JPH03131029A - Method for flattening wiring of al electrode - Google Patents

Method for flattening wiring of al electrode

Info

Publication number
JPH03131029A
JPH03131029A JP26949589A JP26949589A JPH03131029A JP H03131029 A JPH03131029 A JP H03131029A JP 26949589 A JP26949589 A JP 26949589A JP 26949589 A JP26949589 A JP 26949589A JP H03131029 A JPH03131029 A JP H03131029A
Authority
JP
Japan
Prior art keywords
film
substrate
forming
semiconductor substrate
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26949589A
Other languages
Japanese (ja)
Inventor
Matsuo Ichikawa
市川 松雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26949589A priority Critical patent/JPH03131029A/en
Publication of JPH03131029A publication Critical patent/JPH03131029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To hinder an Al film from reacting on an Si substrate and prevent a failure from occurring when a laser beam is projected on the substrate while heating it by providing a metal film having high melting point and a titanium nitride film in the form of thin film between the Al film and the substrate. CONSTITUTION:A LOCOS oxide film 12 is formed on a P-type single crystal Si substrate 11 and after forming a gate oxide film 13, a gate electrode 14 is formed thereon. Further, after a thin oxide film 15 is formed through oxidation using a light, an N<+> diffusion layer 16 is formed by implanting phosphorus or arsenic ions. After a PSG film 17 is formed thereon, a contact hole is formed. A metal film 18 having high melting point, a titanium nitride film 19, and an Al film 20 are formed. When a laser beam is projected on the substrate while heating it at 300 deg.C, the Al film is reflowed and the contact hole can be embedded completely. At this time, since the foundation consisting of the metal film having high melting point and the titanium nitride film is provided between the Al film and the substrate, the Al film is prevented from entering into the Si substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は半導体集積回路装置に関し、半導体基板上に形
成されるAL配線の平坦化技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application 1] The present invention relates to a semiconductor integrated circuit device, and more particularly to a technique for planarizing AL wiring formed on a semiconductor substrate.

〔従来の技術] AL膜及びその合金の堆積膜は、VLS Iの配線形成
に多く用いられている0通常、この膜は蒸着法やスパッ
タリング法によって堆積される。しかし、近年、VLS
Iの集積化が進む中で様々な問題が発生している。それ
らは、エレクトロマイグレーション、ストレスマイグレ
ーション、高アスペクト比のピアホールを介しての接続
などである。
[Prior Art] Deposited films of AL films and their alloys are often used for forming VLSI interconnects. Usually, this film is deposited by a vapor deposition method or a sputtering method. However, in recent years, VLS
Various problems are occurring as the integration of I progresses. These include electromigration, stress migration, and connections through high aspect ratio peer holes.

解決方法として配線材料を変える事なく、ALの膜構造
を改善し、ピアホールに埋め込むことにより解決を図る
試みが考えられる。これがレーザ光照射を用いたAL電
極配線の平坦化技術である。
As a solution, an attempt may be made to improve the AL film structure and embed it in the peer hole without changing the wiring material. This is a technique for flattening AL electrode wiring using laser light irradiation.

この技術は、AL膜と一時的に溶融し再結晶化させるの
で、結晶粒サイズの拡大と膜の密度が高められ、優れた
エレクトロマイグレーション特性、およびストレスマイ
グレーション特性を有する。
This technique temporarily melts and recrystallizes the AL film, thereby increasing crystal grain size and film density, and has excellent electromigration characteristics and stress migration characteristics.

第3図(a)〜第3図(C)に断面構造図を示し以下に
従来の方法について説明する。
FIGS. 3(a) to 3(C) show cross-sectional structural views, and the conventional method will be described below.

第3図(a)に示すように、P型車結晶Si基板上にL
OCO3酸化1i42を選択的に形成した後、ゲート酸
化膜43を形成し、その上にゲート電極44を形成する
。その後、ライト酸化膜より薄い酸化膜45を形成し、
その上から、リン又は砒素のイオン打込みをおこなって
、N0拡敢層46を形成する。その上にPSG膜47を
形成し、コンタクト領域となる部分の酸化膜45及びP
SG47をエッチング除去する。その後、AL膜48を
スパッタ蒸着する。
As shown in FIG. 3(a), L is placed on a P-type wheel crystal Si substrate.
After selectively forming OCO3 oxide 1i42, a gate oxide film 43 is formed, and a gate electrode 44 is formed thereon. After that, an oxide film 45 thinner than the light oxide film is formed,
From above, ion implantation of phosphorus or arsenic is performed to form the N0 expansion layer 46. A PSG film 47 is formed thereon, and an oxide film 45 and a PSG film 47 are formed on the contact region.
SG47 is removed by etching. After that, an AL film 48 is deposited by sputtering.

このままだと、コンタクトホール部分のAL膜48のつ
きまわりが悪い、特に、コンタクトホールが微細化され
るサブミクロンプロセスでは顕著である。第3図(b)
に示されるように、基板を常温付近で保持し、レーザー
光照射してAL膜48をリフローすると、リフローされ
るがコンタクト孔の中に埋め込む事ができなく、コンタ
クト孔の中に空洞ができてしまう、この問題を解決する
ためには基板加熱をする必要がある。
If this continues, the coverage of the AL film 48 in the contact hole portion will be poor, especially in a submicron process where the contact hole is miniaturized. Figure 3(b)
As shown in , when the substrate is held at around room temperature and the AL film 48 is reflowed by irradiation with laser light, it reflows but cannot be filled into the contact hole and a cavity is formed in the contact hole. In order to solve this problem, it is necessary to heat the substrate.

第3図(c)に基板温度を300°Cに加熱して、レー
ザー照射した場合の断面略図を示す。
FIG. 3(c) shows a schematic cross-sectional view when the substrate temperature is heated to 300° C. and laser irradiation is performed.

図のように基板を加熱してレーザー照射するとAL膜の
りフローが完全にすすみ、アスペクト比の大きなコンタ
クトホールをも埋め込む事ができるリフローがおこなわ
れ、空洞のできる事もない、しかしながら、基板を30
0°C以上に加熱し、なおレーザー照射するために一時
的に、基板表面が必要以上の高温になり、AL膜48に
よるSi基板へのスパイク50現象がおきる。スパイク
はコンタクトホールのはしでおき、悪い時にはN0拡散
層46を突き抜けて基板まで到達し、リーク現象をひき
おこす。
As shown in the figure, when the substrate is heated and irradiated with laser, the AL film glue flows completely, and reflow is performed that can fill contact holes with large aspect ratios, without creating cavities.
Because the substrate is heated to 0° C. or higher and laser irradiation is applied, the surface of the substrate temporarily becomes higher than necessary, and a spike 50 phenomenon occurs on the Si substrate due to the AL film 48. The spikes are left at the edge of the contact hole, and in the worst case, they can penetrate the N0 diffusion layer 46 and reach the substrate, causing a leak phenomenon.

〔発明が解決しようとする課題] 本発明の課題及び目的は上記のような欠点を改良し、基
板を加熱しながらレーザー照射して、AL膜を完全にリ
フローしてもAL膜によるSi基板へのスパイク現象及
びリーク現象を防止する事にある。
[Problems to be Solved by the Invention] The problems and objectives of the present invention are to improve the above-mentioned drawbacks, and to irradiate a laser while heating the substrate so that even if the AL film is completely reflowed, the AL film does not damage the Si substrate. The purpose is to prevent spike phenomena and leak phenomena.

[課題を解決するための手段] 本発明の手段は、ALlliと基板との間に高融点金属
膜及びチタンナイトライド膜を薄く配置する事によって
、基板を加熱しながらレーザー照射する時に、安定な高
融点金属膜及びチタンナイトライド膜によってAL膜の
基板Siへの反応を阻止し、不良現象の発生を防止する
事にある。
[Means for Solving the Problems] The means of the present invention provides a stable structure when laser irradiation is performed while heating the substrate by disposing a thin high melting point metal film and a titanium nitride film between the ALlli and the substrate. The purpose is to prevent the reaction of the AL film to the Si substrate by using the high melting point metal film and the titanium nitride film, thereby preventing the occurrence of defective phenomena.

[実 施 例] 第1図(a)〜第1図(C)、第2図(a)〜第2図(
C)に断面工程の略図を示し、以下に本発明の説明をお
こなう。
[Example] Fig. 1(a) to Fig. 1(C), Fig. 2(a) to Fig. 2(
A schematic diagram of the cross-sectional process is shown in C), and the present invention will be explained below.

第1図(a)に示したように、P型車結晶Si基板ll
上にLOGOS酸化膜12を形成し、さらにゲート酸化
膜13を形成した後、ゲート電極14を形成する。さら
に、ライト酸化により、薄い酸化膜15を形成した後、
リン又は砒素のイオン打込みをおこない、N゛拡散層1
6を形成する。その上に、PSGllli17を形成し
た後、コンタクトホールを形成する。
As shown in FIG. 1(a), a P-type wheel crystal Si substrate ll
After forming a LOGOS oxide film 12 thereon and further forming a gate oxide film 13, a gate electrode 14 is formed. Furthermore, after forming a thin oxide film 15 by light oxidation,
Perform phosphorus or arsenic ion implantation to form a N diffusion layer 1.
form 6. After forming PSGlli 17 thereon, contact holes are formed.

第1図(b)に示すように、高融点金属膜18、チタン
ナンドライド膜19及びAL膜20を形成する。
As shown in FIG. 1(b), a high melting point metal film 18, a titanium nandride film 19, and an AL film 20 are formed.

第1図(C)に示すように、基板を300℃に加熱しな
がらレーザー光を照射すると、AL膜がリフローされコ
ンタクト孔を完全に埋め込む事ができる。この時、下地
の高融点金属膜及びチタンナイトライド膜がAL膜と基
板の間にあって、ALのSi基板への侵入を防止する役
目をおこなう。
As shown in FIG. 1(C), when the substrate is heated to 300° C. and irradiated with laser light, the AL film reflows and the contact hole can be completely filled. At this time, the underlying high melting point metal film and titanium nitride film are present between the AL film and the substrate, and serve to prevent the AL from entering the Si substrate.

第2図(a)に示すように、P型車結晶Si基板21上
にLOCO3酸化llI22を形成し、さらにゲート酸
化膜23を形成した後、ゲート電極24を形成する。さ
らに、ライト酸化により、薄い酸化膜25を形成した後
、リン又は砒素のイオン打込みをおこない、N0拡散層
26を形成する。
As shown in FIG. 2(a), a LOCO3 oxide llI 22 is formed on a P-type wheel crystal Si substrate 21, a gate oxide film 23 is formed, and then a gate electrode 24 is formed. Furthermore, after forming a thin oxide film 25 by light oxidation, ion implantation of phosphorus or arsenic is performed to form an N0 diffusion layer 26.

その上に、PSGII!27を形成した後、コンタクト
ホールを形成する。
On top of that, PSGII! After forming 27, contact holes are formed.

第2図(b)に示すように、第一の高融点金属膜28.
チタンナイトライド膜29及びAL膜30を形成する。
As shown in FIG. 2(b), the first high melting point metal film 28.
A titanium nitride film 29 and an AL film 30 are formed.

第2図(C)に示すように、基板を300℃に加熱しな
がらレーザー光を照射すると、AL膜30がリフローさ
れコンタクト孔を完全に埋め込む事ができる。この時、
下地の高融点金属膜がAL−Cu合金と基板の間にあっ
て、ALのSi基板への侵入を防止する役目をおこなう
。その上に第二の高融点金属膜31を形成し、退択エッ
チングによりAL既配線形成する。
As shown in FIG. 2(C), when the substrate is heated to 300° C. and irradiated with laser light, the AL film 30 is reflowed and the contact hole can be completely filled. At this time,
The underlying high melting point metal film is located between the AL-Cu alloy and the substrate, and serves to prevent AL from entering the Si substrate. A second refractory metal film 31 is formed thereon, and AL wiring is formed by selective etching.

[発明の効果] 本発明の方法によれば、AL膜と基板との間に安定な高
融点金属膜が存在するため、基板を加熱しなからレーザ
光を照射して、AL膜を完全にリフローしてもAL膜に
よるSi基板へのスパイク現象がおこらない、したがっ
てN0拡散をALが突き抜ける事もなくリーク現象もお
こらない、AL膜はAL−5i合金でも良く、AL−5
i−C6合金でも問題ない。
[Effects of the Invention] According to the method of the present invention, since a stable high-melting point metal film exists between the AL film and the substrate, laser light is irradiated without heating the substrate to completely cover the AL film. Even after reflowing, the AL film does not cause a spike phenomenon on the Si substrate.Therefore, the AL does not penetrate through the NO diffusion and no leak phenomenon occurs.The AL film may be an AL-5i alloy,
There is no problem with i-C6 alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜第1図(c)は本発明の方法による断面
工程略図の例である。 第2図(a)〜第2図(c)は本発明の方法による断面
工程略図の別の例である。 第3図 (a) 〜第3図 (c) は従来の方法によ る断面工程略図の例である。 以 上
FIGS. 1(a) to 1(c) are examples of cross-sectional process diagrams according to the method of the present invention. FIGS. 2(a) to 2(c) are other examples of cross-sectional process diagrams according to the method of the present invention. FIGS. 3(a) to 3(c) are examples of cross-sectional process diagrams according to the conventional method. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上のAl電極配線の平坦化方法におい
て、 a)素子形成がおこなわれた該半導体基板上に絶縁膜を
形成する工程、 b)該絶縁膜を選択エッチングする事によって該素子と
接続を取るためのコンタクトホー ルを形成する工程、 c)該半導体基板上に高融点金属膜を形成する工程、 d)該半導体基板上にチタンナイトライド膿を形成する
工程、 e)該半導体基板上にAL合金膜を形成する工程、 f)該半導体基板上の該AL膜上からレーザー光を照射
する事によって、該AL合金膜を リフローする工程、 g)該AL合金膜、該チタンナイトライド膜及び該高融
点金属膜を選択エッチングする事 によってAL合金配線を形成する工程。 以上の工程よりなる事を特徴とするAL電極配線の平坦
化方法。
(1) In a method for planarizing Al electrode wiring on a semiconductor substrate, a) a step of forming an insulating film on the semiconductor substrate on which an element has been formed; b) selectively etching the insulating film to form a layer with the element; a step of forming a contact hole for connection; c) a step of forming a high melting point metal film on the semiconductor substrate; d) a step of forming titanium nitride pus on the semiconductor substrate; e) a step of forming a titanium nitride pus on the semiconductor substrate. f) reflowing the AL alloy film by irradiating the AL film on the semiconductor substrate with a laser beam; g) the AL alloy film and the titanium nitride film. and a step of forming an AL alloy wiring by selectively etching the high melting point metal film. A method for planarizing AL electrode wiring characterized by comprising the above steps.
(2)半導体基板上のAL電極配線の平坦化方法におい
て、 a)素子形成がおこなわれた該半導体基板上に絶縁膜を
形成する工程、 b)該絶縁膜を選択エッチングする事によって該素子と
接続を取るためのコンタクトホー ルを形成する工程、 c)該半導体基板上に第一の高融点金属膜を形成する工
程、 d)該半導体基板上にチタンナイトライド膜を形成する
工程、 e)該半導体基板上にAL合金膜を形成する工程、 f)該半導体基板上の該AL膜上からレーザー光を照射
する事によって、該AL合金膜を リフローする工程、 g)該AL合金膜上に、第二の高融点金属膜又はシリサ
イド膜を形成する工程、 h)該第二の高融点金属膜又は該シリサイド膜、該AL
合金膜、、該チタンナイトライ ド膿及び該第一高融点金属膜を選択エッチ ングする事によってAL合金配線を形成す る工程。 以上の工程よりなる事を特徴とするAL電極配線の平坦
化方法。
(2) A method for planarizing AL electrode wiring on a semiconductor substrate, which includes: a) forming an insulating film on the semiconductor substrate on which an element has been formed; b) selectively etching the insulating film to remove the element. a step of forming a contact hole for connection; c) a step of forming a first high melting point metal film on the semiconductor substrate; d) a step of forming a titanium nitride film on the semiconductor substrate; e) a step of forming a titanium nitride film on the semiconductor substrate; a step of forming an AL alloy film on the semiconductor substrate; f) a step of reflowing the AL alloy film by irradiating the AL film on the semiconductor substrate with a laser beam; g) a step of forming an AL alloy film on the semiconductor substrate; Step of forming a second high melting point metal film or silicide film, h) the second high melting point metal film or the silicide film, the AL
A step of forming an AL alloy wiring by selectively etching the alloy film, the titanium nitride pus, and the first high melting point metal film. A method for planarizing AL electrode wiring characterized by comprising the above steps.
JP26949589A 1989-10-17 1989-10-17 Method for flattening wiring of al electrode Pending JPH03131029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26949589A JPH03131029A (en) 1989-10-17 1989-10-17 Method for flattening wiring of al electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26949589A JPH03131029A (en) 1989-10-17 1989-10-17 Method for flattening wiring of al electrode

Publications (1)

Publication Number Publication Date
JPH03131029A true JPH03131029A (en) 1991-06-04

Family

ID=17473230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26949589A Pending JPH03131029A (en) 1989-10-17 1989-10-17 Method for flattening wiring of al electrode

Country Status (1)

Country Link
JP (1) JPH03131029A (en)

Similar Documents

Publication Publication Date Title
KR100243286B1 (en) Method for manufacturing a semiconductor device
KR960011865B1 (en) Manufacturing method of metal layer of semiconductor device
JP2578193B2 (en) Method for manufacturing semiconductor device
JPH05304149A (en) Fabrication of semiconductor device
JP2751223B2 (en) Semiconductor device and manufacturing method thereof
JPH03131029A (en) Method for flattening wiring of al electrode
JPH02197132A (en) Flattening process of aluminum electrode wiring
KR940005707B1 (en) Method of flattening aluminium electrode connectors
JPH02241032A (en) Wiring formation method
JPH02197131A (en) Flattening process of aluminum electrode wiring
JP2792510B2 (en) Method for manufacturing semiconductor device
JPH02170424A (en) Manufacture of semiconductor device
JPS62290128A (en) Manufacture of semiconductor device
JP2633573B2 (en) Method for manufacturing semiconductor device
JPH02215131A (en) Manufacture of semiconductor device
JPH02210833A (en) Manufacture of semiconductor device
JPS60189221A (en) Manufacture of semiconductor device
JPH05217940A (en) Manufacture of semiconductor device
JPH05166937A (en) Wiring formation
JPS61166143A (en) Manufacture of semiconductor device
JP2790156B2 (en) Method for manufacturing semiconductor device
JPH01276746A (en) Formation of wiring
JPH0691093B2 (en) Method for manufacturing semiconductor device
JPS63289842A (en) Formation of wiring
JPH0235769A (en) Semiconductor device