JPH04237531A - Manufacture of copper clad steel wire - Google Patents

Manufacture of copper clad steel wire

Info

Publication number
JPH04237531A
JPH04237531A JP466491A JP466491A JPH04237531A JP H04237531 A JPH04237531 A JP H04237531A JP 466491 A JP466491 A JP 466491A JP 466491 A JP466491 A JP 466491A JP H04237531 A JPH04237531 A JP H04237531A
Authority
JP
Japan
Prior art keywords
wire
steel wire
copper
pipe
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP466491A
Other languages
Japanese (ja)
Inventor
Kiyoshi Oka
潔 岡
Hitoshi Tashiro
均 田代
Hiroshi Sato
洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP466491A priority Critical patent/JPH04237531A/en
Publication of JPH04237531A publication Critical patent/JPH04237531A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To suppress slippage on the boundary part during drawing and to improve adhesive strength by specifying a ruggedness of the surface of a core steel wire. CONSTITUTION:The 3.0-5.5mmphi steel wire on the surface of which 1-10mum ruggedness are given to the >=40% surface area is used as a core material. A copper tape being 0.1-2.0mm in thickness and parallel with the lengthwise direction of the core stock is formed into a pipe having an inner diameter larger than the wire diameter of the steel wire by 3-5mm and after the butted part is welded, the clearance between the core stock and the pipe is eliminated by diameter contracting work. Taking the wire diameter of the clad steel wire without clearance for a reference, cold drawing of a reduction of area, 5-15% per pass is repeated and the drawing is executed so that the total reduction of area exceeds 50%. Consequently, the boundary part between copper and steel indicates a favorable adhesion and is strong in fatigue strength.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、クラッド層が厚く、か
つ疲労特性の高い銅クラッド鋼線の製造方法に関するも
のである。本発明により得られた銅クラッド鋼線は、Z
nめっき、Niめっき等を施すことにより高耐食性ワイ
ヤが容易に製造できるほか、導電率を高めることにより
導電線として利用することもできる。本発明により得ら
れた銅クラッド鋼線は銅の導電性と鋼の強度特性等を利
用する様々な用途のワイヤに応用することが可能である
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper-clad steel wire having a thick cladding layer and high fatigue properties. The copper clad steel wire obtained by the present invention has Z
By applying N plating, Ni plating, etc., a highly corrosion-resistant wire can be easily manufactured, and by increasing the conductivity, it can also be used as a conductive wire. The copper-clad steel wire obtained according to the present invention can be applied to wires for various uses that utilize the conductivity of copper and the strength characteristics of steel.

【0002】0002

【従来の技術】現在、鋼線に銅をクラッドする方法とし
ては、電気めっきにより銅を厚付けする電気めっき法、
鋼線に銅テープを溶接被覆後、冷間伸線する造管クラッ
ド法、鋼線を銅パイプに挿入し、冷間伸線するパイプ挿
入法、鋼ビレットの回りに銅を鋳込み、熱間圧延によっ
て線材化するビレット熱間圧延法、鋼線に溶銅を付着さ
せ、凝固させる溶湯浸漬法、等が考えられている。この
うち電気めっき法、造管クラッド法、溶湯浸漬法が工業
的に多く利用されている。
[Prior Art] Currently, methods for cladding steel wire with copper include electroplating, which thickens copper by electroplating;
Pipe cladding method in which steel wire is welded and coated with copper tape and then cold drawn; pipe insertion method in which steel wire is inserted into a copper pipe and cold drawn; copper is cast around a steel billet and hot rolled The billet hot rolling method, in which steel wires are made into wire rods, and the molten metal immersion method, in which molten copper is attached to steel wires and solidified, are being considered. Among these, the electroplating method, the pipe-making cladding method, and the molten metal immersion method are often used industrially.

【0003】これらのクラッド技術はそれぞれ特徴があ
る。例えば、電気めっき法の場合は薄く均一なクラッド
層が得られ、密着性が良好であるが、厚めっきに時間が
かかり、さらに処理線径が比較的細いために生産性が非
常に低く、近年では公害問題となっている廃液の処理が
難しく、コスト高になっている。溶湯浸漬法及びビレッ
ト熱間圧延法による場合は、めっき法に比べると厚い被
覆が可能であるが、クラッド層の厚みが不均一で合金層
の生成などの問題も起き易い。造管クラッド法とパイプ
挿入法の場合は、クラッド層の厚みを厚くでき、安価に
製造することが可能であるが、クラッド層の密着性が弱
いために伸線加工時に鋼線とクラッド層の境界部で滑り
を起こしたり、バルジ変形を起こすなどの問題が発生し
やすい。
[0003] Each of these cladding techniques has its own characteristics. For example, in the case of electroplating, a thin and uniform cladding layer can be obtained with good adhesion, but thick plating takes time and the processed wire diameter is relatively small, resulting in very low productivity. However, it is difficult to treat waste liquid, which is a pollution problem, and the cost is high. When using the molten metal dipping method and the billet hot rolling method, a thicker coating is possible than when using the plating method, but the thickness of the cladding layer is non-uniform and problems such as the formation of an alloy layer are likely to occur. In the case of the pipe manufacturing cladding method and the pipe insertion method, the thickness of the cladding layer can be made thicker and manufacturing is possible at low cost. Problems such as slippage and bulge deformation at boundaries are likely to occur.

【0004】本発明にかかわる造管クラッド法では、密
着性を向上させるための種々の手段が提案されている。 例えば、特開昭61−154777号公報では、予め芯
材表面にクラッド金属と同種の金属をめっきする方法を
提案している。しかしこの方法ではめっきのための設備
が大きくなり、製造法の簡便さ、低コストなど造管クラ
ッド法のメリットが十分得られていない。また特開平1
−245913号公報では、ブラッシングにより芯材表
面を荒すことを提案しているが、ブラッシングによりつ
けられた引き掻き疵は、密着後にクラッド層と芯材との
境界部に小さなボイドができ易い原因となり、このボイ
ドが仕上がり線での疲労特性を低下させるため、ロープ
や電線及び導線として使用する場合には、熱処理などの
工程を付加する必要がある。さらにブラッシングでは、
引き掻きにより表面が深く削られるために、0.1mm
程度の厚みの薄い銅テープをクラッドすることはできな
い。
[0004] In the pipe-making cladding method according to the present invention, various means have been proposed for improving adhesion. For example, Japanese Unexamined Patent Publication No. 154777/1984 proposes a method in which the surface of the core material is plated with the same type of metal as the cladding metal. However, this method requires large equipment for plating, and the advantages of the pipe cladding method, such as the simplicity of the manufacturing method and low cost, are not fully obtained. Also, JP-A-1
-245913 proposes roughening the surface of the core material by brushing, but the scratches caused by brushing tend to cause small voids to form at the boundary between the cladding layer and the core material after adhesion. Since these voids deteriorate the fatigue properties of the finished wire, it is necessary to add a process such as heat treatment when using it as a rope, electric wire, or conducting wire. Furthermore, brushing
0.1 mm because the surface is deeply scraped by scratching.
It is not possible to clad a thin copper tape with a thickness of

【0005】[0005]

【発明が解決しようとする課題】前記したように造管ク
ラッド法によれば、クラッド層の肉厚を厚くでき、かつ
冷間加工のみで得られるために、安価に製造することが
可能であるが、クラッド層の密着性が弱いために伸線加
工時に鋼線とクラッド層の境界部で滑りを起こしたり、
バルジ変形を起こすなどの問題が発生し易く、密着性を
改善するために、ブラッシングして引き掻き疵を付ける
と、密着後にクラッド層と芯材との境界部に小さなボイ
ドが発生し、これが仕上がり線での疲労特性を劣化させ
るなどの問題が起きていた。
[Problems to be Solved by the Invention] As mentioned above, according to the pipe manufacturing cladding method, the thickness of the cladding layer can be increased, and it can be manufactured at low cost because it can be obtained only by cold working. However, due to the weak adhesion of the cladding layer, slipping may occur at the boundary between the steel wire and the cladding layer during wire drawing.
Problems such as bulge deformation tend to occur, and if you brush and scratch to improve adhesion, small voids will occur at the boundary between the cladding layer and the core material after adhesion, and this will cause problems in the finished product. Problems such as deterioration of the fatigue characteristics of wires occurred.

【0006】本発明者らは前記の問題点を解決するため
に多くの実験を行った結果、伸線時の境界部の滑りは表
面凹凸が大きいほど抑制できるが、疲労試験でのクラッ
ドした銅の剥離は、表面凹凸が大きくなりすぎると密着
性が低下し、疲労特性が劣化することを見出した。本発
明は、鋼線の表面凹凸の大きさには最適値が存在し、こ
の場合の加工条件を明確化することにより、伸線時の銅
と鋼の境界部の滑りを抑制し、同時に境界部の密着性を
向上させることにより仕上げ線径での銅クラッド鋼線の
疲労特性の改善を図ろうとするものである。
The present inventors conducted many experiments to solve the above problems, and found that slippage at the boundary during wire drawing can be suppressed as the surface unevenness increases; It has been found that when the surface irregularities become too large, the adhesion decreases and the fatigue properties deteriorate. In the present invention, there is an optimum value for the size of the surface unevenness of the steel wire, and by clarifying the processing conditions in this case, it is possible to suppress slippage at the boundary between copper and steel during wire drawing, and at the same time The aim is to improve the fatigue characteristics of copper-clad steel wire at the finished wire diameter by improving the adhesion of the parts.

【0007】[0007]

【課題を解決するための手段】本発明はこのような技術
的課題を解決するために創案されたもので、芯材に鋼線
を用い、その周囲に銅テープをパイプ状に成形し、その
突合せ部をTIG溶接した後、パイプと芯材を縮径加工
して接合させることからなる銅クラッド鋼線の製造に際
し、表面に1μm以上10μm以下の凹凸を表面積の4
0%以上の部分に付与した線径3.0mm以上5.5m
m以下の鋼線を芯材とし、この芯材の長手方向に縦ぞえ
にした厚さ0.1mm以上2.0mm以下の銅テープを
、鋼線の線径より3.0mm以上5.0mm以下大きい
内径をもったパイプ状に成形し、その突合せ部を溶接し
た後、芯材とパイプの隙間をなくし、隙間のない状態で
のクラッド鋼線の線径を基準にして1パス減面率5%以
上15%以下の冷間伸線を繰り返し、合計の減面率が5
0%以上となるように伸線加工することを特徴とする銅
クラッド鋼線の製造方法である。
[Means for Solving the Problems] The present invention was devised in order to solve the above technical problem, and it uses a steel wire as the core material, and a copper tape is formed around it into a pipe shape. When manufacturing a copper clad steel wire, which consists of TIG welding the butt part and then reducing the diameter of the pipe and core material and joining them, the surface is made with irregularities of 1 μm or more and 10 μm or less, making up 40% of the surface area.
Wire diameter of 3.0mm or more and 5.5m attached to 0% or more part
m or less steel wire as a core material, and a copper tape with a thickness of 0.1 mm or more and 2.0 mm or less, which is vertically aligned in the longitudinal direction of this core material, is 3.0 mm or more and 5.0 mm or more than the wire diameter of the steel wire. The following is formed into a pipe shape with a large inner diameter, and after welding the butt parts, the gap between the core material and the pipe is eliminated, and the area reduction rate in one pass is based on the wire diameter of the clad steel wire with no gap. Repeated cold drawing of 5% or more and 15% or less until the total area reduction rate is 5.
This is a method for producing a copper clad steel wire, which is characterized by drawing the copper clad steel wire so that the copper clad steel wire is 0% or more.

【0008】即ち、本発明は芯材鋼線の表面凹凸を抑制
することにより、クラッド層の密着性と疲労強度を向上
させ、かつ芯材とパイプの隙間をなくしてから伸線して
クラッド層境界部の滑りを完全に抑制することにより、
銅クラッド鋼線の特性及び製造コストを改善することを
可能としたものである。本発明において、鋼線表面に1
μm以上10μm以下の凹凸を付けるのは、凹凸が1μ
m未満であると銅パイプと芯材の鋼線との摩擦抵抗が著
しく小さくなるために、伸線加工工程でクラッド層境界
部が滑りを起こし断線につながるためであり、10μm
より大きくなると伸線後の銅クラッド鋼線のクラッド層
と芯材の境界部に小さなボイドが残り、線の疲労特性を
劣化させるおそれがあるためである。ボイドができた場
合には、伸線後に熱処理工程を入れることによりボイド
をなくすこともできるが、製造コストが著しく高くなる
That is, the present invention improves the adhesion and fatigue strength of the cladding layer by suppressing the surface irregularities of the core steel wire, and eliminates the gap between the core material and the pipe before drawing the cladding layer. By completely suppressing slippage at the boundary,
This makes it possible to improve the properties and manufacturing costs of copper-clad steel wire. In the present invention, 1 on the surface of the steel wire
To create an unevenness of 1μm or more and 10μm or less, the unevenness is 1μm.
This is because if it is less than 10 μm, the frictional resistance between the copper pipe and the core steel wire will be significantly reduced, causing the cladding layer boundary to slip during the wire drawing process, leading to wire breakage.
This is because if the voids become larger, small voids remain at the boundary between the cladding layer and the core material of the copper-clad steel wire after wire drawing, which may deteriorate the fatigue characteristics of the wire. If voids are formed, they can be eliminated by applying a heat treatment step after wire drawing, but this increases the manufacturing cost significantly.

【0009】また、1μm以上10μm以下の凹凸を付
ける面積は、芯材の鋼線の表面積全体の40%以上であ
ればよい。40%未満であると銅パイプと芯材の鋼線と
の摩擦抵抗が著しく小さくなるために、伸線加工工程で
クラッド層境界部が滑りを起こし、断線につながるため
である。線径3.0mm以上5.5mm以下の鋼線を芯
材とするのは、線径が3.0mm未満であると芯材の鋼
線と銅パイプの最小内径との差が大きくなりすぎ、芯材
とパイプの隙間をなくすことが困難になるためであり、
5.5mmより大きいと鋼線の剛性が大きくなり溶接が
困難になるためである。
[0009] Furthermore, the area on which the unevenness of 1 μm or more and 10 μm or less is provided should be at least 40% of the entire surface area of the core steel wire. This is because if it is less than 40%, the frictional resistance between the copper pipe and the core steel wire will be extremely small, and the cladding layer boundary will slip during the wire drawing process, leading to wire breakage. The reason why a steel wire with a wire diameter of 3.0 mm or more and 5.5 mm or less is used as the core material is because if the wire diameter is less than 3.0 mm, the difference between the steel wire of the core material and the minimum inner diameter of the copper pipe will be too large. This is because it becomes difficult to eliminate the gap between the core material and the pipe.
This is because if it is larger than 5.5 mm, the rigidity of the steel wire will increase and welding will become difficult.

【0010】銅テープの厚みを0.1mm以上2.0m
m以下とする理由は、0.1mm未満であるとパイプに
成形することが困難になり、2.0mmより大きくなる
と成形性及び溶接性が悪くなり、さらにその後の伸線に
おいてもバルジ変形が発生し易くなり、線のネッキング
や断線の原因となるためである。銅テープを鋼線の線径
より3.0mm以上5.0mm以下大きい内径をもった
パイプ状に成形するのは、3.0mm未満であると芯材
が熱影響を受けるために鋼線の機械的性質にばらつきを
生じ、伸線時の断線頻度が高くなり、5.0mmを越え
ると次の芯材とパイプの隙間をなくすことが困難になる
からである。
[0010] The thickness of the copper tape is 0.1 mm or more and 2.0 m.
The reason for setting it below 0.1 mm is that if it is less than 0.1 mm, it will be difficult to form it into a pipe, and if it is larger than 2.0 mm, the formability and weldability will deteriorate, and furthermore, bulge deformation will occur during subsequent wire drawing. This is because it becomes easier to bend the wire, causing necking or disconnection of the wire. Forming copper tape into a pipe shape with an inner diameter that is 3.0 mm or more and 5.0 mm or less larger than the wire diameter of the steel wire is difficult because if the inner diameter is less than 3.0 mm, the core material will be affected by heat. This is because it causes variations in physical properties, increases the frequency of wire breakage during wire drawing, and if it exceeds 5.0 mm, it becomes difficult to eliminate the gap between the next core material and the pipe.

【0011】芯材とパイプの隙間をなくす加工を行う理
由は、隙間のある状態で直接伸線すると、芯材の鋼に比
べ銅パイプの伸びが大きくなりクラッド層境界部の滑り
が起き銅パイプのみが加工されるために銅が破れたり断
線の原因になる。特に本発明では仕上がり線の疲労特性
改善の観点から、表面凹凸を1μm以上10μm以下と
微細な凹凸を持った表面にしているために、銅パイプと
芯材の鋼線との摩擦抵抗は不十分であり、伸線条件によ
ってはクラッド層境界部が滑りを起こす場合もあるので
、パイプの縮径加工により軽く銅を鋼線に押し付け滑り
を抑制する必要があるためである。
The reason why the process is performed to eliminate the gap between the core material and the pipe is that if the wire is directly drawn with a gap, the elongation of the copper pipe will be greater than that of the steel core material, and the cladding layer boundary will slip, causing the copper pipe to Because the chisel is processed, the copper may break or break. In particular, in the present invention, from the viewpoint of improving the fatigue characteristics of the finished wire, the surface has minute irregularities of 1 μm to 10 μm, so the frictional resistance between the copper pipe and the core steel wire is insufficient. This is because, depending on the wire drawing conditions, the cladding layer boundary may slip, so it is necessary to suppress the slippage by lightly pressing the copper against the steel wire by reducing the diameter of the pipe.

【0012】隙間のない状態でのクラッド鋼線の線径を
基準にして1パス減面率5%以上15%以下の冷間伸線
をする理由は、5%未満であると線が振動したり潤滑が
不安定になるために表層のみに変形が集中し、そのため
クラッド層境界部での滑りを起こし易くなり、15%を
越えるとクラッド層とダイスとの摩擦抵抗が大きくなり
表層に大きな摩擦力が働くためにクラッド層境界部での
滑りを起こすことがあるからである。
[0012] The reason why cold wire drawing is performed with a one-pass area reduction rate of 5% or more and 15% or less based on the wire diameter of the clad steel wire with no gaps is that if it is less than 5%, the wire will vibrate. If the ratio exceeds 15%, the frictional resistance between the cladding layer and the die increases, causing large friction on the surface layer. This is because the force exerted may cause slippage at the cladding layer boundary.

【0013】さらに合計の減面率が50%以上となるよ
うに伸線加工するのはクラッド層の密着性を強くし十分
な疲労特性を得るのに必要な加工歪を得るためであり、
50%に満たないと密着性が不十分であるためにクラッ
ド層の剥離のおそれがあり疲労特性も低くなるからであ
る。
[0013] Furthermore, the reason why the wire is drawn so that the total area reduction rate is 50% or more is to strengthen the adhesion of the cladding layer and obtain the processing strain necessary to obtain sufficient fatigue properties.
This is because if it is less than 50%, the adhesion is insufficient and there is a risk of peeling of the cladding layer, resulting in poor fatigue properties.

【0014】[0014]

【構成、作用】本発明の構成、作用を図1及び図2に示
す実施例に基づいて説明する。図1に示すように供給装
置1から引き出された鋼線2をピンチローラー3を経由
してショットブラスト装置4に送り込む。ピンチローラ
ー3は鋼線の矯直を行うと共に巻取り機11に銅複合鋼
線10が巻き取られるまでの間に該鋼線がたわんだり振
動したりすることを防止している。従って、鋼線の表面
にスケールがついている場合は、ピンチローラー3の代
わりにベンディングローラーによりショットブラスト装
置4に入る前の工程で、鋼線表面のスケールを落として
も構わない。
[Structure and Operation] The structure and operation of the present invention will be explained based on the embodiment shown in FIGS. 1 and 2. As shown in FIG. 1, the steel wire 2 drawn out from the feeding device 1 is fed into the shot blasting device 4 via the pinch rollers 3. The pinch rollers 3 straighten the steel wire and prevent the copper composite steel wire 10 from bending or vibrating until it is wound up by the winding machine 11. Therefore, if there is scale on the surface of the steel wire, the scale on the surface of the steel wire may be removed using a bending roller instead of the pinch roller 3 in a step before entering the shot blasting device 4.

【0015】ショットブラストにより本発明に規定する
凹凸をつけるためには、鋼線の円周上の複数方向からH
v500以上で10μmから100μmの粒度分布を持
ったショット粒を鋼線表面の硬さに応じて適正な圧力で
投射すればよい。ショットブラスト装置4により、1μ
m以上10μm以下の凹凸を表面積の40%以上の部分
に付与された鋼線2は、ガイドローラー5を介してフォ
ーミング装置6に入る。フォーミング装置6では銅テー
プの供給装置12から供給された銅テープ13が送り込
まれ、該銅テープはこの装置により鋼線2の周囲にパイ
プ状に成形される。この時、パイプ状の銅テープの内径
は鋼線2の線径より3.0mm以上5.0mm以下大き
い寸法に成形される。
In order to create the unevenness specified in the present invention by shot blasting, H
Shot grains having a particle size distribution of 10 μm to 100 μm with v500 or more may be projected at an appropriate pressure depending on the hardness of the steel wire surface. 1μ by shot blasting device 4
The steel wire 2 on which 40% or more of the surface area is provided with irregularities of 1 m or more and 10 μm or less enters the forming device 6 via the guide roller 5. A copper tape 13 supplied from a copper tape supply device 12 is fed into the forming device 6, and the copper tape is formed into a pipe shape around the steel wire 2 by this device. At this time, the inner diameter of the pipe-shaped copper tape is formed to be larger than the wire diameter of the steel wire 2 by 3.0 mm or more and 5.0 mm or less.

【0016】フォーミング装置6によりパイプ状に成形
された銅テープ13の突合せ部を溶接装置7で接合する
。フォーミング装置6と溶接装置7によりパイプ状銅テ
ープの中に芯材が入った状態の複合線は、スエージング
装置8により芯材である鋼線2とパイプ状銅テープとの
隙間が完全になくされる。このようにして弱くパイプ状
銅テープを複合させた銅複合鋼線10はガイドローラー
9を介して一旦巻取り装置11に巻き取られる。ここで
ガイドローラー5と9は銅複合鋼線のたわみや振動を防
止するものである。
The butt portions of the copper tape 13 formed into a pipe shape by the forming device 6 are joined by the welding device 7. The forming device 6 and the welding device 7 produce a composite wire in which the core material is inside the pipe-shaped copper tape, and the swaging device 8 completely eliminates the gap between the steel wire 2, which is the core material, and the pipe-shaped copper tape. be done. The copper composite steel wire 10 in which the pipe-shaped copper tape is weakly composited in this way is once wound up by a winding device 11 via a guide roller 9. Here, the guide rollers 5 and 9 prevent the copper composite steel wire from bending or vibrating.

【0017】図2に示すように銅複合鋼線の供給装置1
6から銅複合鋼線10を引出し、ダイス14により伸線
し、巻取り装置17で巻き取ることにより銅クラッド鋼
線15を製造することができる。伸線条件としては通常
の鋼線の伸線と同じダイスを用い、1パス減面率を5〜
10%にして伸線すれば、通常の鋼線用の伸線機を利用
することができる。
As shown in FIG. 2, a copper composite steel wire feeding device 1 is provided.
The copper clad steel wire 15 can be manufactured by drawing out the copper composite steel wire 10 from the wire 6, drawing it with the die 14, and winding it up with the winding device 17. As for the wire drawing conditions, the same die as for normal steel wire drawing is used, and the area reduction rate for one pass is 5 to 5.
If the wire is drawn at 10%, a normal wire drawing machine for steel wire can be used.

【0018】この伸線工程において、鋼線表面の凹凸が
1μmより小さいと伸線時に銅パイプと芯材の境界部で
滑りが発生し、銅パイプのみが引っ張られるために銅パ
イプが破れてしまう。また、10μmより大きいと伸線
後の銅クラッド鋼線の銅と芯材の境界部に小さなボイド
が残り、疲労特性を低下させる原因になる。ところでス
エージング後一旦巻き取るのは溶接やスエージングを行
う複合化工程と次の伸線工程との間で処理速度が合わな
い場合に必要になるものであり、特定の銅テープの厚み
と溶接条件及び伸線速度の範囲では巻取り機11で巻き
取らずに直接伸線することも可能である。
[0018] In this wire drawing process, if the irregularities on the surface of the steel wire are smaller than 1 μm, slippage will occur at the boundary between the copper pipe and the core material during wire drawing, and only the copper pipe will be pulled, resulting in the copper pipe breaking. . Moreover, if it is larger than 10 μm, small voids remain at the boundary between the copper and the core material of the copper-clad steel wire after wire drawing, which causes deterioration of fatigue properties. By the way, winding once after swaging is necessary when the processing speeds do not match between the composite process of welding and swaging and the next wire drawing process. It is also possible to directly draw the wire without winding it with the winder 11 within the range of conditions and wire drawing speed.

【0019】[0019]

【実施例】以下銅クラッド鋼線の製造試験の結果につい
て説明する。芯材には直径2mmから8mmのSWRH
42AとSWRM8及びSWRH72A鋼線を用い、芯
材の熱処理後の減面率が90%を越える場合には、95
0℃で3分加熱した後、600℃の鉛浴に1分浸漬させ
るパテンティング処理または950℃で3分の焼鈍を行
った。
[Example] The results of a manufacturing test for copper clad steel wire will be explained below. SWRH with a diameter of 2mm to 8mm for the core material
42A, SWRM8, and SWRH72A steel wire, if the area reduction rate after heat treatment of the core material exceeds 90%, 95
After heating at 0°C for 3 minutes, a patenting treatment of immersion in a 600°C lead bath for 1 minute or annealing at 950°C for 3 minutes was performed.

【0020】芯材の鋼種によって加工限界が異なるため
、仕上げ線径は芯材によって変わるが、密着の過程はど
の鋼種も同じ傾向であった。表1、表2及び表3に、中
間の硬さを持つSWRH42Aを芯材にした場合の製造
条件と製造状況及び特性試験結果を示す。クラッド材の
無酸素銅の銅テープは厚み0.05mmから3mmの範
囲で試験を行った。銅テープ材として無酸素銅を用いた
のは、加工性及び用途によっては導電率を高くする必要
があることから、なるべく酸素含有量の低いものを選択
した。
Since processing limits differ depending on the steel type of the core material, the finished wire diameter varies depending on the core material, but the adhesion process tends to be the same for all steel types. Tables 1, 2, and 3 show the manufacturing conditions, manufacturing status, and property test results when SWRH42A having intermediate hardness was used as the core material. Tests were conducted on copper tapes made of oxygen-free copper as cladding materials with thicknesses ranging from 0.05 mm to 3 mm. Oxygen-free copper was used as the copper tape material because it is necessary to have high conductivity depending on workability and application, so we selected one with as low an oxygen content as possible.

【0021】パイプ状にフォオーミング成形した銅テー
プの突合せ部の溶接はTIG溶接により行った。溶接部
に酸化スケールができて密着性を阻害することを防止し
、かつ芯材の鋼線表面に薄い低温スケールが生成しない
ように、酸素分圧を低く抑えながら溶接を行った。また
銅テープの厚みや芯材の径とパイプの外径の差の大きさ
などにより溶接条件が制限されるため、溶接条件は試験
に応じて最適の条件を採用した。
[0021] The abutting portions of the copper tape formed into a pipe shape were welded by TIG welding. Welding was carried out while keeping the oxygen partial pressure low in order to prevent oxide scale from forming in the welded area and impairing adhesion, and to prevent thin low-temperature scale from forming on the surface of the core steel wire. In addition, welding conditions are limited by the thickness of the copper tape and the difference between the diameter of the core material and the outside diameter of the pipe, so we adopted the optimal welding conditions according to the test.

【0022】スエージングには芯材の径とパイプの外径
の差の大きさに応じて2段から4段のスエージング装置
を直列に配置して銅パイプの減面加工を行った。ここま
での工程における処理速度と次の工程の伸線速度を合わ
せることのできる場合もあったが、比較のために全ての
試験でスエージングの後、巻取り機で巻き取り、伸線工
程との連続処理は行わなかった。伸線工程では1パスの
減面率を3%から30%までの範囲で伸線し、合計の減
面率として30%から最大99%までの加工を行った。
For swaging, two to four stages of swaging devices were arranged in series depending on the difference between the diameter of the core material and the outside diameter of the pipe to reduce the area of the copper pipe. In some cases, it was possible to match the processing speed in the previous steps with the wire drawing speed in the next step, but for comparison purposes, in all tests, after swaging, the wire was wound in a winder, and then the wire drawing speed was Continuous processing was not performed. In the wire drawing process, the wire was drawn with a reduction in area per pass ranging from 3% to 30%, and the total reduction in area was from 30% to a maximum of 99%.

【0023】試験では、フォーミングや溶接性、伸線状
況など製造状況の観察と伸線後の銅と鋼の境界部の観察
や疲労試験によって目的とする特性が得られているかど
うか調査を行った。ここで多くのクラッド線の疲労特性
に関する調査の結果、銅クラッド鋼線の疲労強度は銅と
鋼の境界部に存在するクラックや境界面の粗さからでき
るボイド等によって劣化することがわかった。それ故、
伸線後の銅と鋼の境界部を観察してクラックやボイドの
ない状態を確認すれば銅クラッド鋼線の疲労特性を評価
できる。さらに確認のために、線径0.8mmに仕上げ
られた銅クラッド鋼線については、ハンター疲労試験に
よりS−N曲線を求めて疲労限の応力を比較した。また
疲労限は繰り返し数107 回で判定した。
[0023] In the test, we investigated whether the desired characteristics were obtained by observing the manufacturing conditions such as forming, weldability, and wire drawing conditions, observing the boundary between copper and steel after wire drawing, and conducting fatigue tests. . As a result of research on the fatigue properties of many clad wires, it was found that the fatigue strength of copper-clad steel wires is degraded by cracks that exist at the interface between copper and steel and voids that occur due to the roughness of the interface. Therefore,
The fatigue properties of copper-clad steel wire can be evaluated by observing the boundary between copper and steel after wire drawing and confirming that there are no cracks or voids. Furthermore, for confirmation, regarding the copper clad steel wire finished to a wire diameter of 0.8 mm, the S-N curve was determined by Hunter fatigue test and the stress at the fatigue limit was compared. The fatigue limit was determined at a repetition rate of 107 times.

【0024】表1(本発明法)及び表2(比較法)に各
製造条件における製造状況を示す。これらの表から明ら
かなように本発明法の範囲では最終線径まで良好に加工
できるのに対して、本発明法から条件の外れた比較法で
はフォーミング、溶接、スエージング及び伸線の各工程
において様々な問題が発生し、最終線径まで加工できた
のはNo.22とNo.30の2水準のものだけであっ
た。
Table 1 (method of the present invention) and Table 2 (comparative method) show the manufacturing status under each manufacturing condition. As is clear from these tables, the method of the present invention can successfully process the wire up to the final diameter, whereas the comparative method, which differs from the conditions of the method of the present invention, can process the forming, welding, swaging, and wire drawing. Various problems occurred during the process, but No. 1 was able to process the wire to the final diameter. 22 and no. There were only 2 levels of 30.

【0025】表3に最終線径まで加工できたサンプルの
疲労限と銅と鋼の境界部の顕微鏡観察結果を示す。本発
明法のNo.5,6及び比較法のNo.21,22から
分かるように、芯材の鋼線の表面凹凸は小さくなると伸
線工程で滑りを起こし易くなり、大きくなると境界部に
ボイドが残り、疲労強度が低くなる傾向になっている。 さらに疲労特性と境界部のボイドの関係調査を裏付ける
ように、凹凸が大きく境界部にボイドの確認されたNo
.22は疲労特性が劣化している。
Table 3 shows the fatigue limit of the sample processed to the final wire diameter and the results of microscopic observation of the boundary between copper and steel. No. of the method of the present invention. 5, 6 and comparative method No. As can be seen from 21 and 22, when the surface unevenness of the core steel wire becomes small, it tends to slip during the wire drawing process, and when it becomes large, voids remain at the boundary, which tends to lower the fatigue strength. Furthermore, corroborating the investigation of the relationship between fatigue properties and voids at the boundary, No.
.. No. 22 has deteriorated fatigue properties.

【0026】疲労特性は線径が異なると単純に比較でき
ないために0.8mmのサンプルのみハンター疲労試験
を行ったが、境界部の顕微鏡観察の結果から本発明法の
No.3,4,14,15,16は疲労特性が良好であ
り、ミクロボイドが確認された比較法のNo.30は疲
労特性が低いことがわかる。
Since the fatigue properties cannot be simply compared when wire diameters are different, the Hunter fatigue test was carried out only on a 0.8 mm sample, but from the results of microscopic observation of the boundary, the No. 1 method of the present invention was tested. Comparative method No. 3, 4, 14, 15, and 16 had good fatigue properties, and microvoids were confirmed. It can be seen that No. 30 has low fatigue properties.

【0027】[0027]

【表1】[Table 1]

【0028】[0028]

【表2】[Table 2]

【0029】[0029]

【表3】[Table 3]

【0030】[0030]

【発明の効果】以上述べたように、銅クラッド鋼線の製
造にあたり、本発明に従って造管クラッド法を実施する
と、銅と鋼の境界部の滑りが抑制され、かつ冷間加工の
みで境界部の密着性が向上し、ボイドをなくすことがで
きるので、仕上げ線径での銅クラッド鋼線の疲労特性を
改善することが可能である。
[Effects of the Invention] As described above, when the pipe cladding method according to the present invention is carried out in the production of copper-clad steel wire, slippage at the boundary between copper and steel can be suppressed, and the boundary can be formed by only cold working. Since the adhesion of the wire is improved and voids can be eliminated, it is possible to improve the fatigue characteristics of the copper-clad steel wire at the finished wire diameter.

【0031】さらに本発明によって得られた銅クラッド
鋼線は芯材に強度の高い鋼を用いているために、Znめ
っきやNiめっき等を施すことにより高強度高耐食性ワ
イヤを提供し得るほか、導電率を高めることにより高強
度の導電線としても利用することができる。
Furthermore, since the copper clad steel wire obtained by the present invention uses high-strength steel for the core material, it is possible to provide a high-strength and highly corrosion-resistant wire by applying Zn plating, Ni plating, etc. By increasing the conductivity, it can also be used as a high-strength conductive wire.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の実施例において利用した製造工
程における凹凸付与及び被覆工程の概略図である。
FIG. 1 is a schematic diagram of the unevenness imparting and coating steps in the manufacturing process utilized in the examples of the present invention.

【図2】図2は伸線工程の概略図である。FIG. 2 is a schematic diagram of a wire drawing process.

【符号の説明】[Explanation of symbols]

1    供給装置 2    鋼線 3    ピンチローラー 4    ショットブラスト装置 5    ガイドローラー 6    フォーミング装置 7    溶接装置 8    スエージング装置 9    ガイドローラー 10    複合鋼線 11    巻取り装置 12    銅テープ供給装置 13    銅テープ 14    ダイス 15    銅クラッド鋼線 16    供給装置 17    巻取り装置 1 Supply device 2 Steel wire 3 Pinch roller 4 Shot blasting device 5 Guide roller 6 Forming device 7 Welding equipment 8 Swaging device 9 Guide roller 10 Composite steel wire 11 Winding device 12 Copper tape supply device 13 Copper tape 14 Dice 15 Copper clad steel wire 16 Supply device 17 Winding device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  芯材に鋼線を用い、その周囲に銅テー
プをパイプ状に成形し、その突合せ部をTIG溶接した
後、パイプと芯材を縮径加工して接合させることからな
る銅クラッド鋼線の製造に際し、表面に1μm以上10
μm以下の凹凸を表面積の40%以上の部分に付与した
線径3.0mm以上5.5mm以下の鋼線を芯材とし、
この芯材の長手方向に縦ぞえにした厚さ0.1mm以上
2.0mm以下の銅テープを、鋼線の線径より3.0m
m以上5.0mm以下大きい内径をもったパイプ状に成
形し、その突合せ部を溶接した後芯材とパイプの隙間を
なくし、隙間のない状態でのクラッド鋼線の線径を基準
にして1パス減面率5%以上15%以下の冷間伸線を繰
り返し、合計の減面率が50%以上となるように伸線加
工することを特徴とする銅クラッド鋼線の製造方法。
Claim 1: A copper wire made by using a steel wire as the core material, forming a copper tape around it into a pipe shape, TIG welding the butt portions, and then reducing the diameter of the pipe and the core material to join them. When manufacturing clad steel wire, the surface has a thickness of 1 μm or more.
The core material is a steel wire with a wire diameter of 3.0 mm or more and 5.5 mm or less, which has irregularities of μm or less on 40% or more of the surface area,
A copper tape with a thickness of 0.1 mm or more and 2.0 mm or less, placed vertically in the longitudinal direction of this core material, is placed 3.0 m from the wire diameter of the steel wire.
It is formed into a pipe shape with an inner diameter larger than m or more and less than 5.0 mm, and after welding the abutted parts, the gap between the core material and the pipe is eliminated, and the wire diameter of the clad steel wire with no gap is taken as a standard. A method for manufacturing a copper-clad steel wire, which comprises repeating cold drawing with a pass area reduction of 5% or more and 15% or less so that the total area reduction is 50% or more.
JP466491A 1991-01-18 1991-01-18 Manufacture of copper clad steel wire Withdrawn JPH04237531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP466491A JPH04237531A (en) 1991-01-18 1991-01-18 Manufacture of copper clad steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP466491A JPH04237531A (en) 1991-01-18 1991-01-18 Manufacture of copper clad steel wire

Publications (1)

Publication Number Publication Date
JPH04237531A true JPH04237531A (en) 1992-08-26

Family

ID=11590193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP466491A Withdrawn JPH04237531A (en) 1991-01-18 1991-01-18 Manufacture of copper clad steel wire

Country Status (1)

Country Link
JP (1) JPH04237531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162301A1 (en) * 2010-06-24 2011-12-29 株式会社フジクラ Electrical cable for use in automobiles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162301A1 (en) * 2010-06-24 2011-12-29 株式会社フジクラ Electrical cable for use in automobiles
JP5377767B2 (en) * 2010-06-24 2013-12-25 株式会社フジクラ Automotive wire
US9349502B2 (en) 2010-06-24 2016-05-24 Fujikura Ltd. Automotive wire

Similar Documents

Publication Publication Date Title
KR100321189B1 (en) Method of production of welding wire
EP4023354B1 (en) Preparation method for coated alloy wire
US4156500A (en) Method and apparatus for producing copper clad steel wire
JP2010534138A (en) Method for producing a wire made of copper or a copper alloy
US3800405A (en) Method for producing copper-clad aluminum wire
JPH04237531A (en) Manufacture of copper clad steel wire
JP2009095859A (en) Steel wire excellent in twisting properties, and its manufacturing method
JPH0259109A (en) Manufacture of very fine titanium wire
USRE28526E (en) Method for producing copper-clad aluminum wire
JP2000005816A (en) Multi-wound stainless steel pipe
JPH07106412B2 (en) High conductivity copper coated steel trolley wire manufacturing method
JPH0523729A (en) Method for high speed drawing of extra fine steel wire
CN107297597A (en) A kind of production method of automobile trunk elevating lever
JPH11285892A (en) Manufacture of fine flux cored wire for welding stainless steel
JP3592465B2 (en) Diamond dies for flux cored wire drawing
JP3830010B2 (en) Manufacturing method of steel wire for gas shielded arc welding
JP4213370B2 (en) Method for producing annealed wire rod for cold working
JP3053292B2 (en) Titanium clad steel wire
JPH06154840A (en) Drawing method for electrode wire used for wire-electrical discharge machining
JP2923597B2 (en) Manufacturing method of fine diameter composite metal plated wire
CN114289544A (en) Rapid reducing production device and process for high-frequency induction titanium welded pipe
JPH02112820A (en) Production of electrode wire for wire cut electric discharge machine
CN116148001A (en) Method for manufacturing hollow stabilizer bar
JP3115737B2 (en) Diamond dies for welding wire drawing
JPH04237532A (en) Manufacture of composite wire

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514