JPH03128227A - Film or sheet - Google Patents

Film or sheet

Info

Publication number
JPH03128227A
JPH03128227A JP26661389A JP26661389A JPH03128227A JP H03128227 A JPH03128227 A JP H03128227A JP 26661389 A JP26661389 A JP 26661389A JP 26661389 A JP26661389 A JP 26661389A JP H03128227 A JPH03128227 A JP H03128227A
Authority
JP
Japan
Prior art keywords
film
polymer
sheet
stretching
dihydrofuran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26661389A
Other languages
Japanese (ja)
Inventor
Fumio Mita
文雄 三田
Mitsuo Matsumoto
松本 光郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP26661389A priority Critical patent/JPH03128227A/en
Publication of JPH03128227A publication Critical patent/JPH03128227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a film or a sheet excellent in transparency and heat resistance and having high mechanical properties by shaping a polymer in which a main chain comprises a specified and repeated unit. CONSTITUTION:A polymer in which a main chain comprises substantially the repeated unit of the formula 1 is shaped to form a film or a sheet, provided that R<1>, R<2>, R<3>, R<4>, R<5> and R<6> in the formula I each represents a hydrogen atom or a lower alkyl group. This polymer can be prepared by subjecting 2,3- dihydrofuran or its derivative to cationic polymerization reaction in the presence of a suitable initiator, and it is preferred that a number average molecular weight in term of polystyrene, which is determined by gel permeation chromatography, is within the range of 5,000 to 200,000.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はテトラヒドロフラン骨格を有するポリマーを成
形してなるフィルム筐たはシートに関する0 本発明によシ提供されるフィルムおよびシートは透明性
pよび耐熱性に優れ、かつ良好な力学的物性を有してか
り、各種の構造材料管たは機能材料として利用可能であ
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a film casing or sheet formed by molding a polymer having a tetrahydrofuran skeleton. It has excellent heat resistance and good mechanical properties, and can be used as various structural pipes and functional materials.

〔従来の技術〕[Conventional technology]

テトラヒドロフラン骨格を有するポリマーとして、2.
3−ジヒドロフラン、2.3−ジヒドロ−5−メチルフ
ランなどをカチオン重合することにより得られたポリマ
ーが知られてかり〔ジャーナル−、rプ・ケミカルーン
サエティ(Journal of ChemicalS
ociety)、1954年S 3766頁;おjびポ
IJ−r−・ジャーナル(Polymer Journ
al )、16巻、415頁(I984年)参照〕、ま
た2、3−ジヒドロフランをカチオン重合することによ
り得られたポリマーはリチウム2次電池のセパレーター
としての性能を備えることが示唆されている〔ポリマー
・プレプリンツ(Polymer Preprints
 )、24巻、317頁(I983f:)参照〕。
As a polymer having a tetrahydrofuran skeleton, 2.
Polymers obtained by cationic polymerization of 3-dihydrofuran, 2,3-dihydro-5-methylfuran, etc. are known [Journal of Chemical Science, Inc.
Polymer Journal
al), Vol. 16, p. 415 (I984)], and it has also been suggested that a polymer obtained by cationic polymerization of 2,3-dihydrofuran has performance as a separator for lithium secondary batteries. [Polymer Preprints
), vol. 24, p. 317 (I983f: )].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、透明性および耐熱性に優れ。 The object of the present invention is to provide excellent transparency and heat resistance.

かつ良好な力学的物性を有するフィルムまたはシートを
提供することにある。
Another object of the present invention is to provide a film or sheet having good mechanical properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らはテトラヒドロフラン骨格を有するポリマー
から透明性分よび耐熱性に優れ、かつ力学的物性も充分
であるフィルム訃よびシートが得られること、!た熱延
伸された該フィルム釦よびシートは一層向上した力学的
物性を有することを見いだした。
The present inventors have discovered that films and sheets with excellent transparency and heat resistance as well as sufficient mechanical properties can be obtained from polymers having a tetrahydrofuran skeleton! It has been found that the hot-stretched film buttons and sheets have even improved mechanical properties.

本発明によれば、上記の目的は、主鎖が実質的に下記の
繰返し単位(I) (式中、R1、R2,R3,R4、R5釦よびR6はそ
れぞれ水素原子筺たは低級アルキル基を表す。)からな
っているポリマーを成形してなるフィルムまたはシート
を提供することによって達成される。
According to the present invention, the above object is achieved by having a main chain consisting essentially of the following repeating units (I) (wherein R1, R2, R3, R4, R5 buttons and R6 are each a hydrogen atom or a lower alkyl group). This is achieved by providing a film or sheet formed by molding a polymer consisting of

上記の繰返し単位(I)にかけるR1. R2,R3%
R4゜R5、よびR6(以下、これらをR1〜6と総称
する)がそれぞれ表す低級アルキル基としては1例えば
メチル基、エチル基、プロピル基、イソプロピル基、ブ
チル基などが挙げられる。R1−6が水素原子またはメ
チル基を表す場合が好ましく、R1〜6のすべてが水素
原子を表す場合訃よびR1″のうちの任意の一つがメチ
ル基を表し、他のすべてが水素原子を表す場合がより好
ましい。不発明に訃いて好筐しいポリマーとしては、下
記の繰返し単位を有するものが挙げられる。
R1. applied to the above repeating unit (I). R2, R3%
Examples of the lower alkyl groups represented by R4, R5, and R6 (hereinafter collectively referred to as R1 to R6) include methyl, ethyl, propyl, isopropyl, butyl, and the like. It is preferable that R1-6 represents a hydrogen atom or a methyl group, and when all of R1-6 represent a hydrogen atom, any one of R1 and R1'' represents a methyl group, and all others represent a hydrogen atom. Examples of preferable polymers include those having the following repeating units.

本発明に訃けるポリマーは、ゲルパーミニ−7ヨンクロ
マトグラフイー(以下、これをGPCと略称する)によ
り求めたポリスチレン換算の数平均分子量がs、ooo
〜200,000の範囲内にあるものが好ましい。数平
均分子量がs、oooより小より大きいポリマーの場合
にはフィルムまたはシートを成形する際の成形性が不充
分となり、いずれの場合も好箇しくない。
The polymer used in the present invention has a number average molecular weight of s, ooo
Those within the range of 200,000 to 200,000 are preferred. In the case of a polymer having a number average molecular weight larger than s or ooo, the moldability when molding a film or sheet will be insufficient, and either case is unfavorable.

なか、本発明にかけるポリマーは上記の繰返し単位(I
)のうちの1種の繰返し単位のみを有していてもよく、
筐た2種以上の繰返し単位を有していてもよい。また1
本発明にかけるポリマーはその特性を損なわない範囲内
で、他の構造単位を含んでいてもよい。
Among them, the polymer applied to the present invention has the above-mentioned repeating unit (I
) may have only one type of repeating unit;
It may contain two or more types of repeating units. Also 1
The polymer used in the present invention may contain other structural units within a range that does not impair its properties.

ポリマー中には必要に応じて可塑剤、滑剤、帯電防止剤
、酸化防止剤、紫外線吸収剤などの各種添加剤が共存し
ていてもよい。
Various additives such as plasticizers, lubricants, antistatic agents, antioxidants, and ultraviolet absorbers may be present in the polymer as necessary.

本発明に訃けるポリマーは下記一般式(n)で示される
2、3−ジヒドロフランまたはその誘導体を適当な開始
剤の存在下、公知のカチオン重合反応に付することによ
り製造することができる。
The polymer of the present invention can be produced by subjecting 2,3-dihydrofuran or its derivative represented by the following general formula (n) to a known cationic polymerization reaction in the presence of a suitable initiator.

(式中 11〜6は前記定義のと訃りである。)本発明
に釦けるポリマーを製造する際に使用される開始剤とし
ては、ヨウ化水素酸などのプロトン酸:酸化クロム、酸
化モリブデンなどの金属酸化物:ヨウ素、臭素、臭化ヨ
ウ素などのハロゲン;三フッ化ホウ素、三フッ化ホウ素
エーテル錯体などのハロゲン化ホウ素:塩化アルミニウ
ム、臭化アルミニウム、四塩化チタン、四臭化チタン、
四塩化スズ、三塩化鉄などのハロゲン化金属;エチルア
ルミニウムジクロリド、ジエチルアルミニウムクロリド
、ジエチルアルミニウムプロミド。
(In the formula, 11 to 6 are as defined above.) Initiators used in producing the polymer of the present invention include protonic acids such as hydroiodic acid, chromium oxide, molybdenum oxide, Metal oxides such as: halogens such as iodine, bromine, and iodine bromide; boron halides such as boron trifluoride and boron trifluoride ether complexes: aluminum chloride, aluminum bromide, titanium tetrachloride, titanium tetrabromide,
Metal halides such as tin tetrachloride and iron trichloride; ethylaluminum dichloride, diethylaluminum chloride, diethylaluminum bromide.

ジエチル亜鉛などの有機金属化合物;トリフェニルメチ
ル六塩化アンチモン、トリフェニルメチル五塩化スズの
ようなカルボニウムイオン塩などが挙げられる。開始剤
Fi2.3−ジヒドロフランまたはその誘導体に対して
0.01〜10モル多の範囲内の量、好筐しくは0.0
5〜2モル肇の範囲内の量で用いられる。
Examples include organometallic compounds such as diethylzinc; carbonium ion salts such as triphenylmethyl antimony hexachloride and triphenylmethyltin pentachloride. An amount within the range of 0.01 to 10 mol, preferably 0.0 molar relative to the initiator Fi2.3-dihydrofuran or its derivative
It is used in an amount within the range of 5 to 2 moles.

重合温度としては一200’C〜100’Cの範囲の温
度、好筐しくは一100’C〜50’Cの範囲の温度が
採用される。重合反応は、通常、窒素、アルゴン、ヘリ
ウムなどの不活性ガス雰囲気下で行われる。重合は溶媒
の不存在下でも行い得るが、ベンゼン、トルエン、キシ
レン、メシチレンナトの芳香族炭化水素;ヘキサン、ヘ
プタン、オクタンなどの脂肪族炭化水素;シクロヘキサ
ン、シクロオクタンなどの脂環式炭化水素;塩化メチレ
ン、クロロホルム、テトラクロロエチレンなどのハロゲ
ン化炭化水素などのような溶媒の存在下で行うのが1反
応熱の除去、生成したポリマーの取り扱いの容易さなど
の点で好筐しい。なか、使用する開始剤の種類によって
は、上記の溶媒に加えてジエチルエーテル、ジブチルエ
ーテル、ジオクチルエーテル、エチレンクリコールジメ
チルエーテル、ジエチレングリコール ジメチルエーテ
ル、テトラヒドロフランなどのエーテル;酢酸メチル、
酢酸エチル、酢酸イソプロピル、安息香酸メチルなどの
エステル;アセトン、メチルエチルケトン、メチルイソ
ブチルケトンなどのケトンなどを適宜共存させることに
よって重合反応をよシ効率的に行うことができる。反応
時間は通常1秒間から100時間の範囲内から選ばれる
。所望の重合度に到達したのち、公知の方法により反応
を停止し、得られたポリマーを単離、精製する。
As the polymerization temperature, a temperature in the range of -200'C to 100'C, preferably a temperature in the range of -100'C to 50'C is employed. The polymerization reaction is usually performed under an inert gas atmosphere such as nitrogen, argon, helium, or the like. Although polymerization can be carried out in the absence of a solvent, aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylenate; aliphatic hydrocarbons such as hexane, heptane, and octane; alicyclic hydrocarbons such as cyclohexane and cyclooctane; It is preferable to carry out the reaction in the presence of a solvent such as a halogenated hydrocarbon such as methylene, chloroform, or tetrachloroethylene in terms of removal of reaction heat and ease of handling of the produced polymer. Depending on the type of initiator used, in addition to the above solvents, ethers such as diethyl ether, dibutyl ether, dioctyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran; methyl acetate,
The polymerization reaction can be carried out more efficiently by appropriately coexisting esters such as ethyl acetate, isopropyl acetate, and methyl benzoate; and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. The reaction time is usually selected within the range of 1 second to 100 hours. After reaching the desired degree of polymerization, the reaction is stopped by a known method, and the resulting polymer is isolated and purified.

このようにして製造されたポリマーをTダイ法。The polymer produced in this way is processed by the T-die method.

インフレーション法などの溶融押し出し法、熱プレス法
、溶成流延法またはカレンダー法等の公知の製膜方法に
付することによりフィルム17′cはシートが得られる
。フィルム筐たはシートの厚さは通常10〜500μm
の範囲内であることが好筐しい。このようにして製膜し
て得られたフィルム筐たはシートは通常、引張強度3K
g/−以上を有する。
A sheet of the film 17'c can be obtained by subjecting it to a known film forming method such as a melt extrusion method such as an inflation method, a hot press method, a melt casting method, or a calender method. The thickness of the film casing or sheet is usually 10 to 500 μm.
It is preferable that the value be within the range of . The film casing or sheet produced in this way usually has a tensile strength of 3K.
g/- or more.

上記のフィルムまたはシートを所定の温度に加熱し、所
定の倍率で一軸方向筐たは二軸方向に延伸することによ
り、該フィルムまたはシートよりも力学的物性が向上し
たフィルムまたはシートを得ることができる。二軸方向
への延伸は同時筺たは逐次的に行われる。延伸温度はポ
リマーのガラス転移温度以上、該ガラス転移温度より8
0℃高い温度の範囲内が好筐しく、該ガラス転移温裳よ
り5℃から50℃高い温度の範囲内がより好ましい。延
伸温度がガラス転移温度未満ではポリマーの軟化が不充
分であり、均一で安定な延伸を行うことはできない。一
方、延伸温度が高すぎるとフィルムまたはシートの厚み
の薄い部分が生成し。
By heating the above film or sheet to a predetermined temperature and stretching it uniaxially or biaxially at a predetermined magnification, it is possible to obtain a film or sheet with improved mechanical properties than the above film or sheet. can. Stretching in two axial directions may be performed simultaneously or sequentially. The stretching temperature is higher than the glass transition temperature of the polymer, and 8° below the glass transition temperature.
A temperature range of 0° C. higher is preferable, and a temperature range of 5° C. to 50° C. higher than the glass transition temperature is more preferable. When the stretching temperature is lower than the glass transition temperature, the polymer is insufficiently softened and uniform and stable stretching cannot be performed. On the other hand, if the stretching temperature is too high, thin parts of the film or sheet will be produced.

フィルムまたはシートに穴が生じる等の問題が発生する
。延伸倍率は、−軸方向のみの延伸の場合には3倍以上
が好筐しく、4倍以上がより好ましい。二軸方向への延
伸の場合には、縦訃よび横の両方向に1.5倍以上が好
筐しく、2倍以上がより好筐しい。延伸倍率がこれらの
倍率よりも小さい場合には、力学的物性の向上が不充分
である。延伸倍率の上限値は、ポリマーの種類および延
伸温度に依存するので、一義的には決定できないが、延
伸温度にかけるフィルム筐たはシートの破断伸度以下、
好ましくは破断伸度の95%以下である。
Problems such as holes in the film or sheet occur. In the case of stretching only in the -axial direction, the stretching ratio is preferably 3 times or more, more preferably 4 times or more. In the case of biaxial stretching, it is preferably 1.5 times or more in both the longitudinal and transverse directions, and more preferably 2 times or more. When the stretching ratio is smaller than these ratios, the improvement in mechanical properties is insufficient. The upper limit of the stretching ratio cannot be determined uniquely because it depends on the type of polymer and the stretching temperature;
Preferably, the elongation at break is 95% or less.

このようにフィルムまたはシートを延伸することにより
、該フィルム筐たはシートの引張強度を延伸前に比べ1
0%以上向上させることができる。
By stretching the film or sheet in this way, the tensile strength of the film casing or sheet can be increased by 1% compared to before stretching.
It can be improved by 0% or more.

不発明により提供される延伸されたフィルムまたはシー
トは通常、引張強度6Kq/−以上を有する。
The stretched film or sheet provided by the invention typically has a tensile strength of 6 Kq/- or more.

本発明のフィルム箇たはシートは、他種素材と複合する
フィルム塘たはシートの素材として用いてもよい。
The film or sheet of the present invention may be used as a material for a film or sheet composite with other types of materials.

本発明のフィルム筐たはシートは各種の包装用、農業用
、建築材料用、電気部品用、光学部品用等に使用するこ
とができる。
The film casing or sheet of the present invention can be used for various packaging, agriculture, building materials, electrical parts, optical parts, etc.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

な訃、物性値は下記の方法に従って測定した。The physical property values were measured according to the following methods.

■ 数平均分子1釦よび分子量分布:GPC(ポリスチ
レン換算)により求めた。
(1) Number average molecule and molecular weight distribution: Determined by GPC (polystyrene equivalent).

■ ガラス転移温度:示差熱分析法(窒素中、昇温速度
10℃/分)により測定した。
(2) Glass transition temperature: Measured by differential thermal analysis (in nitrogen, heating rate 10°C/min).

■ 引張強度、引張弾性率3よび破断伸度:100■×
20簡に底形した試験片について、引張試験機にてつか
み間距離30■、引張速度1 wx 7分で測定した。
■Tensile strength, tensile modulus 3 and elongation at break: 100■×
A test piece with a bottom shape of 20 mm was measured using a tensile testing machine at a grip distance of 30 cm and a tensile speed of 1 w x 7 minutes.

■ 全光線透過率:ASTM  D1003に準じた方
法により測定した。
(2) Total light transmittance: Measured by a method according to ASTM D1003.

参考例1 攪拌装置を備えた11容のガラス製容器の内部を乾燥し
た窒素ガスで充分に置換したのち、該容器内に脱水した
トルエン0.51を仕込み、三フッ化ホウ素を0.01
モル/lの濃度になる筐で吹き込んだのち、−78℃に
冷却した。攪拌下、その溶液に脱水した2、3−ジヒド
ロフラン100ft=20分かけて徐々に添加した。−
78℃の温度で48時間反応を続けたのち、反応混合物
にアンモニア水の1規定メタノ一ル溶液lOMtを加え
4重合を停止させた。次いで、その混合溶液をメタノー
ルIOJ中に滴下し、常法に従い再沈殿により単離し、
40Fの白色生成物を得た。生成物の数平均分子量をG
PCにより求めたところ、ポリスチレン換算で61,0
00であった。渣た分子量分布は1.6であった。
Reference Example 1 After sufficiently purging the inside of an 11-volume glass container equipped with a stirring device with dry nitrogen gas, 0.51 g of dehydrated toluene was charged into the container, and 0.01 g of boron trifluoride was charged.
After blowing into the container to reach a concentration of mol/l, the mixture was cooled to -78°C. While stirring, 100 ft of dehydrated 2,3-dihydrofuran was gradually added to the solution over 20 minutes. −
After continuing the reaction at a temperature of 78° C. for 48 hours, 1 OMt of a 1N methanol solution of ammonia water was added to the reaction mixture to stop the tetrapolymerization. Next, the mixed solution was dropped into methanol IOJ and isolated by reprecipitation according to a conventional method,
A white product of 40F was obtained. The number average molecular weight of the product is G
When calculated by PC, it is 61.0 in terms of polystyrene.
It was 00. The molecular weight distribution of the residue was 1.6.

生成物を重クロロホルム溶液とし、そのNMRスペクト
ルを1H−NMRにて測定したところ、1.9ppmと
3.8ppmの位置にスペクトル上で等面積を占める2
つの吸収が認められた。これらの吸収については、後者
を酸素に隣接したメチンとメチレンのプロトンに、前者
をそれ以外のメチンとメチレンのプロトンにそれぞれ帰
属させることができる○ 生成物をテトラヒドロフラン溶液とし、その溶液をテフ
ロンシート上で厚さ8μmのフィルム捷たはシートに調
製し、赤外線吸収スペクトルを測定したところ、2.3
−ジヒドロフランの場合と同シく波数91 Q cm−
”と1060c+++−”の位置に−C−O−C−に起
因する吸収が認められた。なボー、2.3−ジヒドロフ
ランの場合に1630 cm−”の位置に認められる二
重結合による吸収は消失していた。
When the product was dissolved in deuterated chloroform and its NMR spectrum was measured by 1H-NMR, it was found that 2 ions occupying equal areas on the spectrum were located at 1.9 ppm and 3.8 ppm.
absorption was observed. Regarding these absorptions, the latter can be attributed to the methine and methylene protons adjacent to oxygen, and the former to the other methine and methylene protons. ○ Make the product a tetrahydrofuran solution, and spread the solution on a Teflon sheet. When a film or sheet with a thickness of 8 μm was prepared and the infrared absorption spectrum was measured, it was found to be 2.3
-Same as in the case of dihydrofuran, wave number 91 Q cm-
Absorption due to -C-O-C- was observed at the positions "and 1060c+++-". The absorption due to the double bond observed at the 1630 cm-'' position in the case of 2,3-dihydrofuran disappeared.

これらの結果から、生成物は次の繰返し単位からなるポ
リマーであり、2.3−ジヒドロフランをその5員環を
開環することなく、環内二重結合で重合して得られてい
ることが確認された。
These results indicate that the product is a polymer consisting of the following repeating units, and is obtained by polymerizing 2,3-dihydrofuran at its intracyclic double bond without opening its 5-membered ring. was confirmed.

このポリマーのガラス転移温度は150℃であった。The glass transition temperature of this polymer was 150°C.

参考例2 参考例11’C釦いて2.3−ジヒドロフラン1002
の代わりに2.3−ジヒドロフラン70fと2.3−ジ
ヒドロ−2,2−ジメチルフラン302の混合物を仕込
んだ以外は同様にして重合反応釦よび単離操作を行うこ
とにより、61Fの白色生成物を得た。このもののIH
−NMRによる分析の結果、該生成物は次の繰返し単位
([I[) 68重量%釦よび繰返し単位(fl/) 
32重量嘩からなるポリマーであることが確認された。
Reference example 2 Reference example 11'C button 2,3-dihydrofuran 1002
By carrying out the polymerization reaction button and isolation operation in the same manner except that a mixture of 2,3-dihydrofuran 70f and 2,3-dihydro-2,2-dimethylfuran 302 was charged instead of 2,3-dihydrofuran 70f, a white product of 61F was obtained. I got something. IH of this
- As a result of NMR analysis, the product has the following repeating units ([I[) 68% by weight buttons and repeating units (fl/)
It was confirmed that the polymer consisted of 32% by weight.

このポリマーのガラス転移源[t/1162℃であった
The glass transition source of this polymer was [t/1162°C.

実施例1 参考例1で合成したポリマーを熱プレス成形機(神藤金
属工業所製)にて280℃、50Kf/−で100+1
lIX 1001DIX 0.2tllの大きさのフィ
ルムに成形した。このフィルムは表面が平滑であり、そ
の全光線透過率は90%であり、透明性が良好であった
Example 1 The polymer synthesized in Reference Example 1 was heated to 100+1 at 280°C and 50Kf/- using a hot press molding machine (manufactured by Shinto Metal Industry Co., Ltd.).
IIX 1001DIX It was molded into a film with a size of 0.2 tll. This film had a smooth surface, a total light transmittance of 90%, and good transparency.

得らt′したフィルムの物性を第1表に1とめた。The physical properties of the obtained film are listed in Table 1.

実施例2 参考例1に準じた方法で合成したポリマーをスリット幅
100IIIII、スリット間隔0.1鶏のT−ダイを
有する製膜装置を用いて、シリンダー温度280℃、押
し出し速Htsr、”分の条件で押し出し成形し、厚み
50μmのフィルムを得た。
Example 2 A polymer synthesized by a method similar to Reference Example 1 was produced using a film forming apparatus having a T-die with a slit width of 100III and a slit interval of 0.1, at a cylinder temperature of 280°C, an extrusion speed of Htsr, and a Extrusion molding was performed under the following conditions to obtain a film with a thickness of 50 μm.

得られたフィルムの物性(樹脂の流動方向)を第1表に
筐とめた。
The physical properties (flow direction of the resin) of the obtained film are listed in Table 1.

実施例3 参考例2で合成したポリマーを熱プレス成形機にて28
0℃、50Kg/−で1001111X20關×0.2
−の大きさのフィルムに成形した0 得られたフィルムの物性を第1表に筐とめた。
Example 3 The polymer synthesized in Reference Example 2 was molded using a hot press molding machine.
1001111 x 20 x 0.2 at 0℃, 50Kg/-
The physical properties of the obtained film are shown in Table 1.

第 1 表 実施例1   5.2    220    8.1 
    90実施例2   7.5    290  
  7.2     91実施例3   3.3   
 230    4.8     90実施例4 参考例1に準じた方法で台底したポリマーを熱プレス成
形機(神藤金属工業所製)にて280℃。
Table 1 Example 1 5.2 220 8.1
90 Example 2 7.5 290
7.2 91 Example 3 3.3
230 4.8 90 Example 4 A polymer molded in the same manner as in Reference Example 1 was heated to 280°C in a hot press molding machine (manufactured by Shinto Metal Industry Co., Ltd.).

5oKy/−で100鎮X100111X0.2鴎の大
きさのフィルムに成形した。得られたフィルムをX6H
型二軸延伸装置(東洋精機製作新製)にて160℃で2
倍×2倍にQ、5m/分の速度で二軸延伸を行い、厚み
48μmの延伸フィルムを得た。このフィルムは表面が
平滑であり、その全光線透過率は91多であり、透明性
が良好であった。
It was molded into a film with the size of 100 x 100,111 x 0.2 seagulls at 5 oKy/-. The obtained film was
2 at 160℃ using a mold biaxial stretching device (newly manufactured by Toyo Seiki Seisakusho).
Biaxial stretching was performed at a speed of 5 m/min to obtain a stretched film with a thickness of 48 μm. This film had a smooth surface, a total light transmittance of 91, and good transparency.

得られたフィルムの引張強度は7.8Kg/IIjであ
り、引張弾性率は320Kg/−であり、破断伸度は6
.9%であった。力学物性は互に直交する二方向で測定
したが、はぼ同一であった。なふ・、延伸前のフィルム
の引張強度は5.2 Kg/ txjであった。
The tensile strength of the obtained film was 7.8 Kg/IIj, the tensile modulus was 320 Kg/-, and the elongation at break was 6.
.. It was 9%. Mechanical properties were measured in two directions perpendicular to each other, and they were almost the same. The tensile strength of the film before stretching was 5.2 Kg/txj.

実施例5 実施例4に訃いて延伸倍率を1.5倍×1.5倍に代え
た以外は同様の条件で延伸を行った。
Example 5 Stretching was carried out under the same conditions as in Example 4 except that the stretching ratio was changed to 1.5 times x 1.5 times.

得られたフィルムの物性を第2表にまとめた。The physical properties of the obtained film are summarized in Table 2.

実施例6 実施例4に訃いて延伸倍率を4倍×1倍に代えた以外は
同様の条件で延伸を行った〇 得られたフィルムの物性を第2表に筐とめた。
Example 6 Stretching was carried out under the same conditions as in Example 4 except that the stretching ratio was changed to 4 times x 1 times. The physical properties of the obtained film are shown in Table 2.

な釦、物性は延伸方向で測定した。Physical properties were measured in the stretching direction.

実施例7 実施例4にトいて延伸温度を170℃に代え、かつ延伸
倍率を2.5倍×2.5倍に代えた以外は同様の条件で
延伸を行った。
Example 7 Stretching was carried out under the same conditions as in Example 4 except that the stretching temperature was changed to 170°C and the stretching ratio was changed to 2.5 times x 2.5 times.

得られたフィルムの物性を第2表に筐とめた。The physical properties of the obtained film are shown in Table 2.

実施例8 実施例4に訃いて参考例2に準じた方法で台底したポリ
マーを用い、かつ延伸温度を172℃に代えた以外は同
様の条件で延伸を行った。
Example 8 Stretching was carried out under the same conditions as in Example 4, except that the same polymer was used as in Reference Example 2, and the stretching temperature was changed to 172°C.

得られたフィルムの物性を第2表に筐とめた。The physical properties of the obtained film are shown in Table 2.

な訃、延伸前のフィルムの引張強度は3.3 Kti 
/ aであった。
The tensile strength of the film before stretching is 3.3 Kti.
/ It was a.

実施例9 参考列1に準じた方法で台底したポリマーをスJント幅
100M、スリット間隔0.1閣のT−ダイを有する製
膜装置を用いて、シリンダー温度280℃、押し出し運
1fl 5 f/分の条件で押し出し成形し、厚み50
μmのフィルムを得た。得られたフィルムを用い、かつ
延伸倍率を3倍(樹脂の流動方向)01倍に代えた以外
は実施例4におけると同様の条件で延伸を行い、厚み1
5μmの延伸フィルムを得た。
Example 9 A polymer prepared in the same manner as in Reference Column 1 was extruded using a film forming apparatus having a T-die with a width of 100 m and a slit interval of 0.1 mm, a cylinder temperature of 280°C, and an extrusion rate of 1 fl 5. Extrusion molded under f/min conditions to a thickness of 50
A μm film was obtained. Using the obtained film, stretching was carried out under the same conditions as in Example 4, except that the stretching ratio was changed to 3 times (in the flow direction of the resin) 01 times, and the thickness was 1
A stretched film of 5 μm was obtained.

得られたフィルムの物性(樹脂の流動方向)を第2表に
箇とめた。
The physical properties (flow direction of the resin) of the obtained film are listed in Table 2.

第   2   表 実施例6     12.0      92実施例7
      8.7      92実施例8    
  7.1      91〔発明の効果〕 不発明によれば、透明性訃よび耐熱性に優れ、かつ艮好
な力学的物性を有するフィルムまたはシートが提供され
る。
Table 2 Example 6 12.0 92 Example 7
8.7 92 Example 8
7.1 91 [Effects of the Invention] According to the invention, a film or sheet having excellent transparency and heat resistance and excellent mechanical properties is provided.

Claims (1)

【特許請求の範囲】 主鎖が実質的に下記の繰返し単位( I ) ▲数式、化学式、表等があります▼( I ) (式中、R^1、R^2、R^3、R^4、R^5およ
びR^6はそれぞれ水素原子または低級アルキル基を表
す。) からなつているポリマーを成形してなるフィルムまたは
シート。
[Claims] A repeating unit (I) whose main chain is substantially the following: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R^1, R^2, R^3, R^ 4, R^5 and R^6 each represent a hydrogen atom or a lower alkyl group).
JP26661389A 1989-10-14 1989-10-14 Film or sheet Pending JPH03128227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26661389A JPH03128227A (en) 1989-10-14 1989-10-14 Film or sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26661389A JPH03128227A (en) 1989-10-14 1989-10-14 Film or sheet

Publications (1)

Publication Number Publication Date
JPH03128227A true JPH03128227A (en) 1991-05-31

Family

ID=17433250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26661389A Pending JPH03128227A (en) 1989-10-14 1989-10-14 Film or sheet

Country Status (1)

Country Link
JP (1) JPH03128227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106780A1 (en) * 2005-03-31 2006-10-12 Kuraray Co., Ltd. Oxygen-absorptive resin composition and molded article and laminated article produced using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106780A1 (en) * 2005-03-31 2006-10-12 Kuraray Co., Ltd. Oxygen-absorptive resin composition and molded article and laminated article produced using the same
JP5087392B2 (en) * 2005-03-31 2012-12-05 株式会社クラレ Oxygen-absorbing resin composition and molded article and laminate using the same

Similar Documents

Publication Publication Date Title
JP4147143B2 (en) Block copolymer and resin composition
CA2226195C (en) Block copolymer, block copolymer composition and heat shrinkable films made thereof
US20140357805A1 (en) Polyolefin Having Terminal Double Bond and Method of Producing the Same
KR100508743B1 (en) Block copolymer composition
KR102558470B1 (en) polymer composition
JP4714019B2 (en) Block copolymer mixture containing branched block copolymer
US10633465B2 (en) Block copolymers having semi-crystalline blocks and compositions and articles made therefrom
WO2005010096A1 (en) Block copolymer composition
US3927143A (en) Thermoplastic block copolymers
JPH11255851A (en) Linear block copolymer and resin composition
JPH03128227A (en) Film or sheet
JP4714020B2 (en) Linear block copolymer composition
JPH03200856A (en) Resin composition and its molded article
US20190375934A1 (en) Compatibilised polyolefin and polyphenylene oxide and/or polystyrene composition
JPH03192146A (en) Resin composition
US20190264016A1 (en) Propylene resin composition and injection-molded article thereof
JPH02296812A (en) Styrene/ethylene block copolymer and its production
Yang et al. Synthesis of syndiotactic polystyrene—Polyisobutylene graft copolymers by cationic half‐sandwich scandium complex
JPH11269327A (en) Polypropylene resin composition
Molenberg et al. Phase morphologies in block copolymers of polystyrene and columnar liquid crystalline polydiethylsiloxane
JPS6238381B2 (en)
JP2795693B2 (en) Resin composition
Kennedy et al. Living carbocationic polymerization. 56. Polyisobutylene-containing block polymers by sequential monomer addition. 8. Synthesis, characterization, and physical properties of poly (indene-b-isobutylene-b-indene) thermoplastic elastomers
JP4689197B2 (en) Block copolymer composition
JP2004307759A (en) Branched block copolymer and resin composition