-15 Fuji Xerox Co., Ltd. Charging device, image forming apparatus using the same and charging controlling method
US7542689B2 (en) 2006-10-27 2009-06-02 Fuji Xerox Co., Ltd. Charging device, image forming apparatus, computer readable medium storing charging control program and method for charging control
US7978991B2 (en) 2007-03-06 2011-07-12 Kyocera Mita Corporation Image forming apparatus
US7937035B2 (en) 2008-03-26 2011-05-03 Fuji Xerox Co., Ltd Image forming apparatus including cleaning unit provided with cleaning member having free end facing upward and friction reducing unit, and image forming method
US8126344B2 (en) 2008-04-23 2012-02-28 Fuji Xerox Co., Ltd. Image forming apparatus with variable amplitude alternating current to mitigate image defects and photoconductor wear
JP2010019936A (en) * 2008-07-08 2010-01-28 Canon Inc Charging apparatus and image forming apparatus
US8606131B2 (en) 2008-07-08 2013-12-10 Canon Kabushiki Kaisha Charging apparatus with AC and DC current detection
JP2010230732A (en) * 2009-03-25 2010-10-14 Fuji Xerox Co Ltd Electrifying device and image-forming device
US8175473B2 (en) 2009-03-25 2012-05-08 Fuji Xerox Co., Ltd. Charging device and image forming apparatus
CN101846921A (en) * 2009-03-25 2010-09-29 富士施乐株式会社 Charging device and image forming apparatus
CN104849976A (en) * 2014-02-18 2015-08-19 柯尼卡美能达株式会社 Image forming apparatus
JP2015152850A (en) * 2014-02-18 2015-08-24 コニカミノルタ株式会社 image forming apparatus
JP2019086734A (en) * 2017-11-10 2019-06-06 コニカミノルタ株式会社 Image forming apparatus and method for controlling image forming apparatus
JP7119345B2 (en) 2017-11-10 2022-08-17 コニカミノルタ株式会社 IMAGE FORMING APPARATUS AND IMAGE FORMING APPARATUS CONTROL METHOD

Similar Documents

Publication Publication Date Title
JP2004117960A (en) Image forming apparatus
US9665032B2 (en) Image forming apparatus with exposure controlled in dependence on cumulative operating time and humidity
JP2004333789A (en) Image forming apparatus
JP2002333762A (en) Electrifying device and image forming device
JP3919615B2 (en) Image forming apparatus
JP2614309B2 (en) Image forming device
JP2010224460A (en) Image forming apparatus
JP2008009149A (en) Image forming apparatus
JP2007065591A (en) Image forming apparatus
JPH10198131A (en) Electrifier and image forming device
US6694110B2 (en) Image forming apparatus with variable waiting time conveyance feature
JP2007148165A (en) Image forming apparatus
JPH049883A (en) Image forming device
JP2001201919A (en) Power source unit, method of charging, charging device, and image forming device
JP2002311692A (en) Image forming device
JP3247164B2 (en) Image forming device
JPH11174871A (en) Image forming device
JP5328470B2 (en) Image forming apparatus
JP4147047B2 (en) Charging roller evaluation method
JP3630954B2 (en) Image forming apparatus
JP2829659B2 (en) Image forming device
JP2798081B2 (en) Image forming device
JPH09127765A (en) Image forming device
JP2016048356A (en) Image forming apparatus
JP2003280296A (en) Image forming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801