JPH03130633A - Zero-point corrective device for semiconductor pressure sensor - Google Patents

Zero-point corrective device for semiconductor pressure sensor

Info

Publication number
JPH03130633A
JPH03130633A JP26737089A JP26737089A JPH03130633A JP H03130633 A JPH03130633 A JP H03130633A JP 26737089 A JP26737089 A JP 26737089A JP 26737089 A JP26737089 A JP 26737089A JP H03130633 A JPH03130633 A JP H03130633A
Authority
JP
Japan
Prior art keywords
temperature
pressure sensor
value
data
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26737089A
Other languages
Japanese (ja)
Inventor
Masahiro Mori
昌宏 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP26737089A priority Critical patent/JPH03130633A/en
Publication of JPH03130633A publication Critical patent/JPH03130633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform zero-point correction for the measured value of a pressure sensor by inputting the temperature correcting expression which is obtained by an enumeration means into a microcomputer which performs measurement with a semiconductor pressure sensor, and computing the correcting value based on the temperature output value when pressure is measured. CONSTITUTION:When measuring operation is started, at first, the temperature signal detected with a temperature sensor 3 is read as temperature data (t) through an A/D converter 5. Then a zero-point correcting value Vot is computed by the expression in the figure (wherein Vot is the output value, i.e. the correcting value, at the tempera ture t and the pressure P=0, (a) is the counted value of temperatures and to is the temperature when Vot = 0) which is obtained by a zero-point-compensating-data computing program (a) based on the data (t). Then, the pressure signal which is detected with a semiconductor pressure sensor 2 is read as pressure data (x) through an A/D converter 4. Then, the correcting value Vot is subtracted from (added to) the data (x), and the corrected data x' are obtained. Thus the data x' whose zero point is compensated is outputted as the output value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体圧力センサの温度補償方法に係り、特に
温度特性についての仕様が厳しい圧力センサに用いて好
適な零点オフセット補償を施す補償方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a temperature compensation method for a semiconductor pressure sensor, and more particularly to a compensation method for performing zero point offset compensation suitable for use in a pressure sensor with strict specifications regarding temperature characteristics. .

〔従来の技術〕[Conventional technology]

一般に半導体圧力センサを圧力計に使用した場合、半導
体圧力センサの零点の温度変化が問題となり、この零点
変化を補正するための試みがこれまで種々なされてきた
。特開昭61−112938号公報で開示された補償回
路では、特にマイクロコンピュータを組込んだ圧力計が
示されており、圧力センサの近傍に温度センサを備える
とともに圧力センサの温度に対する零点データを予め試
験槽で温度補償テーブルと圧力値による非直線性補償テ
ーブルを作成してメモリに記憶しておき、温度センサで
温度測定をなし、その温度に対応する補正値をメモリか
ら読出し、この読出した補正値を用いて零点補償を行う
ようにしている。
Generally, when a semiconductor pressure sensor is used as a pressure gauge, a temperature change at the zero point of the semiconductor pressure sensor poses a problem, and various attempts have been made to correct this zero point change. In the compensation circuit disclosed in Japanese Patent Application Laid-open No. 112938/1983, a pressure gauge incorporating a microcomputer is particularly shown, and a temperature sensor is provided near the pressure sensor, and zero point data for the temperature of the pressure sensor is stored in advance. Create a temperature compensation table and a nonlinearity compensation table based on pressure values in the test chamber, store them in memory, measure the temperature with a temperature sensor, read the correction value corresponding to that temperature from memory, and apply the read correction value. The value is used to perform zero point compensation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の従来の零点補正には次の問題がある。個々の半導
体圧力センサは、同一種類の半導体圧力センサにおいて
も出力特性が異ってくる0例えばチップを基台に接着す
る時の接着剤の種類によっても出力特性が異なる。この
ため上記補償方法の場合、個々の半導体圧力センサに対
する補償用テーブルを作成しなくてはならず、精度を上
げるためには膨大なデータテーブルを必要とし、そのデ
ータテーブル作成には長時間の試験槽でのデータ調整を
必要とした。
The conventional zero point correction described above has the following problems. Individual semiconductor pressure sensors have different output characteristics even if they are of the same type. For example, the output characteristics also differ depending on the type of adhesive used to bond the chip to the base. For this reason, in the case of the above compensation method, it is necessary to create a compensation table for each semiconductor pressure sensor, and in order to improve accuracy, a huge data table is required, and creating the data table requires a long period of testing. Data adjustment in the tank was required.

又、補償テーブルは離散的データであるため、補償テー
ブルにおける温度データの境界付近に於ける僅かな温度
変化においても補償データの値が大きく変化し、補償さ
れた圧力値に含みうる誤差も大きく変化する問題があり
、高精度の補償が行えなかった。
In addition, since the compensation table is discrete data, even a slight temperature change near the boundary of the temperature data in the compensation table will cause the value of the compensation data to change significantly, and the error that may be included in the compensated pressure value will also change significantly. Due to this problem, highly accurate compensation could not be performed.

この発明は上述の問題点に鑑みてなされたものであって
、発明者が種々の実験データを積み重ね検討した結果、
一つの方式を見いだし、個々のセンサ毎に別個の膨大な
データテーブルを設けなくとも量産性の高い半導体圧力
センサの補正を高精度に行える零点補正装置を提供する
ものである。
This invention was made in view of the above-mentioned problems, and as a result of the inventor's accumulation and study of various experimental data,
An object of the present invention is to find a method and provide a zero point correction device that can perform correction of semiconductor pressure sensors that are highly mass-producible with high precision without having to provide a separate huge data table for each sensor.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、半導体圧力センサの近傍に温度センサ
を設け該温度センサの出力値に基づいて前記半導体圧力
センサで計測した計測値の補正値を抽出して零点補正を
行なう補正装置において、前記圧力センサと温度センサ
で圧力センサ近傍における各温度(t)での大気圧力値
(Vt)をn回計測し、該計測値に基づいて対温度補正
式%式%) (Votは温度t+P=0時の出力値すなわち補正値。
The gist of the present invention is to provide a correction device that provides a temperature sensor near a semiconductor pressure sensor and performs zero point correction by extracting a correction value for a measurement value measured by the semiconductor pressure sensor based on the output value of the temperature sensor. The atmospheric pressure value (Vt) at each temperature (t) in the vicinity of the pressure sensor is measured n times using a pressure sensor and a temperature sensor, and based on the measured values, a temperature correction formula (% formula %) (Vot is the temperature t + P = 0 output value or correction value at time.

aは温度係数、 toはVot=O時の温度である。)
を算出して温度計数a1ga!・・・a7を求め、該温
度係数が判明している対温度補正式を算出する算出出段
を備え、 前記対温度補正式を前記圧力センサで計測するマイコン
内に取込み、圧力センサ計測時の温度センサ出力値に基
づいて対温度補正式による補正値Votを算出して圧力
センサによる計測値の零点補正を行なうようにしたこと
を特徴とする半導体圧力センサの零点補正装置である。
a is the temperature coefficient, and to is the temperature when Vot=O. )
Calculate the temperature coefficient a1ga! ...a7 and calculates a temperature correction formula for which the temperature coefficient is known; the temperature correction formula is imported into the microcomputer that measures the pressure sensor; This is a zero point correction device for a semiconductor pressure sensor, characterized in that a correction value Vot based on a temperature correction formula is calculated based on a temperature sensor output value to perform zero point correction of a value measured by a pressure sensor.

〔作 用〕[For production]

発明者が種々実験した結果、半導体圧力センサを用いた
場合、圧力Pと圧力センサによる出力値Vは一次関数の
比例式V=iPで出力されるが計測時の温度によってP
−0すなわち大気圧計測時の出力値Vの基点が変化し出
力値の比例式はV−i P + jのごとくになる。す
なわち各温度によって係数lはほぼ不変であるがP−0
時の定数jが変化する。このjをVoとして、各温度t
におけるP=O時のVat  (補正値)を計測し、t
とVoのグラフを表わすと上記したごとく い出した。
As a result of various experiments conducted by the inventor, when a semiconductor pressure sensor is used, the pressure P and the output value V from the pressure sensor are output according to the proportional equation V=iP of a linear function, but P varies depending on the temperature at the time of measurement.
-0, that is, the base point of the output value V during atmospheric pressure measurement changes, and the proportional expression of the output value becomes V-i P + j. In other words, the coefficient l is almost unchanged depending on the temperature, but P-0
The time constant j changes. Letting this j be Vo, each temperature t
Measure Vat (correction value) when P=O at t
The graph of and Vo is shown as above.

上記式より算出された温度計数aI+a!・・・a7は
使用する半導体圧力センサの種類や圧力センサ駆動回路
によって決定されるものであり、使用する圧力センサや
駆動回路によって個有のデータとして記憶しておけば、
上記式によって計測時の温度tにおける圧力Pが零時の
出力値すなわち補正値Votを計算によって求めること
ができる。
Temperature coefficient aI+a! calculated from the above formula! ...a7 is determined by the type of semiconductor pressure sensor used and the pressure sensor drive circuit, and if it is stored as unique data depending on the pressure sensor and drive circuit used,
The output value when the pressure P at the temperature t at the time of measurement is zero, that is, the correction value Vot can be calculated using the above equation.

また温度係数alea!・・・a7を求めるためにVo
t−0時の温度toと異なるn回の計測温度tl、 t
z・・・t7における圧力Pが零点の出力値Vot、、
 Vott・・・Vot、%を測定すれば上記式がn個
できるのでこれの連立方程式によって解くことができる
。そしてより精度を高めるために計測回数nは少くとも
2以上が望ましい。
Also the temperature coefficient alea! ...Vo to find a7
Measured temperatures tl, t different from the temperature to at time t-0 n times
z... Output value Vot when the pressure P at t7 is zero, .
Vott... By measuring Vot, %, n pieces of the above equation can be created, which can be solved by simultaneous equations. In order to further improve accuracy, it is desirable that the number of measurements n be at least 2 or more.

この様に算出手段によって求められた対温度補正式を半
導体圧力センサで計測するマイコン内に取込むことによ
って、圧力計測時の温度出力値に基づき補正値Votが
算出できるので圧力センサ計測値の零点補正が簡単に行
える。
By importing the temperature correction formula obtained by the calculation means into the microcomputer that measures the semiconductor pressure sensor, the correction value Vot can be calculated based on the temperature output value during pressure measurement, so the zero point of the pressure sensor measurement value can be calculated. Corrections can be easily made.

〔実施例〕〔Example〕

以下、この発明をさらに詳細に説明する。第1図は、こ
の発明の一実施例を示す圧力計のブロック図である。同
図において入力口1に計測すべき圧力が入力され、圧力
センサ2に加えられる。圧力センサ2は一般的によく使
用される半導体圧力センサであり、加えられる圧力値を
電気信号に変換する。圧力センサから出力される圧力信
号はA/D変換器4によりデジタルデータに変換されマ
イクロコンピュータ6内の零点補償プログラムに取り込
まれる。また、温度センサ3は前記の半導体圧力センサ
2の近傍に設置されており、前記の半導体圧力センサ2
の近傍の温度を検出して電気信号に変換し、さらにA/
D変換器5でやはりデジタルデータに変換されて前記同
様にマイクロコンピュータ6内の零点補償プログラム内
に取り込まれる。
This invention will be explained in more detail below. FIG. 1 is a block diagram of a pressure gauge showing an embodiment of the present invention. In the figure, the pressure to be measured is input into an input port 1 and applied to a pressure sensor 2. The pressure sensor 2 is a commonly used semiconductor pressure sensor, and converts the applied pressure value into an electrical signal. The pressure signal output from the pressure sensor is converted into digital data by the A/D converter 4 and taken into a zero point compensation program within the microcomputer 6. Further, the temperature sensor 3 is installed near the semiconductor pressure sensor 2, and the temperature sensor 3 is installed near the semiconductor pressure sensor 2.
Detects the temperature near the A/
The data is also converted into digital data by the D converter 5 and taken into the zero point compensation program in the microcomputer 6 in the same manner as described above.

マイクロコンピュータ6はCPU、プログラムを記憶す
るROM 、半導体圧力センサ個有の温度係数を記憶す
るRA?’l 、I10ポート等から構成され、半導体
圧力センサ2や温度センサ3の検出データを取り込む機
能、半導体圧力センサ個有の温度係数を算出する零点補
償データ算出プログラム機能、計測温度による零点変化
を補正する零点補償プログラム機能等を備えている。
The microcomputer 6 includes a CPU, a ROM that stores programs, and an RA that stores temperature coefficients specific to the semiconductor pressure sensor. 'l, I10 port, etc., function to import detection data of semiconductor pressure sensor 2 and temperature sensor 3, zero point compensation data calculation program function to calculate temperature coefficient unique to semiconductor pressure sensor, correct zero point change due to measured temperature It is equipped with a zero point compensation program function, etc.

零点調整スイッチ8は半導体圧力センサ個有の・・・■
のa1ga!・・・afiを得るためのスイッチであり
、零点調整スイッチ8のOU信号はマイクロコンピュー
タ内の零点補償データ算出プログラム内に取り込まれる
ようになっている。なお圧力調整スイッチ8は零点補償
データ算出時以外の通常圧力計測時は用いない。また出
カフは印字装置、表示器、もしくは他の計測器へのデー
タ転送装置である。
The zero point adjustment switch 8 is unique to semiconductor pressure sensors...■
a1ga! ... is a switch for obtaining afi, and the OU signal of the zero point adjustment switch 8 is taken into the zero point compensation data calculation program in the microcomputer. Note that the pressure adjustment switch 8 is not used during normal pressure measurement other than when calculating zero point compensation data. The output cuff may also be a printing device, display, or data transfer device to another meter.

次に第2図に示すフロー図を参照して、上記実施例圧力
計の通常圧力計測時の零点補償プログラム動作について
説明する。
Next, with reference to the flowchart shown in FIG. 2, the zero point compensation program operation during normal pressure measurement of the pressure gauge of the above embodiment will be described.

計測動作はスタート後、先ず温度センサ3で検出される
温度信号が、A/D変換器5を経て温度データ(t)と
して読み込まれる(ステップST 1)。
After the measurement operation starts, first, a temperature signal detected by the temperature sensor 3 is read as temperature data (t) via the A/D converter 5 (step ST1).

続いて温度データ(t)により後述する零点補償データ
算出プログラムで得られた式より零点補正@Votを算
出する(ステップST 2) 、次に半導体圧力センサ
2で検出される圧力信号をA/D変換器4を経て圧力デ
ータ(X)として読み込まれる(ステップ5T3)。次
に圧力データ(χ)から前記算出した補正値Votを減
算(加算)し、補正された圧力データ(X′)を得る。
Next, the temperature data (t) is used to calculate the zero point correction @Vot using the formula obtained by the zero point compensation data calculation program (described later) (step ST2). Next, the pressure signal detected by the semiconductor pressure sensor 2 is converted to A/D. It is read as pressure data (X) via the converter 4 (step 5T3). Next, the calculated correction value Vot is subtracted (added) from the pressure data (χ) to obtain corrected pressure data (X').

このようにして零点が補償された(X′)を出力値とし
て出力する。
The zero point (X') compensated for in this way is output as an output value.

次に第3図に示すフロー図を参照して補正式の温度係数
al+a!・・・a7を得るための零点補償データ算出
プログラムについて説明する。本実施例では計測回数n
を2とした。先ず半導体圧力センサ2の入力口1を大気
開放(P=0)とする(ステップST II)。次に周
囲温度をt、とする(ステップST 12)。P=Oで
周囲温度t、における半導体圧力センサ出力Vot、を
読み込む(ステップST 13)。次に周囲温度をt2
とする(ステップST 14)。P==0で周囲温度t
2における半導体圧力センサ出力Vot。
Next, with reference to the flowchart shown in FIG. 3, the temperature coefficient al+a! of the correction formula! ...A zero point compensation data calculation program for obtaining a7 will be explained. In this example, the number of measurements n
was set to 2. First, the input port 1 of the semiconductor pressure sensor 2 is opened to the atmosphere (P=0) (step ST II). Next, the ambient temperature is set to t (step ST12). The semiconductor pressure sensor output Vot at P=O and ambient temperature t is read (step ST13). Next, set the ambient temperature to t2
(Step ST14). At P==0, the ambient temperature t
Semiconductor pressure sensor output Vot at 2.

を読み込む(ステップST 15)。以上の動作により
次の2式が得られる。
is read (step ST15). The following two equations are obtained by the above operations.

VOtl−at(tt   to)” +az(t、 
  to)   ・・・■Votl−aI(tz  t
o)”+az(tt  to)   t++■上記の2
つの連立方程式より2次温度係数aと1式温度計数ag
を算出する。(ステップST I&)。求められた温度
係数aI+ amから温度t7時のP=0による零点補
正値Votの式は求められ、温度t7時の零点補正値V
otnが算出できる。このようにして温度係数alo 
atが求められたta −toのVotの式■をマイコ
ン内の零点補償プログラム内にメモリーすることによっ
て通常計測動作時のP=O1温度tによる零点補正値V
otが簡単に算出され、圧力センサによる圧力計測値が
らVotを減算(加算)することによって補償値X′が
簡単に求められる。
VOtl-at(tt to)” +az(t,
to)...■Votl-aI(tz t
o)”+az(tt to) t++■2 above
From two simultaneous equations, the quadratic temperature coefficient a and the temperature coefficient ag
Calculate. (Step ST I&). From the obtained temperature coefficient aI+am, the formula for the zero point correction value Vot with P=0 at the temperature t7 is obtained, and the zero point correction value V at the temperature t7 is obtained.
otn can be calculated. In this way the temperature coefficient alo
By storing the equation (■) of Vot of ta-to in which at is calculated in the zero point compensation program in the microcomputer, the zero point correction value V according to P=O1 temperature t during normal measurement operation can be obtained.
ot is easily calculated, and the compensation value X' is easily obtained by subtracting (adding) Vot from the pressure measurement value by the pressure sensor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による零点補正装置は数多く
の大きな補償テーブルを必要としないため、補償テーブ
ルのためのメモリを必要とせず、しかも量産性に優れか
っ、高精度の補償を行い得る効果がある。また、補償テ
ーブル方式においては温度による誤差の不連続点があっ
たが、本発明による補償回路は連続した値で求められる
ため、誤差が温度によって大きな変化をせず、特に圧力
の変化分などを測定する場合には高精度の測定値が得ら
れる効果がある。
As explained above, the zero point correction device according to the present invention does not require many large compensation tables, so it does not require memory for compensation tables, is excellent in mass production, and has the advantage of being able to perform highly accurate compensation. be. In addition, in the compensation table method, there were discontinuous points of error due to temperature, but since the compensation circuit according to the present invention is determined using continuous values, the error does not change significantly depending on temperature, and in particular, changes in pressure etc. When measuring, it has the effect of obtaining highly accurate measured values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の圧力計ブロック図、第2図
は圧力計測時の零点補償プログラムのフロー図、第3図
は温度係数を得るための零点補償データ算出プログラム
のフロー図である。
Figure 1 is a block diagram of a pressure gauge according to an embodiment of the present invention, Figure 2 is a flow diagram of a zero point compensation program during pressure measurement, and Figure 3 is a flow diagram of a zero point compensation data calculation program for obtaining a temperature coefficient. be.

Claims (1)

【特許請求の範囲】 半導体圧力センサの近傍に温度センサを設け該温度セン
サの出力値に基づいて前記半導体圧力センサで計測した
計測値の補正値を抽出して零点補正を行なう補正装置に
おいて、 前記圧力センサと温度センサで圧力センサ近傍における
各温度(t)での大気圧力値(Vt)をn回計測し、該
計測値に基づいて対温度補正式▲数式、化学式、表等が
あります▼(V_0tは温度t_1P=0時の出力値す
なわち補正値、aは温度係数、t_0はV_0t=0時
の温度である。)を算出して温度計数a_1、a_2、
…a_nを求め、該温度係数が判明している対温度補正
式を算出する算出出段を備え、 前記対温度補正式を前記圧力センサで計測するマイコン
内に取込み、圧力センサ計測時の温度センサ出力値に基
づいて対温度補正式による補正値V_0tを算出し圧力
センサによる計測値の零点補正を行なうようにしたこと
を特徴とする半導体圧力センサの零点補正装置。
[Scope of Claims] A correction device that provides a temperature sensor near a semiconductor pressure sensor and performs zero point correction by extracting a correction value for a measurement value measured by the semiconductor pressure sensor based on the output value of the temperature sensor, The atmospheric pressure value (Vt) at each temperature (t) near the pressure sensor is measured n times using a pressure sensor and a temperature sensor, and based on the measured values, a temperature correction formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ ( V_0t is the output value when the temperature t_1P=0, that is, the correction value, a is the temperature coefficient, and t_0 is the temperature when V_0t=0.) is calculated and the temperature coefficients a_1, a_2,
...a_n and calculates a temperature correction formula for which the temperature coefficient is known; the temperature correction formula is taken into a microcomputer that measures the pressure sensor; 1. A zero point correction device for a semiconductor pressure sensor, characterized in that a correction value V_0t is calculated by a temperature correction formula based on an output value, and zero point correction of a measured value by a pressure sensor is performed.
JP26737089A 1989-10-13 1989-10-13 Zero-point corrective device for semiconductor pressure sensor Pending JPH03130633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26737089A JPH03130633A (en) 1989-10-13 1989-10-13 Zero-point corrective device for semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26737089A JPH03130633A (en) 1989-10-13 1989-10-13 Zero-point corrective device for semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH03130633A true JPH03130633A (en) 1991-06-04

Family

ID=17443893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26737089A Pending JPH03130633A (en) 1989-10-13 1989-10-13 Zero-point corrective device for semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH03130633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42281E1 (en) 2000-09-11 2011-04-12 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor and methods of producing them
JP2017150974A (en) * 2016-02-25 2017-08-31 セイコーインスツル株式会社 Pressure change measuring device, altitude measuring device, and pressure change measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42281E1 (en) 2000-09-11 2011-04-12 Hamamatsu Photonics K.K. Scintillator panel, radiation image sensor and methods of producing them
JP2017150974A (en) * 2016-02-25 2017-08-31 セイコーインスツル株式会社 Pressure change measuring device, altitude measuring device, and pressure change measuring method

Similar Documents

Publication Publication Date Title
US4437164A (en) Ridge circuit compensation for environmental effects
CN206057424U (en) A kind of current measuring device
JPH11507136A (en) Calibration method of radiation thermometer
US5877423A (en) Method for providing temperature compensation for a wheatstone bridge-type pressure sensor
US4914611A (en) Force measuring device
CN114235217A (en) Method for calibrating CMOS temperature sensor chip based on BJT
JPH03130633A (en) Zero-point corrective device for semiconductor pressure sensor
GB2195448A (en) Flowmeter calibration
CN116296047A (en) Temperature compensation improvement method of monocrystalline silicon pressure transmitter
CN108151932A (en) A kind of electric operator tests system temperature drift compensation method
RU2789106C1 (en) Method for measuring liquid or gas pressure and device for its implementation
JPS6118816A (en) Temperature drift compensation measuring apparatus
Salahinejad et al. Uncertainty measurement of weighing results from an electronic analytical balance
KR102471346B1 (en) Vacuum Pressure Calculator
JPS6244703B2 (en)
JP3084579B2 (en) Temperature sensor linearization processing method
RU1789914C (en) Method of graduation of heat conduction meter
RU2585486C1 (en) Method of measuring pressure and calibration based on tensobridge integrated pressure transducer
Emets et al. Processing calibration results for measuring transducers with an integrated sensor
JPH0814521B2 (en) Temperature compensation method for semiconductor pressure sensor
JP2588391B2 (en) Initial calibration method of gain in digital indicator
JPS63145922A (en) Measuring apparatus having air density measuring mechanism
KR930002723B1 (en) Device for compensating for time dependent error of measuring instrument
SU1229565A1 (en) Strain gauge
CN117490859A (en) Ambient temperature compensation method and device for radiation thermometer