JPH0719789B2 - Gold alloy fine wire for bonding - Google Patents

Gold alloy fine wire for bonding

Info

Publication number
JPH0719789B2
JPH0719789B2 JP1041189A JP4118989A JPH0719789B2 JP H0719789 B2 JPH0719789 B2 JP H0719789B2 JP 1041189 A JP1041189 A JP 1041189A JP 4118989 A JP4118989 A JP 4118989A JP H0719789 B2 JPH0719789 B2 JP H0719789B2
Authority
JP
Japan
Prior art keywords
ppm
weight
bonding
gold
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1041189A
Other languages
Japanese (ja)
Other versions
JPH02219251A (en
Inventor
健次 森
正憲 時田
孝祝 福田
栄一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP1041189A priority Critical patent/JPH0719789B2/en
Publication of JPH02219251A publication Critical patent/JPH02219251A/en
Publication of JPH0719789B2 publication Critical patent/JPH0719789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体素子上の電極と外部リードとを接合す
るために使用する耐熱性に優れた金合金細線に関する。
TECHNICAL FIELD The present invention relates to a gold alloy fine wire having excellent heat resistance, which is used for joining an electrode on a semiconductor element and an external lead.

(従来技術と問題点) 従来、ケイ素半導体素子上の電極と外部リードとの間を
接続するボンディング線としては、金細線が使用されて
きた。このように金細線が多用されてきたのは、金ボー
ルの形成が真円球状となり、形成された金ボールの硬さ
が適切であって、接合時の圧力によってケイ素半導体素
子を損傷することがなく、確実な接続ができ、その信頼
性が極めて高いためであった。しかし、金細線を自動ボ
ンダーにかけて金細線の先端を溶融して金ボールを形成
させて接合を行なうと、金細線は再結晶化温度が低く耐
熱性を欠くために、金ボール形成の道上部において引張
強度が不足し断線を起したり、断線をまぬがれて接合さ
れた金細線は樹脂封止によって断線したり、又、半導体
素子を封止用樹脂で保護した場合、ワイヤフローを呈し
短絡を起すという問題がある。
(Prior Art and Problems) Conventionally, a gold thin wire has been used as a bonding wire for connecting an electrode on a silicon semiconductor element and an external lead. The reason why gold fine wires have been frequently used in this way is that the gold balls are formed into a perfect spherical shape, the formed gold balls have an appropriate hardness, and the pressure during bonding may damage the silicon semiconductor element. It was because there was no reliable connection, and its reliability was extremely high. However, when the fine gold wire is applied to an automatic bonder and the tip of the fine gold wire is melted to form a gold ball and joined, the fine gold wire has a low recrystallization temperature and lacks heat resistance. If the tensile strength is insufficient and a wire break occurs, or the thin gold wire that has been bonded without breaking the wire is broken by resin encapsulation, or if the semiconductor element is protected by a resin for encapsulation, a wire flow will occur, causing a short circuit. There is a problem.

これを解決するために、接続時に形成させる金ボールの
形状および硬さを損わない程度に、高純度金中に微量の
添加元素を加えて破断強度と耐熱性を向上させた種々の
ボンディング用金合金細線が公表されているが、接合の
ループ高さが高く、適切でないため、近年急速に普及し
つつある薄形パッケージ用デバイスに対応させるには十
分でないという問題がある。
In order to solve this problem, various bonding elements have been added with a small amount of additional elements in high-purity gold to improve the breaking strength and heat resistance to the extent that the shape and hardness of the gold balls formed during connection are not impaired. Although gold alloy thin wires have been published, there is a problem that they are not suitable for thin package devices, which are rapidly becoming widespread in recent years, because the loop height of the junction is high and unsuitable.

(発明が解決しようとする問題点) 本発明は、上記の問題に鑑みてなされたもので、常温お
よび高温の引張強度を向上せしめ、接合のループ高さを
低くして薄形パッケージ用デバイスに適するボンディン
グ用金合金細線を提供することを目的とするものであ
る。
(Problems to be Solved by the Invention) The present invention has been made in view of the above problems, and improves tensile strength at room temperature and high temperature, and reduces the loop height of bonding to provide a thin package device. The object is to provide a suitable gold alloy fine wire for bonding.

(問題点を解決するための手段) 本発明は、99.99重量%以上の純度を有する高純度金に
イットリウム3〜100重量ppm、カルシウム1〜50重量pp
m、ゲルマニウム5〜50重量ppm、およびベリリウム1〜
10重量ppmをそれぞれ添加し、これら添加元素の総量が1
0〜110重量ppm範囲とするボンディング用金合金細線で
ある。
(Means for Solving Problems) In the present invention, high purity gold having a purity of 99.99% by weight or more is added to yttrium 3 to 100 ppm by weight and calcium 1 to 50 ppm by weight.
m, germanium 5 to 50 ppm by weight, and beryllium 1 to
10 weight ppm each is added, and the total amount of these additional elements is 1
This is a gold alloy thin wire for bonding in the range of 0 to 110 ppm by weight.

本発明は、高純度金に耐熱性を向上するイットリウムと
カルシウムを更に常温の機械的強度を向上するゲルマニ
ウムとベリリウムを添加することにより、これら添加元
素の相剰作用によって耐熱性を向上させると共に、ベリ
リウムの添加がゲルマニウムと共働して更に常温の機械
的強度を向上させて、ワイヤフローを起さず、接合時の
ループ高さを低くし、且つ高速自動ボンダーに適合させ
るものである。
The present invention, by adding yttrium and calcium to improve the heat resistance to high purity gold germanium and beryllium to further improve the mechanical strength at room temperature, while improving the heat resistance by the additive action of these additional elements, The addition of beryllium cooperates with germanium to further improve the mechanical strength at room temperature, prevent wire flow, reduce the loop height at the time of joining, and make it suitable for a high-speed automatic bonder.

イットリウムの添加量が3重量ppm未満であるときは、
耐熱性が向上せず、封止樹脂の影響を受けてワイヤフロ
ーを呈し、且つループ高さにバラツキが生じ不安定な接
合となる。逆に、イットリウムの添加量が50重量ppm近
傍を超えると、その添加にかかわらず耐熱性効果は飽和
状態となって余り向上せず、110重量ppmを超えるとボー
ル表面に酸化皮膜が形成され、ボール形状に歪を生じ、
且つイットリウムが金の結晶粒界に折出して脆性を生
じ、伸線加工に支障を起す。その好ましい添加量は3〜
60重量ppmである。
When the amount of yttrium added is less than 3 ppm by weight,
The heat resistance is not improved, wire flow is exhibited by the influence of the sealing resin, and the loop height varies, resulting in unstable joining. On the other hand, if the amount of yttrium added exceeds 50 wtppm, the heat resistance effect is saturated and does not improve much regardless of the addition, and if it exceeds 110 wtppm, an oxide film is formed on the ball surface, Distortion occurs in the ball shape,
In addition, yttrium breaks out into the crystal grain boundaries of gold and causes brittleness, which hinders wire drawing. The preferable addition amount is 3 to
It is 60 weight ppm.

カルシウムの添加量が1重量ppm未満であるときは、イ
ットリウムおよびゲルマニウムとの相剰作用に欠け、耐
熱性が不安定となり、ループ高さにバラツキを生じ、僅
かながらワイヤフローを呈する。逆に、50重量ppmを超
えるとボール表面に酸化皮膜が形成され、ボール形状に
歪を生じ、且つカルシウムが金の結晶粒界に折出して脆
性を生じ、伸線加工に阻害する。その好ましい添加量は
1〜40重量ppmである。
When the amount of calcium added is less than 1 ppm by weight, it lacks the additive action with yttrium and germanium, the heat resistance becomes unstable, the loop height varies, and a slight wire flow is exhibited. On the other hand, if it exceeds 50 ppm by weight, an oxide film is formed on the surface of the ball, distortion occurs in the shape of the ball, and calcium breaks out into the crystal grain boundaries of gold to cause brittleness, which hinders wire drawing. The preferable addition amount is 1 to 40 ppm by weight.

ゲルマニウムの添加量が5重量ppm未満であるときは、
常温の機械的強度をより向上できない。逆に50重量ppm
を超えると、ボール表面に酸化被膜が形成され、ボール
形状に歪を生じ、ボンディング時の再結晶による結晶粒
界破断を起して、ネック切れが生じやすくなる。その好
ましい添加量は5〜30重量ppmである。
When the addition amount of germanium is less than 5 ppm by weight,
The mechanical strength at room temperature cannot be further improved. Conversely, 50 weight ppm
If it exceeds, the oxide film is formed on the surface of the ball, the shape of the ball is distorted, the crystal grain boundary is broken by recrystallization during bonding, and the neck breakage is likely to occur. The preferable addition amount is 5 to 30 ppm by weight.

ベリリウムの添加量が1重量ppm未満であるときは、常
温の機械的強度をより向上でない。逆に10重量ppmを超
えると、ボンディング時の再結晶による結晶粒の粗大化
に加えて筍状の関節を生じ、ネック切れを起し、又、ボ
ール形状に歪を生じるので、微小電極との接合の信頼性
を低下させる。その好ましい添加量は1〜6重量ppmで
ある。
When the amount of beryllium added is less than 1 ppm by weight, the mechanical strength at room temperature is not improved. On the other hand, if it exceeds 10 ppm by weight, in addition to coarsening of crystal grains due to recrystallization at the time of bonding, a bamboo-like joint is generated, neck breakage occurs, and ball shape is distorted. It reduces the reliability of bonding. The preferable addition amount is 1 to 6 ppm by weight.

従って、イットリウム、カルシウム、ゲルマニウム、ベ
リリウムの添加総量を10〜110重量ppmとするが、好まし
い添加総量は10〜60重量ppmである。
Therefore, the total addition amount of yttrium, calcium, germanium, and beryllium is set to 10 to 110 ppm by weight, and the preferable total addition amount is 10 to 60 ppm by weight.

(実施例) 以下、実施例について説明する。(Example) Hereinafter, an example will be described.

金純度が99.99重量%以上の電解金を用いて、第1表に
示す化学成分の金合金を高周波真空溶解炉で溶解鋳造
し、その鋳塊を圧延した後、常温で伸線加工を行ない最
終線径を25μmφの金合金細線とし、大気雰囲気中で連
続焼鈍して伸び値が4%になるように調質する。
Using electrolytic gold with a gold purity of 99.99% by weight or more, the gold alloys with the chemical components shown in Table 1 are melt-cast in a high-frequency vacuum melting furnace, the ingot is rolled, and then wire drawing is performed at room temperature. A fine gold alloy wire having a wire diameter of 25 μmφ is continuously annealed in the air atmosphere and tempered so that the elongation value becomes 4%.

得られた金合金細線について、常温引張強度、高温引張
強度(250℃、30秒保持)、接合のループ高さ、モール
ド時のワイヤフローおよびボール形状を調べた結果を第
1表に併記した。
Table 1 shows the results of examining the obtained gold alloy fine wire for normal temperature tensile strength, high temperature tensile strength (250 ° C., holding for 30 seconds), joint loop height, wire flow during molding, and ball shape.

接合のループ高さは、高速自動ボンダーを使用して半導
体素子上の電極と外部リードとの間を接合した後、形成
されるループの頂高とチップの電極面とを光学顕微鏡で
観察してその高さを測定する。
The loop height of the junction is measured by observing the top height of the loop formed and the electrode surface of the chip with an optical microscope after joining between the electrode on the semiconductor element and the external lead using a high-speed automatic bonder. Measure its height.

ワイヤフローは、高速自動ボンダーで半導体素子上の電
極と外部リードとを接合し、薄形モールドの金型内にセ
ットして封止用樹脂を注入した後、得られたパッケージ
をX線で観察し、封止用樹脂によるボンディング線の歪
み、すなわち、直線接合からの最大わん曲距離と接合ス
パン距離とを測定し、歪値からワイヤフローの良否を評
価した。
For wire flow, the electrodes on the semiconductor element and external leads are joined with a high-speed automatic bonder, set in the mold of a thin mold, the sealing resin is injected, and the resulting package is observed by X-ray. Then, the strain of the bonding line due to the sealing resin, that is, the maximum bending distance from the straight line bonding and the bonding span distance were measured, and the quality of the wire flow was evaluated from the strain value.

○印:歪値3%未満(薄形パッケージに適合する) △印:歪値3〜10% ×印:歪値11%以上 ボールの形状は、高速自動ボンダーを使用し、電気トー
チ放電によって得られる金合金ボールを走査電子顕微鏡
で観察し、ボール表面に酸化物が生ずるもの、ボールの
形状がイビツになるもの、半導体素子の電極に良好な形
状で接合できないものを×印で、良好なものを○印で評
価した。
○ mark: Strain value less than 3% (suitable for thin package) △ mark: Strain value 3 to 10% × mark: Strain value 11% or more Ball shape is obtained by electric torch discharge using high speed automatic bonder When observing the gold alloy balls with a scanning electron microscope, oxides are generated on the surface of the balls, those with a dented ball shape, those that cannot be joined to the electrode of the semiconductor element in a good shape are marked with x, and good Was evaluated with a circle.

第1表から理解されるように、実施例1〜8は、本発明
で説明したイットリウム、カルシウム、ゲルマニウム,
ベリリウムが個々の添加量においてもまた総量において
も共に適量であるため、耐熱性が良好で、接合ループ高
さを低く形成することかでき、封止樹脂によるワイヤフ
ローの影響も無視することができ、且つボール形状も良
好であるため信頼性のある接合ができる。
As can be seen from Table 1, Examples 1 to 8 are yttrium, calcium, germanium,
Since beryllium is suitable in both the individual addition amount and the total amount, it has good heat resistance and can form a low junction loop height, and the influence of the wire flow due to the sealing resin can be ignored. In addition, since the ball shape is also good, reliable joining is possible.

しかし、比較例1は元素の総量が8.5重量ppmで許容限度
以下である上に、イットリウムが2重量ppm、そしてベ
リリウムが0.5重量ppmでいずれも適量を下回っているた
め、耐熱性が向上せず、封止樹脂の影響を受けてワイヤ
フローを呈し、且つループ高さにバラツキが生じ、不安
定な接合となったり、常温の機械的強度をより向上でき
なかったり等の不具合を生じ、好ましくない。また、比
較例2はカルシウム,ゲルマニウム,ベリリウムはいず
れも適量であるが、イットリウムが120重量ppmで許容限
度を越えて多く、且つ、元素の総量も127重量ppmで許容
限度を越えるため、接合時に形成されるボールの表面に
酸化皮膜が形成され、ボール形状に歪みを生じ、且つイ
ットリウムが金の結晶粒界に析出して脆性を生じ、伸線
加工に支障を来たし、好ましくない。比較例3は総量が
81重量ppmで許容限度内であるが、カルシウムが適量を
越えているために、ボール表面に酸化皮膜が形成され、
ボール形状に歪みを生じ、且つカルシウムが金の結晶粒
界に析出して脆性を生じ、伸線加工を阻害し、好ましく
ない。更に比較例4はカルシウムとゲルマニウムとが共
に適量以下であるため、イットリウムおよびゲルマニウ
ムとの相乗作用に欠け、耐熱性が不安定となり、ループ
高さにバラツキを生じ、僅かながらワイヤフローを呈し
たり、常温の機械的強度をより向上できなかったり、と
言う不具合を生じ、好ましくない。比較例5は総量は83
重量ppmで許容限度内であるが、ゲルマニウムの量が多
いために、ボール表面に酸化皮膜が形成され、ボール形
状に歪みを生じ、ボンディング時の再結晶による結晶粒
界破断を起こし、ネック切れが生じやすくなり、好まし
くない。比較例6は総量は84重量ppmで許容限度内であ
るが、ベリリウムが12重量ppmで適量を越えているた
め、ボンディング時の再結晶による結晶粒の粗大化に加
えて筍状の関節を生じ、ネック切れを起こし、又、ボー
ル形状に歪みを生じるので、微小電極との接合の信頼性
を低下させ、好ましくない。比較例7は各元素は夫々適
量であるが、総量が120重量ppmで適量を越えているた
め、ボール形状に歪みを生じたり、表面に酸化皮膜を生
じたり、半導体素子の電極に良好な形状で接合できない
等の不具合が生じ、好ましくない。比較例8はカルシウ
ムが適量を越える上に、総量も適量を越え、更にイット
リウムを添加していないために、耐熱性が殆ど向上せ
ず、封止樹脂の影響を受けてワイヤフローを呈し、ボー
ル表面に酸化皮膜が形成され、ボール形状に歪みを生
じ、且つカルシウムが金の結晶粒界に析出して脆性を生
じ、伸線加工を阻害し、現実の適用には全くそぐわない
結果を得た。このように比較例は、いずれにしても実用
に供し得なかった。
However, in Comparative Example 1, the total amount of elements was 8.5 weight ppm and below the allowable limit, and yttrium was 2 weight ppm and beryllium was 0.5 weight ppm, both of which were below appropriate amounts, and therefore heat resistance was not improved. The wire flow is affected by the sealing resin, and the loop height varies, resulting in unstable joining, and inferior mechanical strength at room temperature. . In Comparative Example 2, calcium, germanium, and beryllium are all appropriate amounts, but yttrium is 120 wtppm, which exceeds the allowable limit, and the total amount of elements is 127 wtppm, which exceeds the allowable limit. An oxide film is formed on the surface of the formed ball, the shape of the ball is distorted, and yttrium is precipitated at the crystal grain boundaries of gold to cause brittleness, which hinders wire drawing, which is not preferable. Comparative Example 3 has a total amount
Although it is within the allowable limit at 81 ppm by weight, an oxide film is formed on the ball surface because calcium exceeds an appropriate amount,
The ball shape is distorted, and calcium precipitates at the gold grain boundaries to cause brittleness, which hinders wire drawing, which is not preferable. Further, in Comparative Example 4, since both calcium and germanium are in appropriate amounts, synergistic action with yttrium and germanium is lacking, heat resistance becomes unstable, loop height varies, and a slight wire flow is exhibited. It is not preferable because the mechanical strength at room temperature cannot be further improved or a problem occurs. Comparative Example 5 has a total amount of 83
Weight ppm is within the allowable limit, but due to the large amount of germanium, an oxide film is formed on the ball surface, causing distortion in the ball shape, causing crystal grain boundary rupture due to recrystallization during bonding, and neck breakage. It tends to occur, which is not preferable. In Comparative Example 6, the total amount is 84 wtppm, which is within the allowable limit, but since beryllium exceeds 12 wtppm at an appropriate amount, recrystallization at the time of bonding causes coarsening of the crystal grains and causes a bamboo-like joint. In addition, the neck is broken and the ball shape is distorted, so that the reliability of bonding with the microelectrode is lowered, which is not preferable. In Comparative Example 7, each element is in an appropriate amount, but since the total amount exceeds 120 ppm by weight, the ball shape may be distorted, an oxide film may be formed on the surface, and the electrode of the semiconductor element may have a good shape. It is not preferable because problems such as the inability to join can occur. In Comparative Example 8, the amount of calcium exceeds the appropriate amount, the total amount also exceeds the appropriate amount, and yttrium is not added. Therefore, the heat resistance is hardly improved, and the wire flow is exhibited due to the influence of the sealing resin. An oxide film was formed on the surface, the ball shape was distorted, and calcium was precipitated at the crystal grain boundary of gold to cause brittleness, which hinders the wire drawing process and was completely unsuitable for actual applications. Thus, the comparative example could not be put to practical use in any case.

結果からわかるように、本発明に係る実施例は耐熱性が
良好で、接合のループ高さを低く形成することができ、
封止樹脂によるワイヤフローの影響も無視することがで
き、且つボール形状も良好であるため信頼性のある接合
ができる。
As can be seen from the results, the examples according to the present invention have good heat resistance, and can form the loop height of the joint low,
The influence of the wire flow due to the sealing resin can be ignored, and the ball shape is good, so that reliable bonding can be performed.

(効果) 以上説明した如く、本発明にかかる金合金細線は、高純
度金に耐熱性を向上するイットリウムとカルシウムを、
更に常温の機械的強度を向上するゲルマニウムとベリリ
ウムを添加することにより、これら添加元素の相乗作用
によって耐熱性を向上させると共に、ベリリウムの添加
がゲルマニウムと共働して更に常温の機械的強度を向上
させることができるので、常温並びに高温引張強度が優
れ、接合のループ高さが低く形成でき、封止樹脂による
ワイヤフローもなく、高速自動ボンダーに十分対応でき
ると共に形成されるボール形状も真球であるので、薄形
パッケージ用デバイスのボンディング線として信頼性よ
く実用に供せられる利点がある。従って産業上に寄与す
る点が大である。
(Effect) As described above, the gold alloy thin wire according to the present invention contains high-purity gold containing yttrium and calcium which improve heat resistance.
Furthermore, by adding germanium and beryllium that improve the mechanical strength at room temperature, the heat resistance is improved by the synergistic action of these additional elements, and the addition of beryllium cooperates with germanium to further improve the mechanical strength at room temperature. Since it can be used, it has excellent tensile strength at room temperature and high temperature, it can be formed with a low loop height for joining, there is no wire flow due to the sealing resin, it can sufficiently support a high-speed automatic bonder, and the formed ball shape is also spherical. Therefore, there is an advantage that it can be put to practical use with high reliability as a bonding line for thin package devices. Therefore, it has a great contribution to the industry.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 栄一 大阪府東大阪市岩田町2丁目3番1号 タ ツタ電線株式会社内 (56)参考文献 特開 昭60−30158(JP,A) 特開 昭53−105968(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Eiichi Fujimoto Inventor, Eiichi Fujimoto 2-3-1 Iwata-cho, Higashi-Osaka City, Osaka (56) References JP-A-60-30158 (JP, A) Kaisho 53-105968 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高純度金にイットリウム3〜100重量ppm、
カルシウム1〜50重量ppm、ゲルマニウム5〜50重量pp
m、およびベリリウム1〜10重量ppmをそれぞれ添加し、
これら添加元素の総量が10〜110重量ppmの範囲とするこ
とを特徴とするボンディング用金合金細線。
1. High purity gold with 3 to 100 ppm by weight of yttrium,
Calcium 1-50 wtppm, Germanium 5-50 wtpp
m, and beryllium 1-10 ppm by weight, respectively,
A fine gold alloy wire for bonding, wherein the total amount of these additional elements is in the range of 10 to 110 ppm by weight.
JP1041189A 1989-02-20 1989-02-20 Gold alloy fine wire for bonding Expired - Lifetime JPH0719789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1041189A JPH0719789B2 (en) 1989-02-20 1989-02-20 Gold alloy fine wire for bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1041189A JPH0719789B2 (en) 1989-02-20 1989-02-20 Gold alloy fine wire for bonding

Publications (2)

Publication Number Publication Date
JPH02219251A JPH02219251A (en) 1990-08-31
JPH0719789B2 true JPH0719789B2 (en) 1995-03-06

Family

ID=12601470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1041189A Expired - Lifetime JPH0719789B2 (en) 1989-02-20 1989-02-20 Gold alloy fine wire for bonding

Country Status (1)

Country Link
JP (1) JPH0719789B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945065A (en) * 1996-07-31 1999-08-31 Tanaka Denshi Kogyo Method for wedge bonding using a gold alloy wire

Also Published As

Publication number Publication date
JPH02219251A (en) 1990-08-31

Similar Documents

Publication Publication Date Title
KR0139246B1 (en) Gold alloy bonding wire
JPH084100B2 (en) Bonding wire
JPH0719787B2 (en) Gold alloy fine wire for bonding
JPH0719789B2 (en) Gold alloy fine wire for bonding
JPH0719788B2 (en) Gold alloy fine wire for bonding
JP3811600B2 (en) Semiconductor element gold alloy wire
JP3612180B2 (en) Gold-silver alloy fine wire for semiconductor devices
JP2782082B2 (en) Gold alloy fine wire for bonding
JPH02205641A (en) Gold alloy thin wire for bonding
JP3346871B2 (en) Gold alloy for semiconductor devices
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices
JP3426399B2 (en) Gold alloy fine wire for semiconductor devices
JPH03130337A (en) Gold alloy thin wire for bonding
JP3535657B2 (en) Gold alloy wire for semiconductor elements
JP3779817B2 (en) Gold alloy wire for semiconductor elements
JP3586909B2 (en) Bonding wire
JP2621288B2 (en) Au alloy extra fine wire for semiconductor element bonding
JPH02260643A (en) Gold alloy fine wire for bonding use
JP3028458B2 (en) Gold alloy wires for semiconductor devices
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices
KR0157474B1 (en) Semiconductor element gold alloy
JP3012466B2 (en) Gold alloy wires for semiconductor devices
JP2661247B2 (en) Gold alloy fine wire for semiconductor element bonding
JPH02260644A (en) Gold alloy fine wire for bonding use
JPH0143824B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 14

EXPY Cancellation because of completion of term