JPH03130337A - Gold alloy thin wire for bonding - Google Patents

Gold alloy thin wire for bonding

Info

Publication number
JPH03130337A
JPH03130337A JP1269380A JP26938089A JPH03130337A JP H03130337 A JPH03130337 A JP H03130337A JP 1269380 A JP1269380 A JP 1269380A JP 26938089 A JP26938089 A JP 26938089A JP H03130337 A JPH03130337 A JP H03130337A
Authority
JP
Japan
Prior art keywords
bonding
wire
weight
added
gold alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1269380A
Other languages
Japanese (ja)
Other versions
JPH0530892B2 (en
Inventor
Kenji Mori
健次 森
Masanori Tokita
時田 正憲
Takatoki Fukuda
福田 孝祝
Eiichi Fujimoto
栄一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP1269380A priority Critical patent/JPH03130337A/en
Publication of JPH03130337A publication Critical patent/JPH03130337A/en
Publication of JPH0530892B2 publication Critical patent/JPH0530892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To obtain the gold alloy thin wire for bonding excellent in cold strength and heat resistance and having low vibration fractural ratio by adding specified amounts of Y, Ca, Cu, Be and Ag to high purity Au. CONSTITUTION:By weight, 3 to 100ppm Y, 1 to 50ppm Ca, 5 to 50ppm Cu and 1 to 10ppm Be are added to high purity Au contg. about >=99.99% Au, and the total content of these elements to be added is regulated to 10 to 110ppm. Furthermore, 5 to 100ppm Ag is added thereto. By this method, the gold alloy thin wire for bonding in which cold mechanical characteristics, loop height and the shape of a ball can suitably be maintained, vibration fractural ratio is drastically reducible and free from the generation of wire sweep can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子上の電極と外部リードとを接合す
るために使用する耐熱性に優れた金合金細線に関し、よ
り詳しくは接合後の半導体組立作業中における振動、衝
撃による断線を大巾に低減させるボンディング用金合金
細線に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gold alloy fine wire with excellent heat resistance used for joining electrodes on a semiconductor element and external leads, and more specifically, to This invention relates to a gold alloy thin wire for bonding that greatly reduces wire breakage due to vibration and impact during semiconductor assembly work.

〔従来技術と問題点〕[Conventional technology and problems]

従来、ケイ素半導体素子上の電極と外部リードとの間を
接続するボンディング線としては、金細線が使用されて
きた。このように金細線が多用されてきたのは、金ボー
ルの形成が真円球状となり、形成された金ボールの硬さ
が適切であって、接合時の圧力によってケイ素半導体素
子を損傷することがなく、確実な接続ができ、その信頼
性が極めて高いためであった。しかし、金細線を自動ボ
ングーにかけて金細線の先端を溶融して金ボールを形成
させて接合を行なうと、金細線は金ボール形成の直上部
において引張強度が不足し断線を起こしたり、断線をま
ぬがれて接合された金細線は樹脂封止によって断線した
り、ワイヤフローを呈し短絡を起こすという問題がある
Conventionally, a thin gold wire has been used as a bonding wire that connects an electrode on a silicon semiconductor element and an external lead. The reason why thin gold wires have been so widely used is that the gold balls are formed into perfect spherical shapes, have appropriate hardness, and do not damage silicon semiconductor devices due to pressure during bonding. This was because the connection was reliable and extremely reliable. However, when joining a thin gold wire by applying an automatic bongo to melt the tip of the thin gold wire and forming a gold ball, the thin gold wire lacks tensile strength just above the formation of the gold ball, causing wire breakage or preventing wire breakage. There is a problem in that the thin gold wires bonded together may break due to resin sealing or exhibit wire flow, causing short circuits.

これを解決するために、接続時に形成させる金ボールの
形状および硬さを損わない程度に、高純度金中に微量の
添加元素を加えて破断強度と耐熱性を向上させた種々の
ボンディング用金合金細線が公表されている。しかしな
がら、従来のものは接合のループ高さが高くなり、近年
急速に普及しつつある薄型のパッケージ用デバイスに対
応させるには十分ではない。
To solve this problem, we have developed a variety of bonding products that improve breaking strength and heat resistance by adding trace amounts of additive elements to high-purity gold to the extent that the shape and hardness of the gold balls formed during bonding are not affected. Gold alloy thin wire has been announced. However, the conventional method has a high bonding loop height, which is not sufficient to accommodate thin package devices that are rapidly becoming popular in recent years.

〔発明が解決しようとする問題点] 一方、半導体装置の製造分野では集積度の高密化が一段
と進み、接合の高速化と共に30〜25μm径の耐熱性
を有する金合金細線が多く使用されているが、接合後、
半導体組立作業を経たボンディング線がネック切れを起
し、接合の信頼性が低下するという問題がある。この問
題は半導体組立作業中での振動および搬送工程で起こる
機械的な振動、衝撃などの疲労によってボンディング線
がネ・ンク切れを起し、接合不良率が増加するものであ
る。第1図および第2図はネック断線を呈する説明図を
示したもので、例えば、25μm径の耐熱性金合金細線
を用いて半導体素子をマウントする基体上のアイランド
(1)に半導体素子(2)を接合剤(3)によって固定
し、ボンディング線(6)の先端をボール状(7)に溶
融して、半導体素子(2)上の電極(4)とインナーリ
ード(5)をボンディング線(6)によって接合した後
、半導体組立作業を行うと、工程中の振動および衝撃を
受けてインナーリード(5)が上(5′)、下(5“)
に振動すると共に、ボンディング線(6)も上(6′)
、下(6#)に振動を繰返すことになる。そのためボン
ディング線(6)は接合のボール(7)形成時の熱によ
って形成される再結晶粒部(8)の粗大結晶粒の部分で
ネック断線を起こすことになる。実際には、インナーリ
ード(5)の振動と共にアイランド(1)も振動し、ボ
ンディング線(6)はかなりの衝撃を受けることになる
[Problems to be Solved by the Invention] On the other hand, in the field of manufacturing semiconductor devices, the density of integration has progressed further, and as bonding speeds have increased, heat-resistant thin gold alloy wires with a diameter of 30 to 25 μm are increasingly being used. However, after joining,
There is a problem in that the bonding wire that has undergone semiconductor assembly work may break, reducing the reliability of the bond. This problem is caused by vibrations during semiconductor assembly work and fatigue caused by mechanical vibrations and shocks occurring during the transportation process, which causes the bonding wires to break, increasing the rate of defective connections. Figures 1 and 2 are explanatory diagrams showing a neck disconnection. For example, a semiconductor element (2) is mounted on an island (1) on a substrate on which a semiconductor element is mounted using a heat-resistant gold alloy thin wire with a diameter of 25 μm. ) is fixed with a bonding agent (3), the tip of the bonding wire (6) is melted into a ball shape (7), and the electrode (4) on the semiconductor element (2) and the inner lead (5) are connected to the bonding wire ( After bonding according to step 6), when semiconductor assembly work is performed, the inner lead (5) will be damaged by the vibration and impact during the process.
At the same time, the bonding wire (6) also vibrates upward (6').
, the vibration will be repeated downward (6#). Therefore, the neck of the bonding wire (6) is broken at the coarse grain portion of the recrystallized grain portion (8) formed by the heat generated during the formation of the bonding ball (7). In reality, the island (1) also vibrates as the inner lead (5) vibrates, and the bonding wire (6) receives a considerable impact.

そこで、ネック切れ断線を低減するには、ループ高さを
高くし、使用するボンディング線の線径を大きくすれば
よい。しかし、ループ高さを高くすると、半導体素子を
樹脂で封止するときにワイヤフローを呈したり、線径を
大きくすると、金材料使用による経済性が満足されない
という問題を生じる。
Therefore, in order to reduce neck breakage, the loop height may be increased and the wire diameter of the bonding wire used may be increased. However, when the loop height is increased, wire flow occurs when the semiconductor element is sealed with resin, and when the wire diameter is increased, the economical efficiency of using gold material is not satisfied.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の課題を解決するために振動破断率
を低減させる添加元素の有無について鋭意検討を行った
結果、銀を特定割合で含有させたボンディング線として
使用すると、ボール形状およびループ高さが適切で、振
動破断率が大巾に低減できることを見出して本発明を完
成したものである。
In order to solve the above problems, the inventors of the present invention have conducted extensive studies on the presence or absence of additive elements that reduce the vibration rupture rate, and have found that when used as a bonding wire containing a specific proportion of silver, the ball shape and loop The present invention was completed by discovering that the height is appropriate and the vibration rupture rate can be significantly reduced.

本発明は、高純度金にイツトリウム3〜100重量ρp
Im、カルシウム1〜50重量ρp11、銅5〜50重
量ppm 、およびベリリウム1〜10重量ppmをそ
れぞれ添加し、これら添加元素の総量を10〜110重
量ppm範囲とし、更に、銀5〜100重ffippm
を添加したポンディング用金合金細線である。
The present invention uses high-purity gold with 3 to 100 weight ρp of yttrium.
Im, 1 to 50 weight ppm of calcium, 5 to 50 ppm of copper, and 1 to 10 ppm of beryllium are respectively added, and the total amount of these added elements is in the range of 10 to 110 ppm by weight, and further 5 to 100 ppm of silver.
This is a gold alloy fine wire for bonding with added .

以下、本発明の構成について更に説明する。The configuration of the present invention will be further explained below.

本発明で使用する高純度金とは、純度が99.99重重
盪以上の金を含有し残部が不可避不純物から戒るもので
、特に銀の不純物が5重量ppm未満のものである。
The high-purity gold used in the present invention is one that contains gold with a purity of 99.99% by weight or higher, with the remainder being free from unavoidable impurities, particularly one containing less than 5 ppm by weight of silver impurities.

インドリウム、カルシウム、銅、ベリリウムの添加は、
常温強度と耐熱性を向上させ、接合時のループ高さを低
くして、且つ高速自動ボングーにも適合させるものであ
る。
The addition of indolium, calcium, copper, and beryllium
It improves room temperature strength and heat resistance, reduces the loop height during bonding, and is also suitable for high-speed automatic bongoos.

イツトリウムの添加量が3重lppm未満であるときは
、耐熱性が向上せず、封止樹脂の影響を受けてワイヤフ
ローを呈し、且つループ高さにバラツキが生じ不安定な
接合となる。逆に、イツトリウムの添加量が5.0重i
tppm近傍を超えると、その添加にかかわらず耐熱性
効果は飽和状態となって余り向上せず、110重itp
pmを超えるとボール表面に酸化皮膜が形成され、ボー
ル形状に歪を生じ、且つイツトリウムが金の結晶粒界に
析出して脆性を生じ、伸線加工に支障を起す。その好ま
しい添加量は3〜60重量ρI)111である。
If the amount of yttrium added is less than 3 ppm, the heat resistance will not improve, wire flow will occur due to the influence of the sealing resin, and the loop height will vary, resulting in unstable bonding. On the other hand, if the amount of yttrium added is 5.0 weight i
When it exceeds around tppm, the heat resistance effect reaches a saturated state and does not improve much regardless of its addition.
If it exceeds pm, an oxide film will be formed on the ball surface, causing distortion in the ball shape, and yttrium will precipitate at the gold grain boundaries, resulting in brittleness, which will impede wire drawing. Its preferable addition amount is 3 to 60 weight pI)111.

カルシウムの添加量が1重fippm未満であるときは
、イツトリウムおよび洞との相乗作用に欠け、耐熱性が
不安定となり、ループ高さにバラツキを生じ、僅かなが
らワイヤフローを呈する。逆に、50重ffippmを
超えると、ボール表面に酸化皮膜が形成され、ボール形
状に歪を生じ、且つカルシウムが金の結晶粒界に析出し
て脆性を生じ、伸線加工を阻害する。その好ましい添加
量は1〜4゜重量ppmである。
When the amount of calcium added is less than 1 fold fippm, the synergistic effect with yttrium and sinus is lacking, the heat resistance becomes unstable, the loop height becomes uneven, and a slight wire flow is exhibited. On the other hand, if it exceeds 50 ffippm, an oxide film is formed on the ball surface, causing distortion in the ball shape, and calcium precipitates at the gold grain boundaries, causing brittleness and inhibiting wire drawing. Its preferred amount is 1 to 4 ppm by weight.

銅の添加量が5重量ppm未満であるときは、常温の機
械的強度をより向上できない。逆に、50重lppmを
超えると、ボール表面に酸化皮膜が形成され、ボール形
状に歪を生じ、ボンディング時の再結晶による結晶粒界
破断を起こして、ネック切れが生じやすくなる。その好
ましい添加量は5〜30重量pptaである。
When the amount of copper added is less than 5 ppm by weight, the mechanical strength at room temperature cannot be further improved. On the other hand, if it exceeds 50 ppm by weight, an oxide film is formed on the ball surface, causing distortion in the ball shape, causing grain boundary fracture due to recrystallization during bonding, and making neck breakage more likely. The preferred amount added is 5 to 30 ppta by weight.

ベリリウムの添加量が1重lppm未満であるときは、
常温の機械的強度をより向上できない。逆に10重it
ppmを超えると、ボンディング時の再結晶による結晶
粒の粗大化に加えてネック切れを起し、又、ボール形状
に歪を生じるので、微小電極との接合の信頼性を低下さ
せる。その好ましい添加量は1〜6重ipρ個である。
When the amount of beryllium added is less than 1 ppm,
Mechanical strength at room temperature cannot be further improved. On the contrary, 10 layers
If it exceeds ppm, crystal grains become coarse due to recrystallization during bonding, neck breakage occurs, and the ball shape becomes distorted, reducing the reliability of bonding with microelectrodes. The preferable addition amount is 1 to 6 times ipρ.

従って、イツトリウム、カルシウム、銅、ヘリリウムの
添加総量を10−110重lppmとするが、好ましい
添加総量は10〜60重量pρ鵠である。
Therefore, the total amount of yttrium, calcium, copper, and helium added is set at 10-110 ppm by weight, but the preferred total amount added is 10-60 ppm by weight.

銀の添加は、イツトリウム、カルシウム、銅、ベリリウ
ムの結晶粒界析出を抑制し、ボンディング線の靭性特性
を向上させる。銀の添加量が5重量ppa未満であると
きは、イツトリウム、カルシウム、銅、ベリリウムの粒
界析出を抑制する効果を欠き、ボンディング線の靭性特
性を示さなく、振動破断率が大きい。逆に100重量p
p−を超えると、ボール形状が悪くなり接合の信頼性を
低下させる。その好ましい添加量は10〜60重ff1
pp麺である。
Addition of silver suppresses grain boundary precipitation of yttrium, calcium, copper, and beryllium, and improves the toughness characteristics of the bonding wire. When the amount of silver added is less than 5 ppa by weight, it lacks the effect of suppressing the grain boundary precipitation of yttrium, calcium, copper, and beryllium, does not exhibit the toughness characteristics of the bonding wire, and has a high vibration rupture rate. On the contrary, 100 weight p
If it exceeds p-, the shape of the ball will deteriorate and the reliability of the bond will decrease. Its preferable addition amount is 10 to 60 weight ff1
It is pp noodles.

[実施例] 以下、実施例について説明する。[Example] Examples will be described below.

全純度が99.99重量%以上の電解金を用いて、第1
表に示す化学成分の金合金を高周波真空溶解炉で溶解鋳
造し、その鋳塊を圧延した後、常温で伸線加工を行ない
最終線径を25μmφの金合金細線とし、大気雰囲気中
で連続焼鈍して伸び値が4%になるように調質する。
Using electrolytic gold with a total purity of 99.99% by weight or more, the first
A gold alloy with the chemical composition shown in the table is melted and cast in a high-frequency vacuum melting furnace, the ingot is rolled, and then wire-drawn at room temperature to form a fine gold alloy wire with a final wire diameter of 25 μmφ, which is then continuously annealed in an atmospheric atmosphere. and tempered so that the elongation value becomes 4%.

得られた金合金細線について、常温引張強度、ループ高
さ、ボール形状、ワイヤフローの有無および振動破断率
を調べた結果を第1表に併記した。
The obtained gold alloy thin wire was examined for room temperature tensile strength, loop height, ball shape, presence or absence of wire flow, and vibration rupture rate. The results are also listed in Table 1.

接合のループ高さは、高速自動ボンダーを使用して半導
体素子上の電極と外部リードとの間を接合した後、形成
されるループの頂高とチップの電極面とを光学顕微鏡で
観察してその高さを測定する。
The bonding loop height is determined by observing the top height of the formed loop and the electrode surface of the chip using an optical microscope after bonding between the electrode on the semiconductor element and the external lead using a high-speed automatic bonder. Measure its height.

ポールの形状は、高速自動ボンダーを使用し、電気トー
チ放電によって得られる金合金ポールを走査電子顕微鏡
で観察し、ボール表面に酸化物が生ずるもの、ボールの
形状がイビッになるもの、半導体素子の電極に良好な形
状で接合できないものを×印で、良好なものを○印で評
価した。
The shape of the pole is determined by using a high-speed automatic bonder and observing the gold alloy pole obtained by electric torch discharge using a scanning electron microscope. Those that could not be bonded to the electrode in a good shape were marked with an x mark, and those that were good were marked with an ○ mark.

ワイヤフローは、高速自動ボンダーで半導体素子上の電
極と外部リードとを接合し、薄型モールドの金型内にセ
ットして封止用樹脂を注入した後、得られたパッケージ
をX線で観察し、封止用樹脂によるボンディング線の歪
み、すなわち、直線接合からの最大わん曲距離と接合ス
パン距離とを測定し、歪値かわワイヤフローの良否を評
価した。
Wireflow involves bonding electrodes on a semiconductor element and external leads using a high-speed automatic bonder, placing them in a thin mold, injecting sealing resin, and then observing the resulting package using X-rays. The strain of the bonding wire due to the sealing resin, that is, the maximum curved distance from straight bonding and the bonding span distance, was measured to evaluate the quality of the wire flow based on the strain value.

O印:歪値3%未満(Fi型パッケージに適合する)Δ
印:歪値3〜10% ×印:歪値11%以上 振動破断率は、半導体素子をマウントするPLCC基板
(ボンディングスパン:1M1イン−1−−リードピン
が68本四方に配列されているICパッケージ用42N
i−Fe合金基板を1枚中に6個有するもの)を10枚
、マガジンに収納し、前記25μmφの金合金細線を自
動高速ボングーにかけて、半導体素子上の電極とインナ
ーリードとを接合し、マガジンに収納する。該マガジン
を荷台車にのせ、長さ4mの縞仮鋼板上を4km/hr
の速度で8往復させて強制的に振動を与えた後、接合部
のネック切れ断線を調べる。
O mark: Strain value less than 3% (compatible with Fi type package) Δ
Mark: Strain value 3 to 10% × mark: Strain value 11% or more For 42N
10 i-Fe alloy substrates (with 6 i-Fe alloy substrates each) are stored in a magazine, and the 25 μmφ thin gold alloy wire is passed through an automatic high-speed bong to connect the electrodes on the semiconductor element and the inner leads. Store it in. Place the magazine on a cart and run it on a 4m long striped steel plate at 4km/hr.
After forcibly vibrating the wire by making it reciprocate 8 times at a speed of

結果かられかるように、本発明に係る実施例はイツトリ
ウム、カルシウム、銅、ベリリウムの添加に加えて、銀
が適切に添加されているので振動破断率を大巾に低減さ
せ得る。比較例7は銀の添加量が少ないため振動破断率
を低減できない。比較例8は銀の添加量が多いためボー
ル形状が真球状とならず、比較例9.10は実施例3.
5に対比させるもので、銀が添加されていないため靭性
特性に欠け、振動破断率が大きくなる。
As can be seen from the results, in the examples according to the present invention, in addition to the addition of yttrium, calcium, copper, and beryllium, silver is appropriately added, so that the vibration rupture rate can be significantly reduced. In Comparative Example 7, the vibration rupture rate could not be reduced because the amount of silver added was small. Comparative Example 8 has a large amount of silver added, so the ball shape is not perfectly spherical, and Comparative Examples 9 and 10 are different from Example 3.
This is compared to No. 5, and since no silver is added, it lacks toughness and has a high vibration rupture rate.

〔効果〕〔effect〕

以上説明した如く、本発明に係る金合金細線は、常温の
機械特性、ループ高さ、ボール形状がそれぞれ適切に保
持できて自動高速ボングーに対応できると共に振動破断
率も大巾に低減でき、ワイヤフローも起さないので、薄
型パッケージのボンディング線として実用に供せられる
利点があり、高密化半導体装置の経済面にも寄与する点
が大である。
As explained above, the gold alloy thin wire according to the present invention can appropriately maintain mechanical properties at room temperature, loop height, and ball shape, and can be used in automatic high-speed bongoos, and can greatly reduce the vibration breakage rate. Since it does not cause any flow, it has the advantage that it can be used practically as a bonding line for thin packages, and it also greatly contributes to the economic aspect of high-density semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体素子上の電極とインナーリードとを接合
した本発明に係るボンディング線の振動、衝撃を受ける
拡大説明図、第2図は第1図における半導体素子上の電
極部の拡大説明図であって、図面の符号は次の通りであ
る。 ■・・・アイランド、 2・・・半導体素子、 3・・・接合剤、 4・・・半導体素子上の電極 5・・・インナーリード、 6・・・ボンディング線、 7・・・ボール、 8・・・再結晶粒部。
FIG. 1 is an enlarged explanatory view of the bonding wire according to the present invention, which connects an electrode on a semiconductor element and an inner lead, subjected to vibration and impact, and FIG. 2 is an enlarged explanatory view of the electrode portion on the semiconductor element in FIG. 1. The reference numbers in the drawings are as follows. ■... Island, 2... Semiconductor element, 3... Bonding agent, 4... Electrode on semiconductor element 5... Inner lead, 6... Bonding wire, 7... Ball, 8 ...Recrystallized grain part.

Claims (1)

【特許請求の範囲】[Claims] (1)高純度金にイットリウム3〜100重量ppm、
カルシウム1〜50重量ppm、銅5〜50重量ppm
、およびベリリウムを1〜10重量ppmをそれぞれ添
加し、これら添加元素の総量を10〜110重量ppm
の範囲とし、更に銀5〜100重量ppmを添加するこ
とを特徴とするボンディング用金合金細線。
(1) 3 to 100 ppm by weight of yttrium in high-purity gold,
Calcium 1-50 ppm by weight, copper 5-50 ppm by weight
, and beryllium in an amount of 1 to 10 ppm by weight, and the total amount of these added elements was 10 to 110 ppm by weight.
A fine gold alloy wire for bonding, characterized in that the gold alloy wire has a content in the range of 5 to 100 ppm by weight of silver.
JP1269380A 1989-10-16 1989-10-16 Gold alloy thin wire for bonding Granted JPH03130337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1269380A JPH03130337A (en) 1989-10-16 1989-10-16 Gold alloy thin wire for bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1269380A JPH03130337A (en) 1989-10-16 1989-10-16 Gold alloy thin wire for bonding

Publications (2)

Publication Number Publication Date
JPH03130337A true JPH03130337A (en) 1991-06-04
JPH0530892B2 JPH0530892B2 (en) 1993-05-11

Family

ID=17471602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1269380A Granted JPH03130337A (en) 1989-10-16 1989-10-16 Gold alloy thin wire for bonding

Country Status (1)

Country Link
JP (1) JPH03130337A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945065A (en) * 1996-07-31 1999-08-31 Tanaka Denshi Kogyo Method for wedge bonding using a gold alloy wire
US6080492A (en) * 1997-07-01 2000-06-27 Nippon Steel Corporation Gold alloy thin wire for semiconductor devices
US6123786A (en) * 1993-09-06 2000-09-26 Mitsubishi Materials Corporation Gold materials for accessories hardened with minor alloying components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123786A (en) * 1993-09-06 2000-09-26 Mitsubishi Materials Corporation Gold materials for accessories hardened with minor alloying components
US5945065A (en) * 1996-07-31 1999-08-31 Tanaka Denshi Kogyo Method for wedge bonding using a gold alloy wire
US6080492A (en) * 1997-07-01 2000-06-27 Nippon Steel Corporation Gold alloy thin wire for semiconductor devices

Also Published As

Publication number Publication date
JPH0530892B2 (en) 1993-05-11

Similar Documents

Publication Publication Date Title
US5989364A (en) Gold-alloy bonding wire
JPH03130337A (en) Gold alloy thin wire for bonding
JPS63211731A (en) Bonding wire
JPH02260643A (en) Gold alloy fine wire for bonding use
JPH07335686A (en) Gold alloy wire for bonding
JP3595386B2 (en) Semiconductor device
JP3143755B2 (en) Gold alloy fine wire for bonding
JPH02260644A (en) Gold alloy fine wire for bonding use
JP2782082B2 (en) Gold alloy fine wire for bonding
JPH0719787B2 (en) Gold alloy fine wire for bonding
JPH02259033A (en) Gold alloy thin wire for bonding
JP2641000B2 (en) Gold alloy fine wire for bonding
JP3811600B2 (en) Semiconductor element gold alloy wire
JPH02259032A (en) Gold alloy thin wire for bonding
JPH02228437A (en) Gold alloy thin wire for bonding
JP3426399B2 (en) Gold alloy fine wire for semiconductor devices
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices
JPH02205641A (en) Gold alloy thin wire for bonding
JPH0633168A (en) Bonding wire
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JP3535657B2 (en) Gold alloy wire for semiconductor elements
JPH0719789B2 (en) Gold alloy fine wire for bonding
JPH0719788B2 (en) Gold alloy fine wire for bonding
JP3571793B2 (en) Gold alloy wire and gold alloy bump
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees