JPH03127699A - Method for preventing scale of multieffect sea water desalting device - Google Patents

Method for preventing scale of multieffect sea water desalting device

Info

Publication number
JPH03127699A
JPH03127699A JP26309489A JP26309489A JPH03127699A JP H03127699 A JPH03127699 A JP H03127699A JP 26309489 A JP26309489 A JP 26309489A JP 26309489 A JP26309489 A JP 26309489A JP H03127699 A JPH03127699 A JP H03127699A
Authority
JP
Japan
Prior art keywords
seawater
sea water
acid
degassed
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26309489A
Other languages
Japanese (ja)
Inventor
Isao Shimizu
勲 清水
Yuichi Fujioka
祐一 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26309489A priority Critical patent/JPH03127699A/en
Publication of JPH03127699A publication Critical patent/JPH03127699A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To economically obtain fresh water from the sea water by heating the deaerated sea water, which is added with an acid to lower its pH, continuously adding the acid thereto to maintain the water a <=pH2 for a short period of time and adding an alkali thereto where the temp. of the concd. sea water attains <=110 deg.C. CONSTITUTION:The acid is added to the sea water to lower its pH and to obtain the deaerated sea water of pH 7 to 8. The acid is continuously added to the deaerated sea water which is heated by continuous preheaters until the temp. rises to >=90 deg.C, by which the pH thereof is maintained at <=5.5. The amt. of the acid to be added is intermittently increased to maintain the pH of the deaerated sea water of >=90 deg.C at <=2 for a short period of time. Further, the alkali is added to the concn. sea water to increase the pH thereof to <=6.5 where the temp. of the sea water concd. by evaporation of a part of the water in the deaerated sea water attains <=110 deg.C. The number of the effect stages is increased as compared with the conventional method and the economy is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多重効用海水淡水化装置のスケール防止方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for preventing scale in a multi-effect seawater desalination device.

〔従来の技術〕[Conventional technology]

海水の淡水化方法としては、多重効用法、多段フラッシ
ュ法、逆浸透法、自己蒸気圧縮法等がある。多重効用法
は地形式に較べて最も造水コストを安価とする可能性が
あるが、伝熱面へのスケール析出による造水量の経時的
低下という問題がある。
Examples of seawater desalination methods include multiple effect method, multistage flash method, reverse osmosis method, and self-vapor compression method. The multiple effect method has the potential to reduce the cost of water generation the most compared to the ground type method, but there is a problem that the amount of water produced decreases over time due to scale precipitation on the heat transfer surface.

第2図は多重効用法の海水淡水化装置の構成図を示した
ので、それに基いて従来法を説明する。
FIG. 2 shows a configuration diagram of a seawater desalination apparatus using the multiple effect method, and the conventional method will be explained based on this diagram.

海水10は硫酸タンク2の硫酸17を添加してpHを5
〜6とした後脱気塔1で海水10中の酸素および炭酸ガ
スを脱ガスする。脱気海水11は順次プレヒーター4 
a、  4 b、4 c、4 d。
Seawater 10 was adjusted to pH 5 by adding sulfuric acid 17 from sulfuric acid tank 2.
6, oxygen and carbon dioxide gas in the seawater 10 is degassed in a degassing tower 1. The degassed seawater 11 is sequentially transferred to the preheater 4.
a, 4 b, 4 c, 4 d.

4e、4fを通過して加熱昇温され、最後にプレヒータ
ー5で外部の蒸気発生器(図示せず)から発生した蒸気
15により加熱昇温され、熱交換器6へ導入される。
4e and 4f, and is heated and heated, and finally heated and heated in a preheater 5 by steam 15 generated from an external steam generator (not shown), and introduced into a heat exchanger 6.

熱交換器6において、脱気海水11は熱交換器6を構成
している室の圧力になるようにフラッシュ蒸発をした後
、蒸気15により加熱され一部が蒸発する。熱交換器6
を構成している室で発生した蒸気12gはプレヒーター
4fと熱交換器7fに送られる。
In the heat exchanger 6, the degassed seawater 11 undergoes flash evaporation to reach the pressure of the chamber constituting the heat exchanger 6, and then is heated by the steam 15 and partially evaporates. heat exchanger 6
12g of steam generated in the chamber constituting the chamber is sent to a preheater 4f and a heat exchanger 7f.

蒸気15は脱気海水11を加熱することにより復水し、
該復水16は外部の蒸気発生器へ戻される。
The steam 15 is condensed by heating the degassed seawater 11,
The condensate 16 is returned to the external steam generator.

脱気海水11中の水の一部が蒸発した後の濃縮海水13
gは熱交換器7fへ送られる。熱交換器7fを構成する
室の圧力は熱交換器6を構成する室の圧力よりも低く設
定されている。そのため、濃縮海水13gは熱交換器7
fを構成している室でフラッシュ蒸発した後更に蒸気1
2gにより加熱され、濃縮海水13g中の水の一部が熱
交換器7fを構成している室で蒸発した後、濃縮海水は
熱交換器7eへ送られる。
Concentrated seawater 13 after some of the water in degassed seawater 11 has evaporated
g is sent to the heat exchanger 7f. The pressure in the chamber constituting the heat exchanger 7f is set lower than the pressure in the chamber constituting the heat exchanger 6. Therefore, 13g of concentrated seawater is transferred to heat exchanger 7.
After flash evaporation in the chamber constituting f, further vapor 1
After a portion of the water in the concentrated seawater 13g is evaporated in a chamber constituting the heat exchanger 7f, the concentrated seawater is sent to the heat exchanger 7e.

濃縮海水13gは順次熱交換器7e、7d、7c、7b
、7aを通過し、最終的には濃縮海水13となって系外
へ排出される。熱交換器7f。
13g of concentrated seawater is sequentially transferred to heat exchangers 7e, 7d, 7c, and 7b.
, 7a, and finally becomes concentrated seawater 13 and is discharged outside the system. Heat exchanger 7f.

7e、7d、?c、7bで発生した蒸気は次の段の濃縮
海水の加熱と、プレヒーターでの脱気海水11の予熱に
より復水し、最終的には集められて製造水14となる。
7e, 7d,? The steam generated in steps c and 7b is condensed by heating the concentrated seawater in the next stage and preheating the degassed seawater 11 in a preheater, and is finally collected to become manufactured water 14.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多重効用海水淡水化装置は、海水温度が90℃辺
上となると海水中より炭酸カルシウム、水酸化マグムシ
ラム等のアルカリスケールの析出を防止するために、海
水中に酸添加して海水中の溶存二酸化炭素を追い出した
り、ポリリン酸系やポリカルボン酸系のスケール防止剤
を添加していた。前記防止方法はアルカリスケールの析
出を抑制できるが、硫酸カルシウムの析出防止方法とは
ならず、海水温度の上限は100℃程度であった。
Conventional multi-effect seawater desalination equipment adds acid to the seawater to prevent the precipitation of alkali scales such as calcium carbonate and magum cilum hydroxide from the seawater when the seawater temperature reaches above 90°C. Dissolved carbon dioxide was expelled, and polyphosphoric acid-based or polycarboxylic acid-based scale inhibitors were added. Although the above prevention method can suppress the precipitation of alkali scale, it is not a method for preventing the precipitation of calcium sulfate, and the upper limit of seawater temperature is about 100°C.

本発明は上記技術水準に鑑み、海水温度を100℃以上
にでき、そのため多重効用の段数を増加することを可能
とし、経済的に海水より淡水を得ることのできるように
するための海水淡水化装置のスケール防止方法を提供し
ようとするものである。
In view of the above-mentioned state of the art, the present invention is aimed at seawater desalination, which makes it possible to increase the temperature of seawater to 100°C or more, thereby increasing the number of stages of multiple effects, and making it possible to economically obtain freshwater from seawater. The present invention aims to provide a method for preventing scaling of equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は多重効用海水淡水化装置によって淡水を得るに
際し、 ■海水に酸を添加してplを下げて脱ガスしてpH7〜
8の脱気海水を得、 ■該脱気海水を連続したプレヒータで加熱し、温度が9
0℃以上になった脱気海水に連続的に左を添加してその
pHを5.5以下とし、かつ間歇的に酸の添加量を増大
して該90℃以上の脱気海水のp)Iを2以下に短時間
保持し、■脱気海水中の水の一部を蒸発した濃縮海水の
温度が110℃以下になるところに、該濃縮海水にアル
カリを添加してそのp)lを6.5以上とする ことを特徴とする多重効用海水淡水化装置のスケール防
止方法である。
In the present invention, when obtaining fresh water using a multi-effect seawater desalination device,
8. Obtain deaerated seawater, ■ Heat the deaerated seawater with a continuous preheater until the temperature reaches 9.
Continuously add the left to the degassed seawater at a temperature of 0°C or higher to make its pH 5.5 or lower, and intermittently increase the amount of acid added to the degassed seawater at a temperature of 90°C or higher p) I is maintained at 2 or less for a short time, and when the temperature of the concentrated seawater obtained by evaporating part of the water in the deaerated seawater becomes 110°C or less, an alkali is added to the concentrated seawater to reduce its p)l. This is a method for preventing scale in a multi-effect seawater desalination device, characterized in that the desalination temperature is 6.5 or more.

本発明を実施するに当たっては、pHが5.5以下とな
る伝熱面ではチタン系材料を使用し、pHが6.5以上
の伝熱面ではチタン系材料も勿論使用可能であるが、そ
れよりも安価な材料を使用することができる。
In carrying out the present invention, titanium-based materials are used for heat transfer surfaces with a pH of 5.5 or less, and titanium-based materials can of course be used for heat transfer surfaces with a pH of 6.5 or higher; cheaper materials can be used.

〔作用〕[Effect]

硫酸カルシウムは化学平衡上は海水の全塩濃度(TDS
)が38000 ppm程度になると、海水温度が10
0〜105℃を越えるとスケールの析出が始まるが、p
Hを5.5程度に下げることにより硫酸カルシウムの析
出速度は著しく遅くすることが可能になる。いわゆる過
飽和状態がpHを低げるほど安定となるためであるが、
これは硫酸カルシウムが析出する時の結晶核となるCa
CO5またはMg(OHLのスケール析出が生じにくく
なるためではないかと推定される。
In chemical equilibrium, calcium sulfate has a total salt concentration (TDS) of seawater.
) becomes around 38,000 ppm, the seawater temperature decreases by 10
When the temperature exceeds 0 to 105°C, scale precipitation begins, but p
By lowering H to about 5.5, the precipitation rate of calcium sulfate can be significantly slowed down. This is because the so-called supersaturated state becomes more stable as the pH is lowered.
This is Ca, which becomes the crystal nucleus when calcium sulfate precipitates.
It is presumed that this is because scale precipitation of CO5 or Mg (OHL) becomes less likely to occur.

そこで本発明におけるように、90℃以上の海水のpH
を5.5以下とすることにより、90℃以上で析出する
硫酸カルシウムの析出速度を低下させるものである。こ
の場合にはスケールが析出しても、そのスケールは多孔
性となるため、海水のpl+を間歇的に2以下にするこ
とにより、析出したスケールは容易に再溶解させること
が可能となる。このため、脱気海水の最高温度は約13
0℃まで上げることができる。
Therefore, as in the present invention, the pH of seawater at 90°C or higher is
By setting the value to 5.5 or less, the precipitation rate of calcium sulfate, which precipitates at 90° C. or higher, is reduced. In this case, even if scale is precipitated, the scale is porous, so by intermittently reducing the pl+ of seawater to 2 or less, the precipitated scale can be easily redissolved. Therefore, the maximum temperature of degassed seawater is approximately 13
It can be raised to 0°C.

海水温度100℃以上ではpHにか\わらず装置材料は
チタン系のものしかないが、100℃以下ではpHを6
.5以上とすればチタン系材料よりも安価な材料の使用
が可能となり、かつ110℃以下ではpHを6.5以上
としてもスケールの心配はない。そのため本発明では濃
縮海水の温度が110℃以下になるところにアルカリを
添加して、そのpHを6.5以上とするものである。
When the seawater temperature is over 100℃, the only device material available is titanium, regardless of the pH; however, when the seawater temperature is below 100℃,
.. If it is 5 or more, it becomes possible to use a material that is cheaper than titanium-based materials, and there is no fear of scale at 110° C. or lower even if the pH is 6.5 or more. Therefore, in the present invention, an alkali is added to the concentrated seawater at a temperature of 110° C. or lower to adjust its pH to 6.5 or higher.

〔実施例〕〔Example〕

本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described with reference to FIG.

この実施例の装置は従来の多重効用海水淡水化装置に加
えて、プレヒーター4dと4e間の脱気海水11に酸1
8を添加するラインと、熱交換器7eと7dの濃縮海水
13eに塩基19を塩基タンク8より添加するラインを
設置したものである。
In addition to the conventional multi-effect seawater desalination apparatus, the apparatus of this embodiment has the following features:
8 and a line for adding base 19 from base tank 8 to concentrated seawater 13e in heat exchangers 7e and 7d.

第1図の実施例の場合、脱気海水11の温度はプレヒー
ター4dの出口で90℃以下であり、プレヒーター4e
の出口て90℃以上である。
In the case of the embodiment shown in FIG. 1, the temperature of the degassed seawater 11 is 90°C or less at the outlet of the preheater 4d, and
The temperature at the outlet is 90°C or higher.

また、熱交換器7eの出口の濃縮海水13eは110℃
以上であり、熱間交換器7dの出口濃縮海水13dは1
10℃以下となる。この実施例による通常の運転では、
脱気塔1からプレヒータ−4d間の脱気海水はpt17
.0でプレヒーター7e以降の脱気海水11から濃縮海
水13e間の流体のpHが5.0〜5.5で、濃縮海水
13dから下流はpH6,5〜8で運転される。pHを
6.5以上とするのは海水による腐食性を低減するため
で、これにより低価格の材料、たとえばキュプロニッケ
ル等を使用することができる。高温部の熱交換器6.7
f、7eのスケールが戒長し全体の造水量が低下した場
合は、添加する酸18の量を増加させ、プレヒーター4
e以降の脱気海水11から濃縮海水13e間の流体のp
)Iをl〜2とし添加する塩基19の量も増加させて、
濃縮海水13dから下流のpHは6.5〜7.0とする
。プレヒーター4e以降の脱気海水11から濃縮海水1
3e間の流体のI)Hを1〜2とする時間は5分程度で
十分である。
Moreover, the concentrated seawater 13e at the outlet of the heat exchanger 7e is 110°C.
Above, the concentrated seawater 13d at the outlet of the hot exchanger 7d is 1
The temperature will be below 10℃. In normal operation according to this embodiment,
The degassed seawater between the deaerator 1 and the preheater 4d is pt17.
.. 0, the pH of the fluid between the degassed seawater 11 and the concentrated seawater 13e after the preheater 7e is 5.0 to 5.5, and the fluid downstream from the concentrated seawater 13d is operated at a pH of 6.5 to 8. The reason for setting the pH to 6.5 or higher is to reduce the corrosivity caused by seawater, and this allows the use of low-cost materials such as cupronickel. Heat exchanger in high temperature section 6.7
If the scale of f and 7e becomes longer and the overall amount of fresh water decreases, increase the amount of acid 18 added and add preheater 4.
p of the fluid between degassed seawater 11 and concentrated seawater 13e after e
) by setting I to 1 to 2 and increasing the amount of base 19 added,
The pH downstream from the concentrated seawater 13d is 6.5 to 7.0. Degassed seawater 11 to concentrated seawater 1 after preheater 4e
It is sufficient to take about 5 minutes to adjust the I)H of the fluid between 3e and 3e to 1 to 2.

プレヒーター4e以降から熱交換器7eまでの伝熱部の
材料はチタン又はパラジウム人りチタンを用いることで
pHを低くしても材料腐食は防止できた。
By using titanium or titanium with palladium as the material for the heat transfer part from the preheater 4e onwards to the heat exchanger 7e, material corrosion could be prevented even if the pH was lowered.

脱気海水11の最高温度は130℃で運用可能となった
The maximum temperature of degassed seawater 11 is now 130°C.

海水温度が90℃以下の材料はチタンよりも低価格のキ
ュプロニッケルで構成しても海水pHが6.5以上であ
るため材料腐食が防止できた。
Even if the material used for seawater temperatures below 90°C was made of cupronickel, which is cheaper than titanium, material corrosion could be prevented because the seawater pH was 6.5 or higher.

海水の温度に応じて海水のpHと装置構成材料を適切に
選定することにより、スケール防止が可能で、かつ安価
な造水装置の製作が可能となった。
By appropriately selecting the pH of the seawater and the materials that make up the device depending on the temperature of the seawater, it has become possible to manufacture a water generating device that is both scale-preventable and inexpensive.

〔発明の効果〕〔Effect of the invention〕

脱気海水の最高温度を130℃に上昇させても、スケー
ル析出による造水量の低下がなく、かつ最高温度を13
0℃とすることにより、従来方法よりも効用段数を増加
させることが可能となり、経済性のよい多重効用海水淡
水化装置を提供できる。
Even if the maximum temperature of degassed seawater is increased to 130℃, there is no decrease in the amount of fresh water produced due to scale precipitation, and the maximum temperature is 130℃.
By setting the temperature to 0°C, it becomes possible to increase the number of effect stages compared to conventional methods, and it is possible to provide an economical multi-effect seawater desalination apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための海水淡水化
装置の説明図、第2図は従来の海水淡水化装置の一態様
の説明図である。
FIG. 1 is an explanatory diagram of a seawater desalination apparatus for explaining an embodiment of the present invention, and FIG. 2 is an explanatory diagram of one aspect of a conventional seawater desalination apparatus.

Claims (1)

【特許請求の範囲】  多重効用海水淡水化装置によって淡水を得るに際し、 (1)海水に酸を添加してpHを下げて脱ガスしてpH
7〜8の脱気海水を得、 (2)該脱気海水を連続したプレヒータで加熱し、温度
が90℃以上になった脱気海水に連続的に酸を添加して
そのpHを5.5以下とし、かつ間歇的に酸の添加量を
増大して該90℃以上の脱気海水のpHを2以下に短時
間保持し、 (3)脱気海水中の水の一部を蒸発した濃縮海水の温度
が110℃以下になるところに、該濃縮海水にアルカリ
を添加して、そのpHを6.5以上とする ことを特徴とする多重効用海水淡水化装置のスケール防
止方法。
[Claims] When fresh water is obtained by a multi-effect seawater desalination device, (1) an acid is added to seawater to lower the pH, and then degassed to raise the pH;
(2) Heat the degassed seawater with a continuous preheater, and then continuously add acid to the degassed seawater whose temperature reaches 90°C or higher to adjust its pH to 5. 5 or less, and intermittently increased the amount of acid added to maintain the pH of the degassed seawater at 90°C or higher at 2 or less for a short period of time, (3) evaporated part of the water in the degassed seawater. A method for preventing scale in a multi-effect seawater desalination apparatus, which comprises adding an alkali to the concentrated seawater to adjust its pH to 6.5 or higher when the temperature of the concentrated seawater becomes 110° C. or lower.
JP26309489A 1989-10-11 1989-10-11 Method for preventing scale of multieffect sea water desalting device Pending JPH03127699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26309489A JPH03127699A (en) 1989-10-11 1989-10-11 Method for preventing scale of multieffect sea water desalting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26309489A JPH03127699A (en) 1989-10-11 1989-10-11 Method for preventing scale of multieffect sea water desalting device

Publications (1)

Publication Number Publication Date
JPH03127699A true JPH03127699A (en) 1991-05-30

Family

ID=17384747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26309489A Pending JPH03127699A (en) 1989-10-11 1989-10-11 Method for preventing scale of multieffect sea water desalting device

Country Status (1)

Country Link
JP (1) JPH03127699A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525529A (en) * 2009-04-30 2012-10-22 アルストム テクノロジー リミテッド Power plant and water treatment plant with CO2 capture
JP2016209873A (en) * 2015-05-07 2016-12-15 斗山重工業株式会社 Multiple-effect desalination apparatus partly adding acid to some utility devices and desalination method using the apparatus
KR20170106946A (en) * 2017-09-14 2017-09-22 두산중공업 주식회사 Multi-effect distillator with partial acid dosing and desalination method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525529A (en) * 2009-04-30 2012-10-22 アルストム テクノロジー リミテッド Power plant and water treatment plant with CO2 capture
JP2016209873A (en) * 2015-05-07 2016-12-15 斗山重工業株式会社 Multiple-effect desalination apparatus partly adding acid to some utility devices and desalination method using the apparatus
US10683214B2 (en) 2015-05-07 2020-06-16 DOOSAN Heavy Industries Construction Co., LTD Multi-effect desalination apparatus partially dosing acids into some evaporator and desalination method using the same
KR20170106946A (en) * 2017-09-14 2017-09-22 두산중공업 주식회사 Multi-effect distillator with partial acid dosing and desalination method using the same

Similar Documents

Publication Publication Date Title
US5346592A (en) Combined water purification and power of generating plant
US4444675A (en) Alkaline scale abatement
US5405503A (en) Process for desalinating water while producing power
JP5839030B2 (en) Scale suppression method and geothermal power generator
US3410796A (en) Process for treatment of saline waters
JPS60179103A (en) Process and apparatus for concentrating aqueous solution and process and apparatus for recovering heat
JP2012525529A (en) Power plant and water treatment plant with CO2 capture
US5858245A (en) Inhibition of silicate scale formation
JPH03262585A (en) Ultra-pure water generating apparatus
JPH03127699A (en) Method for preventing scale of multieffect sea water desalting device
WO2021261410A1 (en) Method for fixing carbon dioxide
KR101323160B1 (en) Marine vertical multistage desalinator
CN207024682U (en) Multi-effect evaporation crystallizer
US20240198288A1 (en) Sustainable desalination systems and methods using recycled brine streams
JP6853661B2 (en) Amine-containing wastewater treatment method and treatment equipment
CN104250047A (en) Salt-containing wastewater treatment method
CN211871447U (en) Two-stage forced circulation evaporation system for landfill leachate
JP3646806B2 (en) Batch-type double effect can and salt making method using the same
CN208087250U (en) The device that high-salt wastewater low-temperature evaporation is concentrated using hot industry waste water
WO2010090273A1 (en) Operation management device for a vaporization device, fresh water generator provided with the operation management device, and operation management method and fresh water-generating method for vaporization devices
CN108249499A (en) The method and device concentrated using hot industry waste water to high-salt wastewater low-temperature evaporation
JPS6071094A (en) Usage of chelating agent in desalting in water
KR100924788B1 (en) Composition for removing scale and suppressing generation of scale
CN106006803A (en) Seawater desalination system and method
JPS6142390A (en) Method for making pure water for boiler