JPH03130B2 - - Google Patents
Info
- Publication number
- JPH03130B2 JPH03130B2 JP15375283A JP15375283A JPH03130B2 JP H03130 B2 JPH03130 B2 JP H03130B2 JP 15375283 A JP15375283 A JP 15375283A JP 15375283 A JP15375283 A JP 15375283A JP H03130 B2 JPH03130 B2 JP H03130B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- core wire
- wire
- aluminum
- steel wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 41
- 239000000843 powder Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 239000002131 composite material Substances 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000000853 adhesive Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 39
- 229910000831 Steel Inorganic materials 0.000 description 35
- 239000010959 steel Substances 0.000 description 35
- 229910052782 aluminium Inorganic materials 0.000 description 21
- 230000000694 effects Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000003832 thermite Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010981 turquoise Substances 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/04—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
- B21C37/042—Manufacture of coated wire or bars
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Wire Processing (AREA)
- Metal Extraction Processes (AREA)
Description
本発明は複合金属線の製造方法、特にアルミニ
ウム被覆鋼線(AS線)の如き複合金属線を製造
する方法に関する。
一般にAS被鋼線のような複合金属線を製造す
る場合に方法としては次の如き方法が知られ、ま
たは実施されている。
(1) 共引法
芯線に被覆金属の管をかぶせるなどして複合
母材を作成し、これをダイスで引く方法。
(2) クラツド法
芯線周上に被覆金属のテープを供給し(巻付
けて)圧接する方法。
(3) 溶融めつき法
芯線を溶融アルミニウム浴中を通してその表
面にアルミニウムを被着する方法。
(4) 粉末焼結法(アルモウエルド法)
芯線の周上にアルミニウム粉末を加熱焼結
し、圧延する方法。
(5) 前方張力付加押出法
前方張力付加のもとで芯線周上に被覆金属を
ビレツト状のものから押出被覆する方法。
(6) 粉末引抜法
芯線の周りに存在する被覆金属の粉末を流体
潤滑引抜きにおける潤滑剤の場合と同様に高圧
化して芯線と共にダイスに引き込み、芯線の周
りに前記粉末を圧接する方法。(特開昭55−
82610号公報)。
これらの方法の中で、製造効率を考慮した場合
に有利な方法は(3)の溶融めつき法であるが、この
方法ではアルミニウムを溶融し、めつき浴として
取扱う関係上、溶融めつき浴の管理面及び設備面
での問題が多く、また、アルミニウム被覆鋼線を
対象とした場合には、鋼とアルミニウムとの間に
硬くて脆い金属間化合物の層を生じるなど品質面
での問題もある。
これらのことから、溶融めつき法と同等もしく
は、それに次ぐ製造効率を有し、且つ上記した溶
融めつき法特有の問題を解消することができる方
法として(4)の粉末焼結法及び(6)の粉末引抜法の検
討がなされている。
しかしながら、(4)の粉末焼結法は品質管理面か
ら高価な設備及び複雑な技術を要するという欠点
がある。また、(6)の方法は、被覆金属粉末がダイ
ス孔内に入れば高い内圧を発生して芯線との間に
接着がおこり、被覆複合化が行われるが、粉末と
芯線との相対すべりによる摩擦力だけで粉体をダ
イス入口に強く引込む作用に乏しく、また、ダイ
ス孔内に引込まれてダイス孔内で複合化されても
連続性が悪くピンホール等の欠陥を生ずると共に
接着性が不十分になる欠点を有する。
本発明の目的は前記した従来技術の欠点を解消
し、芯線に対して金属粉末を連続的に無欠陥で接
着被覆させるための複合金属線の製造方法を提供
することにある。
本発明は、表面を清浄処理された芯線を酸化雰
囲気中で加熱し、その表面に酸化膜を形成する工
程、該芯線の金属より酸化し易い被覆用金属の粉
末中に前記加熱芯線をそのまま、または更に加熱
した後導入し、必要ならば加熱し、芯線表面の酸
化物を被覆金属粉末で還元する反応を生じさせ
て、芯線表面に該粉末を接着し易くする工程、及
び芯線と粉末との摩擦粘着力により粉末を加工工
具入口に引込むと同時に芯線表面に粉末を被覆複
合化するための冷間または加熱状態での加工を施
こす工程からなることを特徴とする複合金属線の
製造方法である。
一般に、金属同志の接着は接着すべき表面を清
浄処理することにより活性化させた状態で行うの
が普通である。従つて、従来の粉末焼結法及び粉
末引抜法においても、被覆金属との接着に際して
は、それぞれに先立つて芯線を清浄処理し、更
に、必要ならば、芯線を不活性雰囲気中で加熱し
て、その表面に酸化膜が形成するのを防ぎながら
接着性の向上をはかつている。
本発明においても勿論芯線表面の清浄処理を行
うが、これらの従来の接着とは全く異なり、むし
ろ芯線を積極的に酸化して、その表面に数10〜数
1000Å程度の均一酸化膜を形成し、この芯線表面
の酸化物を、それより酸化し易い(酸化物生成エ
ネルギーの低い)被覆金属の粉末で還元させる化
学反応(鉄とアルミニウムの場合には「テルミツ
ト反応」と呼ばれている反応)を利用して化学的
に従来以上に接着し易くし、同時に引抜き、圧
延、スウエージング等により(必要ない加熱状態
で)圧接接合する方法である。従つて、本発明の
方法によれば芯線と被覆金属との接着が容易且つ
確実になる。芯線表面に形成される酸化膜につい
ては、接着状態の均一化、ひいては製品における
品質の均一化の面から出来るだけ均一な厚さ及び
質にすることが望ましい。このためには、芯線を
単に酸化雰囲気中で加熱処理するだけでなく、そ
の前に清浄処理することが非常に効果的である。
本発明の方法においては、芯線としては例えば
鉄系金属及び銅系金属の線が用いられる。また、
これらの金属が表面を形成している複合線を芯線
として用いることもできる。
本発明に用いられる還元性被覆金属としては、
例えば、Al、Mg、Zn、Sn、Ti、Zr、Be等の粉
末が用いられる。
酸化処理は、湿式の陽極酸化処理、化学薬品に
よる化学的酸化処理でもよいが、形成される酸化
膜は10000Å未満であることが望ましい。酸化処
理としては、鋼線の場合には、空気中で150〜500
℃保度で加熱することが好ましく、銅線の場合に
は、空気中で150〜350℃程度が好ましい。
酸化された芯線を被覆金属粉末中に導入・走行
させる場合には、芯線と粉末との摩擦粘着力で一
般に粉末は芯線と共に移動し、次に配置されてい
る加工工具の方に引込まれるが、その引込み量、
連続性は必ずしも満足ではない。この際に、芯線
が加熱酸化されていると引込み効果が良いことを
種々の実験の結果見出した。加熱温度は300〜400
℃が最適、200〜500℃でも良好な結果が得られ、
150℃以上であれば効果が得られる。
鋼線をこれらの温度に加熱すると、温度によつ
て淡黄色から黄褐色、紫青色、紫紺色と酸化され
る。この状態で鋼線をアルミニウム粉末中を通過
させると鋼線上へアルミニウム粉末が薄く全面に
接着被覆されて、ダイス等の工具の入口に充分な
量のアルミニウムを引込む。
この接着は鋼線上の酸化皮膜がアルミニウム粉
末にテルミツト反応で還元され、その化学反応で
仮接着し、表面がアルミニウム粉末で粗面となる
ので他のアルミニウム粉末との摩擦力を増加する
ためと考えられる。
この際、鋼線とアルミニウムの温度が高ければ
テルミツト反応が起り易くなるため、高温で行う
のが効果が大きい。
この温度は酸化処理時の鋼線の温度を利用する
と操作が簡単になり、経済的かつ十分な効果が得
られる。
また、鋼線の方だけを加熱してあれば十分な効
果が得られる。アルミニウム粉末のみを加熱して
も勿論よいが、鋼線だけ加熱する方が効果的かつ
経済的である。
アルミニウム粉末が付着した鋼線がダイス等の
加工工具に引込まれると、工具の入口角と鋼線の
なす楔状の角度で流体力学的楔効果が発生して強
く引込まれると共に、工具内圧力でアルミニウム
粉末が変形、接着被覆する結果となる。
この場合にも150℃以上の高温になるとアルミ
ニウム粉末の変形抵抗が減少し、界面の反応も促
進されるために、接着被覆が良くなり、表面状況
も良好になる。加熱温度は200〜500℃が最適であ
るが、それ以上であつても差支えない。しかしな
がら、温度が高過ぎるとAlとFeの金属間化合物
が生ずるために550℃位迄とするのが望ましい。
本発明で加工工具として用いられるダイスとし
ては一般に伸線、伸管の製造に用いられる円錐
型、トランペツト型(コンベツクス型)、円弧型、
コンケイブ型、Sigmoidal(シクモイダル)型等
のダイスが用いられる。さらに、流体潤滑伸線用
ダイスも用いることができる。
また、加工工具としては、ローラダイス、ター
クスヘツド、駆動される圧延ロール、スウエージ
ヤー等も用いられる。
この工程の熱源としては、加熱酸化時の温度を
アルミニウム粉末と芯線との仮接着工程と共に利
用することができる。
アルミニウム粉末と鋼線を接触付着とダイス中
への引込みを同時に行うことができ、このように
行うことが好ましい。
加熱源は、直接通電、高周波又は低周波の誘導
加熱、電気炉加熱、ガス燃焼炉による加熱等を用
いることができる。
酸化加熱は、酸素、酸素と中性ガスとの混合ガ
ス、酸素と燃焼ガスの混合ガス、空気等の酸化性
雰囲気中で行う。
次に、添付図面を参照しつつ本発明の実施例を
説明する。
第1図は本発明の一態様を示す説明図であつ
て、1は鋼線等の芯線で、この実施例では直径
3.8mmの鋼線を用いた。2は粉末材料でアルミニ
ウム粉末を用いた。3はアプローチ全角16゜、ベ
アリング内径3.8mmの極く一般に用いられている
普通のダイスである。4は加熱炉である。
鋼線1をパークロロエチレンによつて脱脂を行
い、径0.5mmのステンレス素線からなるワイヤホ
イルで研磨した後、加熱炉4中で酸化雰囲気中に
て400℃に加熱する。次いで、鋼線1をアルミニ
ウム粉末槽5内に導入し、この槽内で、アルミニ
ウム粉末2が鋼線1の表面の酸化鉄を還元し、鋼
線表面を化学的に反応し、アルミニウム粉末が鋼
線表面に弱く接着する。
鋼線進向方向の粉末槽5の他端にダイス3が設
けられており、アルミニウム粉末2は鋼線1との
摩擦粘着力と、上記酸化物還元反応による接着作
用及び流体力学的流動作用によつてダイス3のベ
アリング内に引き込まれ、ここで鋼線周上にアル
ミニウム粉末が圧接被覆され、アルミニウム被覆
鋼線6となつてダイス3から出てくる。
この作業中断線は無く、製造されたアルミニウ
ム被覆鋼線の外径は3.8mmであつた。
第2図は本発明の他の態様を示す説明図であつ
て、系全体を竪型にしてある。なお、記号は第1
図と同様である。この例の場合は、アルミニウム
粉末2が重力作用と鋼線1による引込み作用のた
めダイス3内への引込み量が多くなり、被覆が完
全になると共に厚くなるという効果がある。
この場合、アルミニウム粉末2及び/又はホツ
パー(槽)5に振動(好ましくは超音波振動)を
加えるとさらに好ましい効果を得ることができ
る。
次に、従来法である前方張力押出法と第1図に
示す本発明による方法によつて作つた夫々直径5
mmのアルミニウム被覆鋼線へのアルミニウムの接
着性を評価するために圧潰試験を行い、鋼線から
アルミニウムを剥離する荷重を比較し、次表に示
した。
The present invention relates to a method for manufacturing a composite metal wire, particularly a method for manufacturing a composite metal wire such as an aluminum coated steel wire (AS wire). Generally, the following methods are known or practiced when manufacturing composite metal wires such as AS steeled wires. (1) Co-pulling method A method of creating a composite base material by covering the core wire with a coated metal tube, etc., and then drawing this with a die. (2) Clad method A method in which a coated metal tape is supplied (wound) around the core wire and pressure-bonded. (3) Hot-dip galvanizing method A method in which a core wire is passed through a molten aluminum bath and aluminum is coated on its surface. (4) Powder sintering method (Almoweld method) A method in which aluminum powder is heated and sintered around a core wire and then rolled. (5) Extrusion method with forward tension applied A method of extruding coating metal from a billet-shaped material around the core wire under forward tension. (6) Powder drawing method A method in which the coated metal powder present around the core wire is brought under high pressure, similar to the lubricant in fluid lubrication drawing, and drawn into a die together with the core wire, and the powder is pressed around the core wire. (Unexamined Japanese Patent Publication No. 1983-
Publication No. 82610). Among these methods, the most advantageous method in terms of production efficiency is the hot-melting method (3), but since this method melts the aluminum and handles it as a plating bath, the hot-melting bath is not used. There are many problems in terms of management and equipment, and when aluminum-coated steel wire is used, there are also quality problems such as the formation of a layer of hard and brittle intermetallic compounds between the steel and aluminum. be. For these reasons, the powder sintering method (4) and (6) are methods that have manufacturing efficiency equivalent to or second to the melt plating method and can solve the above-mentioned problems specific to the melt plating method. ) powder extraction method has been investigated. However, the powder sintering method (4) has the drawback of requiring expensive equipment and complicated technology from the viewpoint of quality control. In addition, in method (6), when the coated metal powder enters the die hole, high internal pressure is generated and adhesion occurs between the coated metal powder and the core wire, resulting in a composite coating, but due to the relative slippage between the powder and the core wire. Frictional force alone does not have the ability to forcefully draw the powder into the die entrance, and even if the powder is drawn into the die hole and becomes composite within the die hole, the continuity is poor, causing defects such as pinholes, and the adhesion is poor. Has enough drawbacks. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a method for manufacturing a composite metal wire in which a core wire is continuously coated with metal powder without defects. The present invention includes a step of heating a core wire whose surface has been cleaned in an oxidizing atmosphere to form an oxide film on the surface, and placing the heated core wire as it is in powder of a coating metal that is more easily oxidized than the metal of the core wire. Alternatively, the step of introducing the powder after further heating and heating if necessary to cause a reaction to reduce the oxide on the surface of the core wire with the coated metal powder to facilitate adhesion of the powder to the surface of the core wire, and the step of bonding the powder to the core wire. A method for manufacturing a composite metal wire, which comprises the steps of drawing powder into a processing tool inlet using frictional adhesive force and at the same time performing processing in a cold or heated state to coat and composite the powder on the surface of the core wire. be. Generally, metals are bonded together after the surfaces to be bonded are cleaned and activated. Therefore, even in the conventional powder sintering method and powder drawing method, the core wire is cleaned before bonding with the coated metal, and if necessary, the core wire is heated in an inert atmosphere. This improves adhesion while preventing the formation of an oxide film on the surface. In the present invention, of course, the surface of the core wire is cleaned, but it is completely different from these conventional adhesives. Rather, the core wire is actively oxidized, and the surface has several tens to several
A chemical reaction that forms a uniform oxide film of about 1000 Å and reduces the oxide on the surface of the core wire with powder of the coating metal, which is easier to oxidize (lower oxide formation energy) (in the case of iron and aluminum, it is called "thermite"). This is a method of making bonding chemically easier than before using a reaction known as ``reaction'', and at the same time press-bonding them by drawing, rolling, swaging, etc. (without unnecessary heating). Therefore, according to the method of the present invention, adhesion between the core wire and the covering metal becomes easy and reliable. As for the oxide film formed on the surface of the core wire, it is desirable to make the thickness and quality as uniform as possible from the viewpoint of uniformity of adhesion and uniformity of product quality. For this purpose, it is very effective not only to simply heat-treat the core wire in an oxidizing atmosphere, but also to perform a cleaning treatment before that. In the method of the present invention, wires made of iron-based metals and copper-based metals, for example, are used as the core wires. Also,
A composite wire whose surface is made of these metals can also be used as a core wire. The reducible coating metal used in the present invention includes:
For example, powders of Al, Mg, Zn, Sn, Ti, Zr, Be, etc. are used. The oxidation treatment may be wet anodic oxidation treatment or chemical oxidation treatment using chemicals, but it is desirable that the oxide film formed be less than 10,000 Å. As for oxidation treatment, in the case of steel wire, 150 to 500
It is preferable to heat the wire at a constant temperature of 150 to 350°C in the air in the case of copper wire. When introducing and running an oxidized core wire into coated metal powder, the powder generally moves with the core wire due to the frictional adhesive force between the core wire and the powder, and is drawn toward the next processing tool. , its pulling amount,
Continuity is not always satisfactory. At this time, as a result of various experiments, it was found that the drawing effect is better if the core wire is heated and oxidized. Heating temperature is 300-400
℃ is optimal, good results can be obtained even at 200-500℃,
The effect can be obtained if the temperature is 150℃ or higher. When steel wire is heated to these temperatures, it oxidizes from pale yellow to yellowish brown, purple-blue, and dark-purple depending on the temperature. When the steel wire is passed through the aluminum powder in this state, the entire surface of the steel wire is coated with a thin layer of adhesive, and a sufficient amount of aluminum is drawn into the entrance of a tool such as a die. This adhesion is thought to be due to the fact that the oxide film on the steel wire is reduced to the aluminum powder by a thermite reaction, and the chemical reaction causes temporary adhesion, and the surface becomes rough with the aluminum powder, increasing the frictional force with other aluminum powders. It will be done. At this time, if the temperature of the steel wire and aluminum is high, the thermite reaction is likely to occur, so it is most effective to carry out the process at a high temperature. By using the temperature of the steel wire during the oxidation treatment, the operation becomes simple and economical and sufficient effects can be obtained. Further, sufficient effects can be obtained by heating only the steel wire. Although it is of course possible to heat only the aluminum powder, it is more effective and economical to heat only the steel wire. When a steel wire with aluminum powder adhered to it is drawn into a processing tool such as a die, a hydrodynamic wedge effect occurs at the wedge-shaped angle between the entrance angle of the tool and the steel wire, causing the wire to be strongly drawn in and the pressure inside the tool to increase. This results in deformation of the aluminum powder and adhesive coating. In this case as well, when the temperature reaches a high temperature of 150° C. or higher, the deformation resistance of the aluminum powder decreases and the reaction at the interface is promoted, resulting in better adhesive coating and better surface condition. The optimal heating temperature is 200 to 500°C, but higher temperatures are acceptable. However, if the temperature is too high, intermetallic compounds of Al and Fe will occur, so it is desirable to keep the temperature up to about 550°C. The dies used as processing tools in the present invention include conical, trumpet (convex), arc-shaped, and
Concave type, sigmoidal type, etc. dies are used. Furthermore, a die for fluid lubrication wire drawing can also be used. Further, as processing tools, roller dies, turquoise heads, driven rolling rolls, swagers, etc. are also used. As a heat source for this step, the temperature during heating and oxidation can be used together with the step of temporarily adhering the aluminum powder and the core wire. It is possible and preferred to contact the aluminum powder and the steel wire and draw them into the die at the same time. As the heating source, direct energization, high-frequency or low-frequency induction heating, electric furnace heating, heating using a gas combustion furnace, etc. can be used. Oxidative heating is performed in an oxidizing atmosphere such as oxygen, a mixed gas of oxygen and a neutral gas, a mixed gas of oxygen and combustion gas, or air. Next, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an explanatory diagram showing one embodiment of the present invention, in which 1 is a core wire such as a steel wire, and in this embodiment, the diameter
A 3.8mm steel wire was used. In No. 2, aluminum powder was used as a powder material. 3 is a very commonly used ordinary die with a full approach angle of 16 degrees and a bearing inner diameter of 3.8 mm. 4 is a heating furnace. The steel wire 1 is degreased with perchlorethylene, polished with a wire foil made of stainless steel wire with a diameter of 0.5 mm, and then heated to 400° C. in an oxidizing atmosphere in a heating furnace 4. Next, the steel wire 1 is introduced into an aluminum powder tank 5, and in this tank, the aluminum powder 2 reduces iron oxide on the surface of the steel wire 1 and chemically reacts on the surface of the steel wire, so that the aluminum powder turns into steel. Weakly adheres to the wire surface. A die 3 is provided at the other end of the powder tank 5 in the direction in which the steel wire advances, and the aluminum powder 2 has a frictional adhesive force with the steel wire 1, an adhesive action due to the oxide reduction reaction, and a hydrodynamic flow action. Therefore, it is drawn into the bearing of the die 3, where the aluminum powder is pressure-coated onto the circumference of the steel wire, and it emerges from the die 3 as an aluminum-coated steel wire 6. There was no work interruption line, and the outer diameter of the aluminum-coated steel wire produced was 3.8 mm. FIG. 2 is an explanatory diagram showing another embodiment of the present invention, in which the entire system is vertical. Note that the symbol is the first
It is similar to the figure. In this example, the amount of aluminum powder 2 drawn into the die 3 increases due to the action of gravity and the drawing action of the steel wire 1, resulting in the effect that the coating becomes complete and thick. In this case, a more favorable effect can be obtained by applying vibration (preferably ultrasonic vibration) to the aluminum powder 2 and/or the hopper (tank) 5. Next, 5 mm diameter tubes were prepared by the conventional forward tension extrusion method and the method according to the present invention as shown in FIG.
A crush test was conducted to evaluate the adhesion of aluminum to mm aluminum coated steel wire, and the load required to peel aluminum from the steel wire was compared, and the results are shown in the table below.
【表】
この結果から明らかなように、本発明方法で製
造したアルミニウム被鋼線は、従来の前方張力付
加押出法で製造したものと同等又は以上の鋼線と
アルミニウムとの接着性を有している。
以上、本発明方法を芯線に適用する場合につい
て説明したが、本発明は、その他、パイプ、棒等
にも適用することができる。
更にまた、前記方法で得た複合線の上に、表面
酸化処理を除く、それ以後の方法を二回以上繰返
して行い、欠陥が少なく、被覆厚の厚い複合線を
得ることもできる。この場合、二回目には異種金
属粉末を用い、多層複合線を得ることもできる。
また、最外層の被覆層としてはポリ塩化ビニル等
のプラスチツク粉末を前記の方法によつて被覆
し、絶縁性又は防蝕性複合線を得ることもでき
る。
以上のように本発明によるときは従来方法の欠
点を解消し、連続的に無欠陥で接着性の良い被覆
層を有する複合金属線を製造することができると
共に、以下の効果も有するものである。
(1) 本発明によるときは、芯線表面を酸化還元反
応により被覆金属粉末が鋼線と軽く接着し、被
覆金属粉末のダイス中への引込み量を多くする
(被覆厚を大にする)と共に、ダイス、ロール
等の加圧力による接着被覆を容易にすることが
できる。従つて、あえて流体潤滑ダイス方式に
よる引抜きを用いなくても普通のダイスを使用
して複合線を得ることができる。
(2) 普通ダイスを用いる場合には引抜き力が小さ
くてすむので、軟質鋼線へのアルミニウム被覆
が可能となり、製造範囲を広くすることができ
る。
(3) 装置の構成を簡単にできる。[Table] As is clear from this result, the aluminum steel wire produced by the method of the present invention has the same or better adhesion between steel wire and aluminum than that produced by the conventional forward tension extrusion method. ing. Although the case where the method of the present invention is applied to a core wire has been described above, the present invention can also be applied to other pipes, rods, etc. Furthermore, it is also possible to obtain a composite wire with few defects and a thick coating by repeating the subsequent methods, excluding the surface oxidation treatment, twice or more on the composite wire obtained by the above method. In this case, a multilayer composite wire can also be obtained by using different metal powders in the second pass.
Further, as the outermost coating layer, a plastic powder such as polyvinyl chloride can be coated by the method described above to obtain an insulating or corrosion-resistant composite wire. As described above, the present invention eliminates the drawbacks of the conventional methods and makes it possible to continuously produce a composite metal wire without defects and having a coating layer with good adhesive properties, and also has the following effects. . (1) According to the present invention, the coated metal powder lightly adheres to the steel wire by an oxidation-reduction reaction on the surface of the core wire, and the amount of the coated metal powder drawn into the die is increased (increasing the coating thickness). Adhesive coating can be easily applied using pressure applied by dies, rolls, etc. Therefore, a composite wire can be obtained using an ordinary die without using a drawing method using a fluid-lubricated die. (2) When a normal die is used, the drawing force is small, so it is possible to coat soft steel wire with aluminum, and the range of production can be expanded. (3) The configuration of the device can be simplified.
第1図は本発明の一態様を示す説明図、第2図
は他の態様を示す説明図である。
1……芯線、2……アルミニウム粉末、3……
ダイス、4……加熱炉、5……アルミニウム粉末
槽、6……アルミニウム被鋼線。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing another embodiment. 1... Core wire, 2... Aluminum powder, 3...
Dice, 4...Heating furnace, 5...Aluminum powder tank, 6...Aluminum steel wire.
Claims (1)
熱してその表面に均一な酸化膜を形成する工程、
前記芯線を芯線金属よりも酸化し易い被覆用金属
の粉末中に導入し芯線表面の酸化物を被覆金属粉
末で還元する反応を起こさせ、芯線表面に粉末を
接着し易くする工程、及び芯線と被覆金属粉末と
の摩擦接着力により粉末を加工工具入口に引込む
と同時に芯線表面に粉末を被覆複合化するための
冷間または加熱状態で加工する工程からなること
を特徴とする複合金属線の製造方法。1. A step of heating a core wire whose surface has been cleaned in an oxidizing atmosphere to form a uniform oxide film on its surface,
A step of introducing the core wire into powder of a coating metal that is more easily oxidized than the core wire metal and causing a reaction to reduce oxides on the surface of the core wire with the coating metal powder to facilitate adhesion of the powder to the surface of the core wire; Manufacture of a composite metal wire characterized by a process of drawing the powder into the inlet of a processing tool by frictional adhesive force with the coated metal powder and simultaneously processing it in a cold or heated state to coat and composite the powder on the surface of the core wire. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15375283A JPS6046837A (en) | 1983-08-23 | 1983-08-23 | Manufacture of composite metalic wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15375283A JPS6046837A (en) | 1983-08-23 | 1983-08-23 | Manufacture of composite metalic wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6046837A JPS6046837A (en) | 1985-03-13 |
JPH03130B2 true JPH03130B2 (en) | 1991-01-07 |
Family
ID=15569340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15375283A Granted JPS6046837A (en) | 1983-08-23 | 1983-08-23 | Manufacture of composite metalic wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6046837A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102513730A (en) * | 2012-01-04 | 2012-06-27 | 天津大学 | Aluminum-magnesium deoxidized welding wire used for carbon dioxide arc welding and preparation method thereof |
-
1983
- 1983-08-23 JP JP15375283A patent/JPS6046837A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6046837A (en) | 1985-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4125924A (en) | Method of producing composite metal pipe | |
US3800405A (en) | Method for producing copper-clad aluminum wire | |
US5249731A (en) | Process for producing aluminum coated metallic material | |
JPH03130B2 (en) | ||
US5924194A (en) | Method of producing an overhead contact wire for supplying power to electrically driven vehicles | |
CN116441345A (en) | Processing method of copper-clad aluminum composite material | |
JPS6038808B2 (en) | Manufacturing method of copper coated composite wire | |
US4391854A (en) | Method of making a bearing material containing an aluminum base alloy | |
JP2000005816A (en) | Multi-wound stainless steel pipe | |
JP2000113730A (en) | Compound lightweight ribbon wire, insulated compound lightweight ribbon wire, and manufacture thereof | |
JPH07106412B2 (en) | High conductivity copper coated steel trolley wire manufacturing method | |
JP3830010B2 (en) | Manufacturing method of steel wire for gas shielded arc welding | |
JP3517347B2 (en) | Method of manufacturing copper-coated steel wire | |
JPS6046809A (en) | Manufacture of composite metallic wire | |
JPS619920A (en) | Production of irregular-sectioned composite metallic wire and combination die device used in said production | |
JPH0242037B2 (en) | ||
JPS62166088A (en) | Production of composite metallic strip | |
JPS60234719A (en) | Manufacture of composite metallic wire | |
JPS6018571B2 (en) | Manufacturing method of aluminum contact wire with steel core | |
JP2002270039A (en) | Copper-clad metal wire and its manufacturing method | |
JP3442617B2 (en) | Corrugated steel pipe and corrugated steel pipe armored cable | |
JP4646292B2 (en) | Manufacturing method of double-rolled steel pipe | |
JPH0647130B2 (en) | Method for manufacturing electrode wire for wire cut electric discharge machining | |
JPS56148410A (en) | Manufacture of steel wire coated with stainless steel layer | |
JPH04237531A (en) | Manufacture of copper clad steel wire |